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Abstract— Decision-feedback differential detection (DFDD) of
differential phase-shift keying (DPSK) and differential unitary
space-time modulation (DUST) in Rayleigh fading channels ex-
hibits significant performance improvement over standard single-
symbol ML detector, but it requires the knowledge of fading
correlation and SNR at the receiver. In this paper, we investigate
the robustness of the DFDD to imperfect knowledge of fading
correlation and SNR. We derive the exact and Chernoff bound
expressions for pair-wise word-error probability (PWEP), and
then use them to approximate the BER, finding close agreement
with simulation results. The relationships between performance
and various system parameters, e.g., DFDD length and Doppler
mismatch, are also explored.

I. INTRODUCTION

Single antenna differential phase shift keying (DPSK) and
its multiple antenna extension, differential unitary space-time
modulation (DUST) [1], [2], are used in systems where
channel is flat, slow fading and is unknown to the receiver
as well as the transmitter. In a fast-fading channel, however,
both DUST and DPSK with standard single-symbol ML
detection succumb to an error floor when the error due to
channel variation dominates that due to additive noise [3]–
[5]. Decision-feedback differential detection (DFDD) [5]–[7]
has been proposed to reduce, and asymptotically eliminate, the
error floor and thereby improve the detection performance sig-
nificantly. DFDD, however, requires the knowledge of channel
fading correlation and SNR at the receiver.

Since perfect knowledge of fading correlation and SNR
at the receiver is unlikely in practice, especially in scenar-
ios where channel statistics change with time, we analyze
the robustness of DFDD to imperfect parameter knowledge.
Relative to the actual fading correlation and SNR, we de-
fine the assumed fading correlation and SNR, and consider
DFDD operation in accordance with the assumed parameters.
Under such conditions, we derive exact and Chernoff bound
expressions for PWEP and later use them to approximate the
BER, resulting in close agreement with the simulation results.
In addition, we analyze the “equivalent SNR loss” due to
parameter mismatch. The results presented in this paper are
applicable to both DUST and DPSK.

Notations: ��� denotes identity matrix of size ����� . The
operator vec 	�
� , e.g., ����� vec 	������ , denotes stacking of the
columns of matrix ��� in column vector ��� . 	�
��� denotes
conjugate transposition, � denotes the Kronecker product, tr 	�
�
denotes the trace operator, det 	�
 � the determinant, and ��	�
 �
the extraction of the real valued component. � �"!#�$ �&%

' # �'
�&%
'
�&%)(+* 
,
-


'
� ! if .0/213.54 , otherwise it denotes identity

matrix of appropriate size.

II. SYSTEM MODEL

We consider the system model

���6�87 9:<; �>=?�A@CBD� (1)

where ��� is the E �F� received matrix during the G�HJI
matrix-symbol interval, and where E and � are the number of
transmit and receive antennas, respectively. =�� is the EK���
MIMO channel response matrix during the G�HJI matrix-symbol
interval, containing i.i.d. unit variance proper complex Gaus-
sian entries. ; � is the G HJI EL�ME transmitted matrix-symbol,
encoded as ; � �ONQP�R ; �TS * . U �WVYX �

�[ZQ\,]0\,^,^-^&\`_ba :dc ] � is
the time- G integer index into matrix alphabet e of size

_0a :
,

so that NfP�R V e . Thus g is the number of bits per channel
use. ; � and NQP�R are unitary for all G , B � is a matrix of i.i.d.
unit variance proper complex Gaussian entries, and h is the
average SNR per receive antenna.

Note that the system model (1) assumes that the channel= � is fixed for E signaling intervals within the G�HJI matrix-
symbol interval, i.e., the channel is block-fading. However, for
the special case of diagonal codes, (1) can be shown to be a
valid system model even in a continuous fading channel such
that the .>HJI row of =6� is the .THJI row of = �[i � , where = �[i �is the MIMO channel response matrix at the .�HJI time instant
within the GjHJI matrix-symbol interval, i.e., at the 	�G�Ek@D.Q��HJI
channel use [8]. Note that, if the MIMO fading process = �[i �is independent between antennas, then =�� is also independent
between antennas, and that (1) is an approximate model when
non-diagonal constellations are used in continuous fading.

III. DECISION-FEEDBACK DIFFERENTIAL DETECTION

DFDD can be derived in two ways. Using l -DFDD to
denote DFDD that employs l c ] past decisions for improved
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detection performance, l -DFDD can be derived from the l -
symbol ML differential detection rule [4], [8] by setting the the
past l c ] symbols equal to their previously-detected values.
For DUST, l -DFDD takes the form [7]�U �6� arg maxP R ��� �

�
tr ��� S *�
� $
	�������	 i ��( * � ���� �� ���TS � S *���� (2)

where � �� �FN P R � �#�$ * N��P R���� such that
� �U � � �TS *� $ �TS � ( * are the

previously detected symbols, and the coefficient ������� i # can be

found at the  HJI row and !0HJI column of
c�"$# �&% S * :" ���� � � � (+* @ hE �('*),+�+�+�' �...

. . .
...'.-� +�+�+/' ) � (3)

In (3), 0 � is defined such that 132 4 ��4 ��TS �65 �70 � � : � for 4 � �vec 	 = � � .DFDD can also be derived from quasi-coherent detection
based on MMSE channel prediction. Here we present a
summary of the derivations in [7]. Assuming for the moment
that both

� � � � �>S *� $ �TS � and
� ; � � �TS *� $ �TS � are known, the MMSE

estimate of 4+� is given in terms of ����� vec 	������ as�4+� � 8 � � �TS * \ � �>S * �92;: -R<�>= +�+�+ : -R<� � 5 � (4)8 � ? hEA@ �TS *3B 	 " �� �>= � S *DC � � � : ��E (5)C � 2 0 * 0.F ^,^-^ 0 � 5 �@ �TS * � GH I R<�>=KJ JJ . . .
...J +�+�+ I R�� �
LM \ ; � � � � � ; �

which can be simplified to yield�= � �ON � S *�
� $
	�������	 i �&( * ; ��TS � S * � �TS � S * (6)

where PRQTS<U VXW.Y�Z[U Y\W]V_^a`(bcY\WdVfe�g]h �� �>= �aikj emlon . Writ-

ing 4 � � �4 � @qp4 � , it can be shown that

� ��� 7 9: 	 �,��� ; ��� �4+� @ 7 9: 	J��� � ; ���(p4+��@[r��s t.u vwx R (7)

where r�� � vec 	 B��Q� . Since it can also be shown that132 pr�� pr �� 5 �zy F w{ � : � and 132 �4+� pr �� 5 �}| , (7) implies that

the ML detection of U � given known 	J� � � ; �TS * �
�4 � can be

accomplished via�U �6� arg minP R ����~ � � c 7 9: 	 ��� � N P R��,	J���D� ; �TS * � �4 � ~ F (8)

Under the assumption of correct past decisions, i.e.,
�U � �U �

\ .�� G c l @ ]b\-^,^,^,\ G c ] , it is possible to verify that (8)
is, in fact, equivalent to (2).

It is important to note from (6) that, while computation of�= � requires knowledge of the (unknown) transmitted symbols� ; � � �TS *� $ �TS � , computation of 	 � � � ; �TS * �
�4 � � vec 	 ; �TS *

�= � �
requires only the past information symbols

� N P��0� �>S *� $ �TS � ( * ,allowing quasi-coherent detection of N P R using (2) or (8) via
the error-free past decisions

� �N P �0� �TS *� $ �>S � ( * . In practice, of

course, the past decisions might contain errors, leading to
suboptimal performance (and possibly error propagation).

From (6), we see that the channel estimator embedded in thel -DFDD can be described as a filter with impulse response� ������	 i � � � � $ * , input � � � ; �� � � � 7 9: = � @ ; �� B � , and output�= � . Recall that
� = � � , the response of a fading channel,

is typically a lowpass random process whose bandwidth is
defined by the Doppler spread of the channel [11]. Therefore,
the filter acts to attenuate the wideband additive noise ; �� B �and predict the desired process.

The passband width of the optimal linear predictor will
be commensurate with the desired-process bandwidth in the
presence of noise and will shrink as the noise power increases
and expand as noise power decreases. Thus the effect of under-
estimating the Doppler spread can be somewhat countered by
overestimating the SNR h and vice versa. However, simulta-
neous over (or under) estimation of both Doppler spread and
SNR can result in severe performance degradation. Note that
the excess prediction error due to over-estimation of Doppler
frequency is directly proportional to noise power, and therefore
becomes asymptotically negligible as SNR increases. On the
other hand, error due to under-estimation of Doppler frequency
does not decrease with increasing SNR, and so the estimation
error succumbs to a floor. Note that, when the prediction filter
length l is small and the receiver under-estimates the Doppler
spread, the performance degradation is small since the filter
has a wide “transition band”. On the other hand, larger l
allows a sharper transition band and hence reduces robustness
to Doppler mismatch. These notions are confirmed by the
numerical results in Sections IV & V.

IV. ERROR PERFORMANCE

We have seen that l -DFDD requires knowledge of the SNRh —henceforth termed “coherent SNR” � — and the fading
correlations

� 0 � � � � $
	 . In this section, we derive exact and
Chernoff bound expressions for PWEP when the receiver has
imperfect knowledge of fading correlations and SNR h and
then use them to approximate the BER.

A. Exact PWEP

We consider the case where the receiver operates under the
knowledge of assumed “coherent SNR” and fading correla-
tion. Relative to the actual coherent SNR h , we introduce
the assumed coherent SNR h�� . Similarly, we construct the
assumed matrices

" ����� , C � , and 8 � corresponding to
" ���� ,C and 8 defined in Section III. Thus, the linear estimator is8�� � 7 h�����E @ �TS *3B 	 " �� �>= �� S * C � ��� � : ��E and the channel

estimate is
�4 � ��86�� � �>S * , and p4 � ��4 � c 8?�� � �TS * , pr � �7 9: 	 � � � ; � ��p4 � @fr � .

Using � �TS * � 7 9: @ �TS * 4 �TS * @�r �TS * , �c2 � �>S * � ��TS * 5 �@ �TS * 	 " �� �>= � � � : � � @ �TS * , and ��2 4 �TS * 4 �� 5 � C � � : � ,
where 4 �TS * ��2;� -R��>= +�+�+ � -R<� � 5 � , r �TS * ��2 x -R��>= +�+�+ x -R<� � 5 � ,we have shown that, ��2 �4 � �4 �� 5 � �y FI � : � , ��2 pr�� pr �� 5 �g Since � is the true SNR under perfect channel state information.
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py F� � : � , and ��2 pr�� �4 �� 	 ��� � ; ��>S * � 5 �7y F� I 	J��� � N P R�� , where
[8] �y FI � 9 �: B C �� " �� �>= �� S * " �� �>= � " �� �>= �� S * C � E (9)py F� �k	 9: @ ] � c F � 9��`9 �:�� ��	 C � " �� �>= �� S * C � ��@ 9: �y FIy F� I � 7 9: B � 9"9 �: 	 C � " �� �>= �� S * C � � c �y FI E (10)

Now defining �� ��� � ��� py � , �4+�6� 	J�,��� ; �TS * � �4+�m� �y I , �r6���pr6�m� py � , and �h6� h �y FI � py F� , we can write (7) as�� � �
	 �9: 	J� � � NfP�R�� �4 � @��r � (11)

such that ��2 �4 � �4 �� 5 � ��2�r � �r �� 5 � � : � and ��2�r � �4 �� 5 �� ������ � w� � � � � NQP�R .
Given the the symbol N * was sent, the receiver will detectNmF , and thus make a decision error, if~ �� � c 	 �9: 	J��� � N F � �4+� ~ F�� ~ �� � c 	 �9: 	 ��� � N * � �4+� ~ F����� �q2 � �* � �F 5�� � : �| |c � : ���s t.u v� � � *� F �s tDu v� � Z (12)

where � * � 	 �9: 	 ��� �F	 N * c N F ��� �4+� @ �r�� and � F �!�r�� ,
and the PWEP � *&i F �#"�$-	 N *&% N F � is given by [9]

� *&i F �#"�$-	 �
' Z � � �
poles ( $ #*)),+�	 Res � c.-0/ 	21 �1 � (13)

where the summation is taken over the poles in the upper
half plane (UHP) and -3/ 	41 �A����2 5 # ( / 5 . The characteristic
function of � , a Hermitian quadratic of Gaussian vector, is
given by (for proof, see Appendix-A.9 in [8])- / 	41 �6� :6

� $ * � �h>y F�E 	 ] c87 F ��	41 c !:9 ( � ��	21 c !:9 S� � � S � (14)9<;� � *F�= �?> � �A@ 7 � F � @CB�D �:E (15)� � �k	��9: @ 7 	 �9: �;y F� \ D � � �9 � ��: 	 ] cF7 F �
where y � is the .THJI singular value of N *

c N F and
7 � � ������ � w� � .

Note that the characteristic function -3/ 	21 � , and hence the
PWEP, depend on the signal only through the singular values
of N *

c N F . Since the singular values of N *
c N F and � : c N F N �*are the same, Pr 	 N *&% N F � � Pr 	J� : % N F N �* � .Computation of the PWEP using (13) involves taking

residues at poles with multiplicities greater than 1, which can
be complicated. A simple method to evaluate the PWEP in
such cases has been proposed in [10], where the poles are
perturbed by small amount to eliminate multiplicity, and the
PWEP is computed by taking residues at all the simple poles
in UHP. This method produces an lower bound on the PWEP if
all the concerned poles are moved away from origin, and upper
bound when moved towards the origin. In this paper, the  �HJI
occurrence of 9 ( � is replaced by p9 ( # � S * % � � � ( � �G9 ( � @W	  c ] �IH � ,

yielding the set of simple poles
� p9 ( � � : �� $ * in UHP, and hence,

the PWEP from (13)

� *&i FKJ : ��� $ * ]p9 ( � L :6M $ * E�	 ] cF7 F � S *�h y FM 	 p9 ( � c 9 S� �,N � : �6M $ *MPO$ �
]

	 p9 (M c p9 ( � � (16)

where an upper bound is obtained by choosing H � �c Z�^ ZbZ _RQ p9 ( � , and a lower bound by choosing H � � Z�^ ZbZ _RQ p9 ( � .
Numerical results in Section V confirm that these bounds are
very close to each other, and thus this method produces an
accurate estimate of the PWEP.

B. Chernoff bound

In order to further analyze the performance loss due to
parameter mismatch, we have derived the Chernoff bound on
the PWEP:

� *&i F ' ]_ :6� $ * GH ] @ y F�Bf	 ] cF7 F � L ? �hE @ 7 N F LM S � (17)

where
7 � � ������ � w� � (For proof, see Sec. 4.2.4 in [8].).

Observe that the diversity advantage of the system is E � ,
while the performance is governed by the “equivalent SNR”	 7 �h���E @ 7 � F ��	 ] c�7 F � . The “equivalent SNR” in the absence
of mismatch is defined as�h perfect �

]
] c87 F B 7 �h��,EL@ 7 E FASSS 9 � $ 9 i T ����� $ T ���� i U � $ U

To analyze the performance degradation due to parameter
mismatch, we define the “equivalent SNR loss” asV � 	 7 �h��,EL@ 7 � F] c87 F ]�h perfect

(18)

C. Approximate Bit Error Rate

In practice, BER is often more useful than PWEP. Since
Pr 	 N * % NmF[� � Pr 	J� : % NmF N �* � , N * \ N�F V e � � NmF NM�* Ve , and g>E bits are encoded in each transmitted matrix-
symbol, under the assumption of Gray mapping and equal
prior probabilities the BER can be written as

� genie W ]
g�E

FYX[Z S *�
#�$ *]\ 	J� : \ N # � Pr 	 � : % N # � (19)

where \ 	 N # \ N � � is the Hamming distance between the binary
representations of N # and N � . � Chernoff

genie is obtained from (19)

when the PWEP from (17) is used, and � #_^ %genie & � #a` %genie are
obtained from (19) when (16) is used.

For realizable l -DFDD, the influence of incorrect past-
decisions must be taken into account for lcb ] . Through
numerical evaluation we find that the BER of realizable DFDD
is approximately twice that of genie-aided DFDD, since every
error is likely to cause another error due to error propagation,
which is in accordance with the approximation for DPSK [12].
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Fig. 1. SNR loss � for ��� h���� ��Q������ h�� , “coherent SNR” Y Q ��! dB
and Y � Q (a) 30dB, (b) 10dB

V. SIMULATIONS & NUMERICAL RESULTS

For numerical examples in this paper, we consider a system
with E � _ transmit and �k� _ receive antennas and the
constellation specified in [1] for gD� ] . The MIMO channel
exhibits Rayleigh fading [11] where the correlation between
fading coefficients . matrix-symbols apart is given by 0 � �" 	 	 _$#&%$' ")( E2.�� and where

%$' ")(
is the normalized Doppler

frequency. Observe that
%*' ")( E is the effective normalized

Doppler frequency for E � E symbols. Since the performance
of the detectors degrades with increasing Doppler frequency
[5], [7], increasing E in a fading channel, therefore, may
degrade the performance.

A. Equivalent SNR Loss

Fig. 1 shows the variations in equivalent SNR loss V from
(18) with respect to the actual Doppler frequency

% ' " (
, when

the actual “coherent SNR” is h?� _5Z dB, the assumed Doppler
frequency is

%+' ")($, � �.- %$' ")( , and the assumed “coherent
SNR” is h�� � ]-Z�\�/bZ dB. From Fig. 1(a) we find that, whenh � � /bZ dB b h , - � ] , i.e., under-estimating the Doppler
frequency results in lower SNR loss compared to the case of
- b ] . Fig. 1(b), where h��M� ]-Z dB � h , shows the opposite
trend. As predicted in Section III and shown in Fig. 1, when
- � ] , performance can be improved by choosing hm� b h and
vice-versa, whereas the performance loss can be significant
when h � � h and - � ] , or when h � b h and - b ] .
B. BER in continuous fading

Next we analyze the robustness of the DFDD in continuous-
fading channel. Recall that the theoretical analyses in Sec-
tion IV are applicable when the channel is block-fading,
or when the channel is continuously fading under diagonal
constellations.

PSfrag replacements
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Fig. 2. Genie-aided 6-DFDD in continuous fading with actual� � h � Q9!+: !�;=< and assumed � � h � � � Q (a) 0.1, (b) 0.05

Fig. 2 investigates the analytical and simulated performance
of 6-DFDD when the actual normalized Doppler frequency
is 0.075 and the receiver has imperfect knowledge of

% ' " (
and SNR h . The performance of the detectors with perfect
knowledge of

% ' " (
and SNR is compared to the performance

of detectors with assumed
% ' " ( , � � Z�^ Z?>RQ>\�ZQ^ Z Q and h � �]Q�\@/0Z

dB. In all cases, the effect of error propagation is
observed through performance difference of genie aided and
realizable 6-DFDD. Note that the approximations of the BER,� #a` %genie and � #_^ %genie from (19) are very close to each other, and
closely follow the simulated BER of genie aided DFDD.

As predicted in Section III and shown in Fig. 2, the 6-
DFDD succumbs to an error floor when it underestimates the
Doppler frequency and a loss in SNR when it overestimates the
Doppler frequency. The compensation of performance loss due
to over-estimation (under-estimation) of Doppler frequency by
under-estimation (over-estimation) of SNR is also depicted in
Fig. 2.

Now we analyze the relation between robustness and DFDD
length l . Fig. 3 plots the theoretical BER � #a` %genie of genie-
aided l -DFDD versus l when the actual normalized Doppler
spread is

% ' " ( � Z�^ Z?>RQ
and the SNR is h � _5Z

dB.
Observe that the performance loss due to under-estimation
of the Doppler spread is severe for large l , as predicted in
Section III. While over-estimation of Doppler or under/over-
estimation of SNR also results in performance loss, it is less
severe, and relatively constant over all values of l b _ .
Finally, it is observed that l -DFDD is quite robust against
parameter mismatch when l � _ .

VI. CONCLUSIONS

In this paper, we have investigated, via simulation as well
as theoretical error performance analysis, the robustness of
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Fig. 3. Genie-aided � -DFDD with ��� h�� Q9!+: !�;=< , Y Q9��! dB

decision-feedback differential detection in Rayleigh fading
channels. While underestimation of the Doppler spread re-
sults in an error floor, over-estimation results in SNR loss
which can be somewhat compensated by underestimating and
overestimating the SNR, respectively. Although increasing the
DFDD length improves the performance under the assumption
of perfect parameter knowledge, the robustness of the DFDD
to imperfect parameter knowledge has been shown to decrease
with increasing DFDD length.
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