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Introduction:

Goal: Communication over large-delay/Doppler-spread channels that is

reliable, spectrally efficient, and computationally efficient.

Prior Art:

• single-carrier/DFE [Stojanovic/Proakis JOE 95], [Preisig JASA 05]

– unsatisfactory in surf zone (2fDTh ≈ 0.1) [Preisig/Deane JASA 04]

• ZP-OFDM [Li/Zhou/et al. OCEANS 06], [Stojanovic OCEANS 06]

–

{

negligible ICI (-25dB) → 2fDTs = 0.06

Ts = 7Th

}

⇒ 2fDTh = 0.008

• MCM (ICI-free but ISI-inducing) [Morozov/Preisig OCEANS 06]

– 2fDTh = 0.007 simulated, 2fDTh = 0.004 experimental

Conclusion: Need a new approach to the problem.
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Our approach to comm over highly spread channels:

• Suppressing both ISI and ICI mandates a low spectral efficiency

(Balien-Low theorem) [Strohmer/Beaver TCOM 03]. Solution: allow a

small span of ICI [Schniter Allerton 03].

• When channel-estimation and data-dection are decoupled,

guardbands are required for good performance, thereby decreasing

spectral efficiency. Solution: joint estimation/detection, which can

achieve the high-SNR capacity (1 − 2fDTh) log2 SNR [Kannu/Schniter

Allerton 06].

• For joint estimation/detection, PSP-VA/Kalman is complex and

PSP-VA/LMS is poor performing. Solution: use fast tree-search.

• Channel sparseness is complicated to track (e.g., O(N2
h) [Li/Preisig

OCEANS 06]) and seldom combined with MCM. Solution: to be

described. . .
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Summary of our approach:

We use. . .

1. multicarrier modulation that allows a small ICI span,

2. joint estimation/detection (i.e., noncoherent decoding)

3. fast tree-search (i.e., sequential decoding),

4. a novel means of tracking/exploiting delay-domain channel

sparseness.

In the near future, we plan to incorporate

4. bit-interleaved coded modulation and soft tree search.

Next, we detail our approach. . .
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Multicarrier Modulation:

Modulation:

s(t) =
∞

∑

n=−∞

N−1
∑

k=0

[

s(n)
]

k
α(t − nTs)e

j2πkFs(t−nTs)

Doubly dispersive channel:

x(t) =

∫ Th

0

h(t, τ)s(t − τ)dτ + w(t)

Demodulation:

[

x(n)
]

k
=

∫

∞

−∞

x(t) β∗(t − nTs)e
−j2πkFs(t−nTs)
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Discrete-time Vector Representation:

symbols
s(n)

x(n)
s(t) x(t)

mod demod
LTV

channel

noise z(t)

equalize/
decode

̂symbols
ŝ(n)

+

x(n) =
∞

∑

m=−∞

H(n, m)s(n − m) + w(n)

“ISI+ICI channel”

s(n)∈ CN multi-carrier symbol vector

H(n, m)∈ CN×N sub-carrier coupling matrix at time-n and lag-m

x(n)∈ CN multi-carrier observation vector

w(n)∈ CN noise vector
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Quasi-Banded Model:

With properly chosen pulse shapes α(t) and β(t), and with a smoothly

varying channel, we can make the ISI-free approximation

x(n) =
∞

∑

m=−∞

H(n, m)s(n − m) + w(n)

≈ H(n, 0)s(n) + w(n)

where H(n, 0) is quasi-banded with 2D + 1 active diagonals:

≈ +

x(n) H(n, 0) s(n) w(n)

In other words, ISI becomes negligible and ICI is effectively limited to a

radius of D subcarriers. (Typically D = 1.)
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In fact, with D > 0, the pulses {α(t), β(t)} can be designed to make

the approximation accurate without compromising spectral efficiency.

Example pulse shapes:
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Corresponding ISI/ICI Energy Profiles (same for each subcarrier):
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for Nh = 64, fDTc = 7.6 × 10−4, 2fDTh = 0.1, D = 1, SNR = 15dB

(e.g., Th = 7ms, fD = 7Hz, BW = 9.2kHz)
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A Sparse Basis-Expansion Model:

From multicarrier model

x(n) = H(n, 0)s(n) + w(n)

= S(n)h(n) + w(n) h(n) ∈ C
(2D+1)N ICI coefs

we can use a basis-expansion model (BEM)

h(n) = Bθ(n) θ(n) ∈ C
(2D+1)Nh delay/Doppler coefs

B =
(

F ...
F

)

F ∈ C
N×Nh Fourier basis matrix

to rewrite the observation as

x(n) = S(n)Bθ(n) + w(n)

where sparseness in the delay profile implies sparseness in θ(n).

Thus, ignore negligible coefs in θ(n) and corresponding columns in B!
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Noncoherent ML Decoding:

Treating (non-negligible) delay/Doppler coefs θ as nuisance parameters,

ŝML = arg max
s

p(x|s)

= arg max
s

∫

θ

p(x|s, θ)p(θ)dθ

Assuming θ ∼ CN (0, Rθ),

ŝML = arg max
s

{

x
H

SBΣ
−1

B
H

S
H

x − σ2 log |Σ|
}

≈ arg max
s

{

x
H

SBΣ
−1

B
H

S
H

x
}

for SNRs of interest

Σ := B
H

S
H

SB + σ2
R

−1
θ .

where it is interesting to note that θ̂MMSE|s = Σ
−1

B
H

S
H

x.

But how do we avoid an exhaustive search for symbols s?
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Fast Sequential Decoding:

By turning off the first and last D subcar-

riers, the ICI model becomes “causal,” fa-

cilitating the use of tree-search.

= +

x H s w

s0 = [s0]
T

s1 = [s0, s1]
T

s2 = [s0, s1, s2]
T

s3 = [s0, s1, s2, s3]
T

(for BPSK)

The important thing here is that the partial ML metric

µ(sk) = x
H
k SkBkΣ

−1
k B

H
k S

H
k xk

can be computed recursively. Thus, total search complexity via the

M -algorithm is only about

2M |S|(2D + 1)2N2
h-sparse mults per scalar-symbol!!
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Complexity Reduction via Pilots:

• With noncoherent decoding, only a single pilot subcarrier is required

to resolve gain/phase ambiguity.

• But, as number of pilots increase, the initial channel estimate θ̂

improves, allowing more aggressive branch pruning (i.e., smaller M)

without a sacrifice in performance.

• Example: M-algorithm

(BPSK, 25% pilots,

M=8) compared to

coherent MLSD with

genie-aided θ̂MMSE:
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Tracking the Sparseness Pattern:

• To apply the sparse BEM, need to know “active tap” locations.

• To learn active taps, we can use pilots to estimate the delay-power

profile (DPP), then

1. choose Nh-sparse largest taps (for fixed complexity), or

2. choose all taps above a threshold (for fixed performance).

• Note: the same pilots are used for DPP and tree-search

initialization.

Example pilot/data pattern:

data
pilot

guard
. . .. . .

timefr
eq
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Residual-Tap Compensation:

• Since the interference from residual (i.e., non-active) taps is treated

as additive noise, the effective noise power is unknown and

time-varying.

• Solution: estimate noise power from

ŵ(n) = x(n) − Ŝ(n)Bθ̂(n).
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Simulation Setup:

Channel:

• 4 paths with Rayleigh-fading gains and slowly varying delays.

•

{

delay spread Nh = 20

Doppler spread 2fDTc = 0.005

}

⇒ 2fDTh = 0.1 (surf zone).

which corresponds to

BW=T−1

c
Th 2fD

10kHz 2ms 50Hz
5kHz 4ms 25Hz
1kHz 20ms 5Hz

Transmitter:

• max-SINR pulse, N=64 carriers, 18 pilots, η=0.72 symbols
sec/Hz

, QPSK.

Receiver:

• rectangular pulse, ICI radius D = 1, M-alg parameter M = 8,

Nh-sparse = 8.
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Simulation Results (Perfectly Sparse Channel):

“Non-active” taps are zero-valued.
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Simulation Results (Nearly Sparse Channel):

2% of “active tap” energy leaked to “non-active” taps.
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Note: Can lower BER-floor by increasing Nh-sparse.
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Possible Improvements from Coding:

• With 3 ICI taps, the uncoded system will achieve a diversity order of

at most 3 (and simulations indicate diversity order ≈ 2).

• Through the use of coding, an MCM system can extract additional

diversity from the channel’s delay-spread.

• One option would be to use bit-interleaved coded modulation

(BICM) in conjunction with turbo reception. We expect significant

gains from this approach.
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Conclusions:

We proposed a multi-carrier scheme for communication over highly

spread underwater acoustic channels that

• allows ICI from neighboring subcarriers, eliminating the need for

time-domain guards,

• estimates symbols and sparse-channel-parameters jointly using a

fast tree-search algorithm that requires only about

2M |S|(2D + 1)2N2
h-sparse multiplications per QPSK symbol,

• uses pilots to reduce search complexity (i.e., tolerate low M)

• uses the same pilots to track the sparseness pattern.

For surf-zone-like channels (i.e., 2fDTh = 0.1), simulations indicate

• performance approximately 1dB away from genie-channel MLSD.
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