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Iterative Frequency-Domain Equalization of

Single-Carrier Transmissions over Doubly

Dispersive Channels

Philip Schniter∗ and Hong Liu

Abstract

Frequency-domain equalization (FDE) offers an attractivealternative to time-domain equalization in systems that

communicate over large-delay-spread channels. Traditionally, FDE leverages the fact that time-domain convolution

is equivalent to frequency-domain multiplication and the fact that time/frequency conversion is efficiently handled

by the fast Fourier transform (FFT). In doubly dispersive channels, i.e., quickly varying large-delay-spread channels,

the traditional FDE methods fail when the channel response varies significantly over the FFT analysis window. Here

we present a new FDE that is based on Doppler channel shortening, soft iterative interference cancellation, and block

decision feedback. Numerical simulations show that the proposed technique has advantages over the well-known

FIR-MMSE-DFE in both performance and complexity.

I. INTRODUCTION

In systems that communicate over large-delay-spread channels, the use of time-domain equalization (TDE) leads

to expensive receivers. For example, North American terrestrial digital television is plagued by delay spreads

on the order of hundreds of symbol intervals, requiring time-domain equalizers with hundreds of coefficients

[1]. Frequency-domain equalization (FDE) offers an attractive alternative. FDE leverages the facts that circular

convolution in the time domain can be accomplished by pointwise multiplication in the frequency domain, and
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that transformation to/from the frequency domain can be efficiently accomplished using the fast Fourier transform

(FFT). Roughly speaking, the per-sample processing complexity required for TDE is linear in the channel delay

spread while for FDE it is logarithmic in the delay spread. Thus, FDE can lead to significant savings over TDE

for long channels.

FDE is the principle idea behind orthogonal frequency division multiplexing (OFDM) [2], [3] and single-carrier

cyclic-prefix (SCCP) [4], [5] modulation schemes. Both OFDMand SCCP systems transmit blocks of data separated

by guard intervals. The guard prevents inter-block interference, thereby simplifying receiver processing. The use of

a cyclic-prefix (CP) guard makes the channel’s dispersion act as a cyclic (rather than linear) convolution, implying

that deconvolution can be accomplished through a simple FFT-domain multiplication. When guard intervals arenot

included, FDE can still be accomplished using overlap-add/save FFT algorithms (see, e.g., [6], [7]) or residual ISI

cancellation (RISIC) [8].

The previously mentioned FDE techniques assume a delay-spread channel whose impulse response varies slowly.

Some applications, however, have channels with more significant time variation, i.e., significant Dopplerand delay

spreads. For such doubly dispersive channels, the standardapproach to FDE (i.e., pointwise multiplication in the

frequency-domain) fails when the channel varies significantly over the FFT block duration. Essentially, the channel

variation induces inter-carrier interference (ICI) in thefrequency domain. In response, several equalization schemes

for doubly dispersed CP-OFDM have been proposed (see, e.g.,[9]–[13] and the references within). While most

of these schemes are computationally intensive, [12] maintains per-symbol processing complexity logarithmic in

the block length, in keeping with the spirit of FDE. In addition, [12] exploits the finite-alphabet property of

frequency-domain symbols, allowing its performance to surpass that of minimum mean-squared error (MMSE)

linear equalization. The CP-OFDM FDE scheme [12] was extended to SCCP in [14]. Though the SCCP FDE

scheme [14] is complicated by the fact that the finite-alphabet property resides in the time domain, it nevertheless

maintains the desired logarithmic per-symbol processing complexity.

Though capable of FDE on doubly dispersive channels, the algorithms [9]–[12] and [14] require block-based

transmissions with an adequate inter-block guard interval. While [13] does not require a guard, its complexity

scaling properties restrict its application to channels with mild spreading. Thus, one might wonder: Is it possible to

build a FDE algorithm for single-carriercontinuous-streammodulation over doubly dispersive channels that exhibits

logarithmic complexity scaling? If so, such an algorithm would present an efficient frequency-domain alternative to

the time-domain equalization approaches that are commonlyused in doubly selective single-carrier receivers (e.g.,
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for North American terrestrial digital television [15] andunderwater acoustic communication [16]).

In this paper we present an iterative frequency-domain equalizer (IFDE) for a continuous finite-alphabet stream

corrupted by a noisy and doubly dispersive channel. In brief, the algorithm first parses the received time-domain

signals into blocks which are first windowed and then transformed into the frequency domain by an FFT. The

window is designed so that both channel variations and the lack-of-CP manifest as a sparse frequency-domain

ICI response. A low-complexity serial technique is then applied to equalize the channel response in the presence

of ICI, and the output is transformed back to the time domain,yielding soft symbol estimates. Using the finite-

alphabet symbol property, reliability information on these soft estimates is computed for use in another round of

(frequency-domain) equalization and ICI cancellation. The time- and frequency-domain steps are alternated until

the soft symbols estimates converge.

Through simulation, our IFDE algorithm’s performance is compared to that of the FIR-MMSE-DFE [17], a

well-known benchmark, as well as to that of the matched filterbound (MFB) [18]—the “holy grail” of uncoded

equalization. We find that our IFDE performs 1 dB worse than the MFB, and several dB better than the FIR-

MMSE-DFE, over the SNR range of interest. In addition, we analyze the number of multiplications required by

our IFDE and compare it to that of the FIR-MMSE-DFE updated using a fast algorithm. We find that our IFDE

has complexity advantages over the FIR-MMSE-DFE for channels of a reasonable length.

In our equalizer design, we treat the channel as perfectly known. In practical terms, this means that a well-

designed channel estimation algorithm is assumed to be operating in tandem with the equalizer. While channel

estimation is an interesting and important topic, it is outside the scope of this manuscript. In fact, the decoupling of

equalization from channel identification is typical of workthat studies non-trivial equalizer structures, e.g., [9]–[13],

[17], [19], [20].

The paper is organized as follows. Section II gives the system model (in time- and frequency- domains), Section III

and Sec. IV describe our IFDE scheme, and Sec. V presents our fast IFDE implementation. Section VI reports

the results of numerical studies, and Sec. VII concludes. Weuse the following notation throughout. Transpose is

denoted by(·)t, conjugate by(·)∗, and conjugate transpose by(·)H . The zero matrix is denoted by0, the identity

matrix by I, and thekth column of the the identity matrix byik. The element in themth row andnth column of

matrix B is denoted by[B]m,n, where row/column indices begin with zero. The diagonal matrix created from vector

b is denoted byD(b), and the circulant matrix with first columnb by C(b). TheN × 1 vector created from theith

sub-diagonal ofN×N matrix B is denoted bydiagi(B), i.e., [diagi(B)]k = [B]〈k+i〉
N

,k for k ∈ {0, 1, . . . , N−1}.
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Expectation is denoted byE{·} and covariance byCov{b, c} := E{bcH} − E{b}E{cH}. Finally, the Kronecker

delta is denoted byδm, the modulo-N operation by〈·〉N , element-wise matrix multiplication by�, and the set of

integers byZ.

II. SYSTEM MODEL

Consider a single-carrier modulation system where a streamof finite-alphabet symbols{sn} is transmitted over

a noisy linear time-varying (LTV) multipath channel. The channel is described by its time-variant discrete impulse

responsehn,l, defined as the time-n response to an impulse applied at timen − l. We assume a causal impulse

response of lengthNh. The signal observed by the receiver is

rn = νn +

Nh−1∑

l=0

hn,lsn−l (1)

where νn denotes samples of zero-mean circular white Gaussian noise(CWGN) with varianceσ2. We assume

wide-sense stationary uncorrelated scattering (WSSUS) [18] so thatE{hn,lh
∗
n−q,l−m} = γqσ

2
l δm. Here,γq denotes

the normalized autocorrelation (i.e.,γ0 = 1) andσ2
l the variance of the channel at delaylth.

The remainder of this section establishes the block-based frequency-domain equivalent of (1). At each frame

index i ∈ Z, the receiver windows aniN -shifted version of the time-domain observation{rn} and applies a

discrete Fourier transform (DFT) with frequency spacing2π
PN

, yielding theith-frame frequency domain observation

{xd(i)}PN−1
d=0 :

xd(i) =
1√
PN

∑

n

riN+nbne−j 2π

PN
dn. (2)

Note that the window length is arbitrary. For convenience, we define

sn(i) := siN+n, n ∈ {0, . . . , PN − 1} (3)

an :=





1 n ∈ {0, . . . , PN − 1},

0 else,

noting that{an} specifies aPN -length rectangular window and that

siN+n =
∞∑

`=−∞
s〈n〉

P N
(i − P`) a`PN+n. (4)
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Equation (4) says that, for a particulari, the transmitted sequence{siN+n} can be constructed usingPN -sample

shifts of the disjoint subsequences{sn(i − P`)}PN−1
n=0 for ` ∈ Z. Combining (1)-(4), we find

xd(i) = wd(i) +
1√
PN

∑

n

bn

Nh−1∑

l=0

hiN+n,l

∞∑

`=−∞
s〈n−l〉

P N
(i − P`)a`PN+n−le

−j 2π

PN
nd (5)

wd(i) :=
1√
PN

∑

n

bnνiN+ne−j 2π

PN
nd. (6)

Frequency-domain equalization involves theith-framevirtual subcarriers{tk(i)}PN−1
k=0 , where

tk(i) :=
1√
PN

PN−1∑

n=0

sn(i)e−j 2π

PN
nk. (7)

Equation (7) implies thatsn(i) = 1√
PN

∑PN−1
k=0 tk(i)e

j 2π

PN
nk for n ∈ {0, . . . , PN − 1}. Using this in (5) gives

xd(i) = wd(i) +
∞∑

`=−∞

PN−1∑

k=0

tk(i − P`)Hd−k,k(i, `) (8)

Hd,k(i, `) :=
1

PN

∑

n

Nh−1∑

l=0

hiN+n,lbna`PN+n−l e
−j 2π

PN
(kl+nd). (9)

Equation (8) indicates thatHd,k(i, `) can be interpreted as the response, at DFT outputk + d in frame i, to a

frequency-domain impulse applied at virtual subcarrierk in frame i − `.

In practice we implement a causal length-Nb window {bn} implying that, for anyi, only a finite number of terms

in the set{Hd,k(i, `), ` ∈ Z} will be non-zero. Specifically, (9) implies that non-zero terms result from indices

` which satisfy0 ≤ `NP + n − l ≤ PN − 1 for somen ∈ {0, . . . , Nb − 1} and somel ∈ {0, . . . , Nh − 1}.

It is straightforward to show thatHd,k(i, `) is non-zero for` ∈ {−Lpre, . . . , Lpst} whereLpre = −bNb−1
PN

c and

Lpst = bPN+Nh−2
PN

c.

With the definitionsx(i) := [x0(i), . . . , xPN−1(i)]
t, w(i) := [w0(i), . . . , wPN−1(i)]

t, t(i) := [t0(i), . . . , tPN−1(i)]
t,

s(i) := [s0(i), . . . , sPN−1(i)]
t, and[H(i, `)]d,k := Hd−k,k(i, `), (8) implies the LTV multiple-input multiple-output

(MIMO) system

x(i) = w(i) +

Lpst∑

`=−Lpre

H(i, `)t(i − `P ). (10)

For anyi, nonzero{H(i, `)}` 6=0 cause inter-frame interference (IFI) and nonzero off-diagonal elements of{H(i, 0)}

cause inter-carrier interference (ICI) among the virtual subcarriers. In the sequel, we refer to{H(i, `)}`<0 as pre-

cursor IFI and{H(i, `)}`>0 as post-cursor IFI.
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It will sometimes be convenient to write the windowed frequency-domain noise vectorw(i) as

w(i) = F J D(b)︸ ︷︷ ︸
:=C

ν(i) (11)

J :=




IN̄o

IPN · · · IPN
0PN−N̄o×N̄o


 (12)

whereF denotes thePN -point unitary DFT matrix,N̄o = 〈Nb〉PN , and the number ofIPN matrices inJ is
⌊

Nb

PN

⌋
.

III. M AX -SINR WINDOW DESIGN

The choice of window{bn} affects the IFI/ICI patterns of the MIMO system (10). Motivated by the low-pass

nature of typical Doppler spectra, we aim to find{bn} such that the “cursor” coefficientH(i, 0) has the banded

structure illustrated in Fig. 1 and the IFI coefficients{H(i, `)}` 6=0 vanish. This approach can be viewed as the

frequency-domain dual of inter-symbol interference (ISI)response shortening used to reduce the complexity of

maximum likelihood sequence detection (MLSD) [21]. For ourpurposes, the goal of time-domain windowing is

to give the channel a sparse structure that leads to low-complexity estimation oft(i), and hence, low-complexity

detection ofs(i). We choose time-domain windowing, rather than a general matrix operation on the received

signal, due to its low complexity. Since complete cancellation of out-of-target ICI/IFI is, in general, not possible

with time-domain windowing, we choose to maximize signal tointerference-plus-noise ratio (SINR) as a means of

suppressing residual IFI/ICI.

We define SINR byEs/Eni, whereEs :=
∑

d Es,d and Eni :=
∑

d Eni,d. For eachxd(i), Es,d is defined as the

signal energy contributed by neighboring carriers{tk(i)}d+D
k=d−D, andEni,d is defined as the interference-plus-noise

energy contributed by non-neighboring carriers{tk(i)}d−D−1
k=0 ∪ {tk(i)}PN−1

k=d+D+1, non-cursor carriers{tk(j)}j 6=i,

and additive noisew(i). Note that indices here are taken modulo-PN . The ICI radiusD is typically chosen as

D = dfdTsPNe, wherefdTs is the maximum Doppler frequency normalized to the symbol rate. Using the approach

outlined in [22], we find that the SINR-maximizing windowb? is given by

b? = arg max
b:‖b‖2=PN

bH
(
Rb � Db � As

)
b

bH
(
σ2I + Rb � Cb � At − Rb � Db � As

)
b

= v?

(
Rb � Db � As, σ2I + Rb � Cb � At − Rb � Db � As

)
·
√

PN (13)

whereRb, As, Cb, Db and At are Nb × Nb matrices defined element-wise as[Rb]m,n := γn−m, [As]m,n :=

∑Nh−1
l=0 σ2

l an−la
∗
m−l, [Cb]m,n := δ〈n−m〉

P N
, [Db]m,n := 1

PN
sin( π

PN
(2D + 1)(n − m))/ sin( π

PN
(n − m)) and
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[At]m,n :=
∑Lpst

`=−Lpre

∑Nh−1
l=0 σ2

l a`PN+n−la
∗
`PN+m−l. In (13),v?(B,C) denotes the principle generalized eigenvec-

tor [23] of the matrix pair(B,C). Through max-SINR windowing and proper selection of other design parameters,

the IFI and non-neighboring ICI can be made small enough to base the symbol detection procedure on the following

approximate system model.

x(i) ≈ H(i, 0)t(i) + Cν(i). (14)

As an alternative, the design parameters (e.g., frame length PN ) could be chosen to yield non-negligible post-

cursor IFI, which could then be canceled using block decision-feedback equalization (BDFE). In this case, the win-

dow should be designed to suppressonly ICI and pre-cursor IFI, implying[At]m,n :=
∑0

`=−Lpre

∑Nh−1
l=0 σ2

l a`PN+n−la
∗
`PN+m−l.

Figure 2 plots windows for both BDFE and non-BDFE cases atfdTs ∈ {0.001, 0.0075}. In generating Fig. 2, we

assumedNh = 64, PN = 256, Nb = PN + Nh − 1, SNR= 10dB, andσ2
l = N−1

h , which are typical choices

for the numerical results in Sec. VI. Assuming reliable post-cursor IFI cancellation, (14) would still describe the

model used for detection of symbols in the current frame.

While windowing gives a sparse channel response that enables a reduced complexity symbol detection procedure,

it can lead to a non-uniform collection of energy from symbols in the current frame. Specifically, it can be shown

that the energy inx(i) contributed bysn(i) is

Ess,n :=

PN−1∑

d=0

E





∣∣∣∣∣

PN−1∑

k=0

Hd−k,k(i, 0) ·
1√
PN

e−j 2π

PN
nksn(i)

∣∣∣∣∣

2




=

Nh−1∑

l=0

σ2
l |bl+n|2 (15)

which is clearly dependent onn, the symbol position within the frame. This implies that, for typical max-SINR

window shapes, we will collect less energy from symbols nearthe frame edges. This phenomenon motivates the

frame-overlapping procedure proposed in Sec. IV.

IV. SYMBOL DETECTION

In Sec. IV-A, we propose an iterative method for the detection of the finite-alphabet symbol vectors(i) = F Ht(i)

assuming the observation model (14). We are careful to leverage the banded structure ofH(i, 0) and the existence

of fast algorithms for the transformationF . It was previously observed that the max-SINR windowing described

in Sec. III collects less energy from symbols near the frame edges, which, if unaccounted for, could lead to high

frame-averaged error rates. Hence, Sec. IV-B proposes a scheme whereby frame overlap (i.e.,P > 1) is exploited,

in conjunction with the algorithm of Sec. IV-A, to circumvent this problem.
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A. Intraframe Processing

Here we propose an iterative method for the detection of the finite-alphabet symbol vectors(i) from the windowed

frequency-domain observationx(i) in (14). Note that the focus of this section isintraframe processing, whereas

the focus of Sec. IV-B isinterframeprocessing. Since here we focus exclusively on theith symbol and on the

cursor IFI coefficient, we can omit the symbol and lag indices, abbreviating, e.g.,s(i) by s andH(i, 0) by H. We

now give a brief summary of the intraframe detection algorithm illustrated in Fig. 3; a more detailed description

will be given in Sections IV-A.1–IV-A.3.

Given current guesses of the log-likelihood ratios (LLRs) of the symbols{sk} (which, on the first iteration,

are set to zero), the means and variances of the elements ins are calculated as̄s and v, respectively. These

are then transformed into the mean and covariance oft. Using linear MMSE estimation and incorporating these

mean/variance priors, the elements{tk} are estimated one-at-a-time, leveraging the banded structure of H for

complexity reduction. The resulting estimatest̂ are then transformed back into thes-domain, from which the LLRs

are updated. To accomplish this last step we assume a conditionally-Gaussian model for the estimates{ŝk}. The

procedure then repeats, starting with the most recent LLRs.In the detailed description below, we use the superscript

(n) to denote thenth iteration.

1) Linear Estimation with Priors:The banded structure ofH suggests that linear estimation of a particular ele-

menttk might be accomplished with reasonable accuracy from the truncated observationxk := [xk−D, . . . , xk+D]t,

with indices taken modulo-PN , as opposed to the full observationx. (See Fig. 5.) We hope to realize substantial

complexity reduction in doing so. The truncated model becomes

xk = Hkt + Ckν, (16)

whereHk contains rows{k −D, . . . , k + D} of H andCk contains rows{k −D, . . . , k + D} of C. The MMSE

linear estimate oftk given xk is [24]

t̂k = E{tk} + Cov(tk,xk)Cov(xk,xk)
−1(xk − E{xk}). (17)

We assumeE{ν} = 0, Cov(ν,ν) = σ2I, andCov(s,ν) = 0, and we model the elements ins as uncorrelated

with meanss̄(n) and variancesv(n) during thenth iteration. Then, defininḡt(n) := F s̄(n), (17) becomes

t̂
(n)
k = t̄

(n)
k + g

(n)H
k (xk − Hk t̄

(n)) (18)

g
(n)
k :=

(
HkF D(v(n))F H

H
H
k + σ2CkC

H
k

)−1
HkF D(v(n))F Hik (19)
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from which estimates ofs can be obtained as

ŝ(n) = F H t̂
(n) ⇔ ŝ

(n)
l = iH

l F H
∑

k

ik t̂
(n)
k . (20)

2) A Conditionally Gaussian Model:Leveraging the finite-alphabet structure of the elements{sk} and assuming

reasonably largePN (to invoke the Central Limit Theorem), we assume that the estimation error is Gaussian, or,

equivalently, that the estimates are conditionally Gaussian:

p(ŝ
(n)
l |sl = b) =

1

σ
(n)
l (b)

φ

(
ŝ
(n)
l − µ

(n)
l (b)

σ
(n)
l (b)

)
, (21)

whereφ(w) := 1√
π
e−w2

, µ
(n)
l (b) := E{ŝ(n)

l |sl = b}, and[σ
(n)
l (b)]2 := Cov(ŝ

(n)
l , ŝ

(n)
l |sl = b).

In Appendix I we show that

µ
(n)
l (b) = s̄

(n)
l + Q

(n)∗
l,l (b − s̄

(n)
l ) (22)

[σ
(n)
l (b)]2 = q

(n)H
l D(v(n))q

(n)
l − |Q(n)

l,l |2v
(n)
l + σ2‖p(n)

l ‖2, (23)

whereq
(n)
l denotes thelth column ofQ(n) and wherep(n)

l denotes thelth column ofP (n):

Q(n) = F H
(∑

k

H
H
k g

(n)
k iH

k

)
F (24)

P (n) =
(∑

k

CH
k g

(n)H
k iH

k

)
F . (25)

3) Log-Likelihood Ratio and Update of Priors:From now on, we restrict ourselves to the BPSK alphabet so that

b ∈ {−1,+1}; QAM extensions are straightforward but tedious (see, e.g., [19], [20]). Thenth-iteration a priori

and a posteriori LLRs are then defined asL(n)
l := log P (sl=+1)

P (sl=−1) and Ll(ŝ
(n)
l ) := log

P (sl=+1|ŝ(n)
l )

P (sl=−1|ŝ(n)

l )
, respectively.

Note that, after the first iteration, we expect to have partial information onsl such thatL(n)
l 6= 0. The LLR update

∆(ŝ
(n)
l ) := Ll(ŝ

(n)
l ) − L

(n)
l can be written

∆(ŝ
(n)
l ) = log

p(ŝ
(n)
l |sl = +1)

p(ŝ
(n)
l |sl = −1)

=
|ŝ(n)

l − µ
(n)
l (−1)|2 − |ŝ(n)

l − µ
(n)
l (+1)|2

[σ
(n)
l (±1)]2

=
4
(
Re
(
Q

(n)
l,l (ŝ

(n)
l − s̄

(n)
l )
)

+ |Q(n)
l,l |2s̄

(n)
l

)

q
(n)H
l D(v(n))q

(n)
l − |Q(n)

l,l |2v
(n)
l + σ2‖p(n)

l ‖2
, (26)
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where we used the facts thatσ
(n)
l (+1) = σ

(n)
l (−1) and

∣∣ŝ(n)
l − µ

(n)
l (−1)

∣∣2−
∣∣ŝ(n)

l − µ
(n)
l (+1)

∣∣2

=
∣∣ŝ(n)

l − (1 − Q
(n)∗
l,l )s̄

(n)
l + Q

(n)∗
l,l

∣∣2

−
∣∣ŝ(n)

l − (1 − Q
(n)∗
l,l )s̄

(n)
l − Q

(n)∗
l,l

∣∣2

= 4Re
{(

ŝ
(n)
l − (1 − Q

(n)∗
l,l )s̄

(n)
l

)
Q

(n)
l,l

}

= 4Re
{
Q

(n)
l,l (ŝ

(n)
l − s̄

(n)
l )
}

+ |Q(n)
l,l |2s̄

(n)
l , (27)

since the use of BPSK implies̄s(n)
l ∈ R. Updates of the symbol mean and variance can be accomplishedvia

s̄
(n+1)
l =

∑

b∈B
b · P (sl = b|ŝ(n)

l )

= tanh

(
Ll(ŝ

(n)
l )

2

)
(28)

v
(n+1)
l =

∑

b∈B

(
b − s̄

(n+1)
l

)2
P (sl = b|ŝ(n)

l )

= 1 − (s̄
(n+1)
l )2. (29)

To update thea priori LLR, we setL(n+1)
l := Ll(ŝ

(n)
l ), giving

L
(n+1)
l = L

(n)
l + ∆(ŝ

(n)
l ). (30)

Hard symbol estimates can be generated asˆ̂s
(n)
l := sign

(
Re(ŝ

(n)
l )
)

= sign
(
s̄
(n)
l

)
= sign

(
L(sl|ŝ(n)

l )
)
. An

algorithm summary appears in Table I. Note that a soft decoding algorithm could be easily embedded within

the bottom path of Fig. 3, as proposed in [19] and investigated in [20].

B. Interframe Processing

As previously discussed, the use of max-SINR windowing causes less energy to be collected from symbols near

the edges of frames(i) than from those near the center of the frame. As a result, the iterative detection algorithm

described in Sec. IV-A is more likely to incorrectly detect symbols near the frame edges. However, by overlapping the

frames (i.e., choosingP > 1), we can exploit the fact that every symbol will be near the center of some frame. Specif-

ically, (3) implies thatsm maps to the frame-quantities
{

s〈m〉
N
(bm

N
c), s〈m〉

N
+N (bm

N
c − 1), . . . , s〈m〉

N
+(P−1)N (bm

N
c − P + 1)

}
,

i.e., sm appears inP distinct frames. The frame indexim for which sm appears closest to frame center is easily
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found to be

im =
⌊m

N

⌋
− jm (31)

jm := arg min
j=0,...,P−1

∣∣∣∣〈m〉N + jN − PN

2

∣∣∣∣ . (32)

Thus, in exploiting frame overlap, we stipulate that

1) the hard estimate ofsm is generated at frame indexim, i.e., ˆ̂sm = ˆ̂s〈m〉
N

+jmN (im), and

2) the final LLR calculated for symbolsm during frameim is used to initialize the LLR of that symbol in

subsequent frames within which it appears, i.e., in frames with index i ∈ {im + 1, im + 2, . . . , bm
N
c}.

In the case that BDFE is employed, these hard estimates are then also used for post-cursor IFI cancellation. Figure 4

illustrates this process forP = 2.

Since every symbolsm is estimatedP times, the overall equalizer complexity increases linearly with P . Numerical

simulations suggest that the performance withP > 2 is not significantly better thanP = 2, while the performance

with P = 1 is relatively poor. Hence, we focus onP = 2 for the remainder of the paper.

V. FAST ALGORITHM AND COMPLEXITY ANALYSIS

In Table II we present a fast version of the detection algorithm summarized in Table I. In the fast version, we

avoid explicit computation ofQ(n) andP (n), instead computingy(n)
k := q

(n)H
k D(v(n))q

(n)
k , z

(n)
k := ‖p(n)

k ‖2, and

Q
(n)
k,k for k ∈ {0, 1, . . . , PN−1}. The approximate number of complex multiplications1 per step is given in the right

column of Table II, and per-symbol averages are summarized in Table III (assumingM iterations) for both BDFE

and non-BDFE cases. We include the cost of transforming the known time-domain channel coefficients{hn,l} to

frequency-domain channel coefficients{H(i, `)}, as well as that of post-cursor IFI cancellation in the BDFE case.

Table III also includes the per-symbol cost of a fast versionof the LTV-channel FIR-MMSE-DFE.2

The details of each step are enumerated below in correspondence with the left column of Table II. For brevity,

we useD̃ := 2D + 1 in the sequel. We make frequent use of the propertyF D(a)F H = C(F a/
√

PN). Finally,

we assume thatPN -length FFTs require12PN log2 (PN) and PN log2 (PN) complex multiplies for real- and

complex-valued inputs, respectively (as per the radix-2 Cooley-Tukey algorithm [25]).

1While the number of additions and divisions could also be counted, we feel that such an endeavor would complicate the presentation

without providing significant additional insight.
2See the “Fast FIR-MMSE-DFE Details” document which will be made available as a technical report.
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Detail 1: At each frame indexi, we must compute the frequency domain coefficientsH(i, 0), or {H(i, `)}Lpst

`=0

when BDFE is used, from the time-domain channel coefficients{hn,l}. If we define the time-domain matrix

H(i, `) ∈ C
Nb×PN such that[H(i, `)]n,l := hiN+n,la`PN+n−l, then (9) can be rewritten

Hd,k(i, `) =

Nb−1∑

n=0

Nh−1∑

l=0

[F J ]d,n[D(b)]n,n[H(i, `)]n,l[F ]l,k (33)

which implies

H(i, `) = FJ D(b)H(i, `)F (34)

for the frequency-domain matrixH(i, `), a rearrangement ofH(i, `) defined such that[H(i, `)]d,k = Hd,k(i, `).

Note thatH(i, `) has at mostPNNh nonzero elements, and that we are only interested in computing only D̃ rows

of H(i, `). With this in mind, we see that computation ofJ D(b)H(i, `) costsPNNh multiplies. Multiplication

by the leftF in (34) can be accomplished byNh FFTs for a cost ofNhPN log2 PN multiplies, after which only

D̃ rows of FJ D(b)H(i, `) are retained. Finally, multiplication by the rightF in (34) can be accomplished using

D̃ FFTs, for a cost ofD̃PN log2 PN multiplies. In total,PNNh + (Nh + D̃)PN log2 PN multiplies are needed

for each(i, `) pair.

Detail 2: In the BDFE case, the frequency domain observation is computed as

x(i) = F J D(b)r(i) −
Lpst∑

`=1

H(i, `)̂̂t(i − `P ), (35)

whereˆ̂t(i) := F ˆ̂s(i). The non-BDFE case is similar, but without the IFI cancellation. The first term inx(i) requires

Nb+PN log2 PN multiplications per frame to compute, while the second requiresLpstD̃PN sinceH(i, `) contains

only D̃PN non-zero elements. Sincê̂t(i) needs to be computed only wheni is a multiple ofP , it requires an

average of1
P

PN log2 PN multiplications per frame. UsingP = 2 and the approximationNb ≈ PN , we get a

total of (D̃Lpst + 1)PN + 1.5PN log2 PN multiplications per frame.

Detail 3: From (11) and the propertyJ D(b) = D(Jb), it follows that CCH = F D(σ2Jb � Jb∗)F H

= C
(√

PNσ2F (Jb � Jb∗)
)

. Thus, thePN coefficients that specifyCCH can be computed in roughly2PN +

1
2PN log2 PN multiplies. Notice thatCkC

H
k is a sub-block ofCCH , and that the Toeplitz nature ofCCH implies

that CkC
H
k is identical for everyk.

Detail 4: This step initializes the recursive computation ofR
(n)
k :=

√
PN

(
HkF D(v(n))F H

H
H
k + CkC

H
k

)
,

where we note
√

PNF D(v(n))F H = C(u(n)). For computation ofH0 C(u(n))HH
0 , we first computeH0 C(u(n)),

then post-multiply the result byHH
0 . But sinceH

H
0 contains only4D +1 ≈ 2D̃ non-zero rows, only2D̃ non-zero
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columns ofH0 C(u(n)) need be computed. This requires2D̃3 multiplications, sinceH0 containsD̃ rows, each

with only D̃ non-zero elements. Using a similar reasoning, the post-multiplication also requires̃D3 multiplications.

Detail 5: R
(n)
k can be inverted directly or recursively sinceR

(n)
k+1 =



Θk θ̃k

θ̃
H

k θ̃k


 when R

(n)
k =




θk θH
k

θk Θk


. In

the direct method, we first compute[θ̃
t

k θ̃k]
t to obtainR

(n)
k+1 from R

(n)
k . Cost-wise, this is similar to computing

one column (i.e.,1/D̃ of the total elements) ofR(n)
0 , requiring2D̃2 multiplies. The direct inversion of Hermitian

R
(n)
k+1 then requires an additional13D̃3 multiplies (using LDL∗ factorization [23]). The procedure for recursive

computation of(R(n)
k+1)

−1 follows directly from the well-known block-matrix inversion formula [26]




A B

C D




−1

=




A−1(I + BP−1CA−1) −A−1BP−1

−P−1CA−1 P−1


, whereP := D−CA−1B, and is detailed in Table IV. In summary, the

total cost of the direct and recursive inversions are approximately2D̃2+ 1
3D̃3 and7D̃2 multiplications, respectively.

Detail 6: SinceHk containsD̃ rows, each with onlỹD nonzero elements, the calculation ofHkṼ
(n)

ik consumes

only D̃2 multiplies. Multiplication by(R
(n)
k )−1 consumes an additional̃D2.

Detail 7: LLR updating requires{y(n)
k }PN−1

k=0 , where y
(n)
k := q

(n)H
k D(v(n))q

(n)
k . Note that the explicit cal-

culation of Q(n), as defined in (24), would involve2PN FFTs of lengthPN , and thus a total complexity of

O(P 2N2 log2 PN). In Appendix II-A we show that

y(n) =
1√
PN

2D∑

d,l=−2D

F D
(
T l−dū

(n)
)

F H(α
(n)
d � α

(n)∗
l ) (36)

where[y(n)]k = y
(n)
k , ū(n) := F Hv(n), T k := C(i〈k〉

P N
) is the right circulark-shift matrix, and where

α
(n)
d = F diagd(G

(n)) (37)

G(n) =
PN−1∑

k=0

H
H
k g

(n)
k ik (38)

Note thatū(n) is simply a rearrangement ofu(n). Thekth column ofG(n) equalsHH
k g

(n)
k and requires̃D2 multiplies

to compute, and soG(n) requiresPND̃2 multiplies to compute. Computation of{αd}2D
d=−2D involves4D+1 ≈ 2D̃

FFTs for a total cost of2D̃PN log2 PN multiplies. For each(d, l) pair, the computation of (36) requires an

additional2PN + 2PN log2 PN multiplies. However, due to conjugate symmetry, only abouthalf of the≈ 4D̃2

pairs need be evaluated. Hence, using (36) rather than direct computation ofQ(n), the calculation of{y(n)
k }PN−1

k=0

requires only about4D̃2(PN +PN log2 PN)+2D̃PN log2 PN +PND̃2, or 5D̃2PN +(4D̃2 +2D̃)PN log2 PN ,

multiplies.
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Detail 8: LLR updating also requires{z(n)
k }PN−1

k=0 , wherez
(n)
k := ‖p(n)

k ‖2. In Appendix II-B we show that

z(n) =
1√
PN

D∑

d,l=−D

F D
(
T l−dF

H b̄
)
F H(ᾱ

(n)
d � ᾱ

(n)∗
l ), (39)

where[z(n)]k = z
(n)
k , [b̄]m :=

∑Nb−1
n=0 |b〈n〉

P N
|2δ〈n〉

P N
−m, and

ᾱ
(n)
d = F diagd(Ḡ

(n)
) (40)

Ḡ
(n)

=

PN−1∑

k=0

ḡ
(n)
k ik (41)

Note thatF H b̄ can be computed in advance,̄G
(n) requires no computation, and{ᾱ(n)

d }D
d=−D involves D̃ FFTs,

for a total cost ofD̃PN log2 PN multiplies. For each(d, l) pair, (39) requires an additional2PN +2PN log2 PN

multiplies, but only about half of thẽD2 pairs need be evaluated (due to conjugate symmetry). Hence,calculation

of {z(n)
k }PN−1

k=0 requires about12D̃2(2PN +2PN log2 PN)+ D̃PN log2 PN , or D̃2PN +(D̃2 + D̃)PN log2 PN ,

multiplies.

Detail 9: LLR updating also requires{Q(n)
k,k}PN−1

k=0 . From (24), (37), (38), and Lemma 1, it follows that

Q
(n)
k,k =

1√
PN

2D∑

d=−2D

[α
(n)
d ]0 ej 2π

P N
kd. (42)

As reported in Table II, direct evaluation of (42) requires4D + 1 ≈ 2D̃ multiplies for eachk. Note that, if

2D̃ > log2 PN , it would be more efficient to compute{Q(n)
k,k}PN−1

k=0 using a singlePN -point FFT. However, since

the cost of this step is relatively small, the difference is insignificant.

VI. N UMERICAL RESULTS

In this section, we compare the performance and complexity of the fast iterative frequency domain equalization

(IFDE) algorithm summarized in Table II with the well known FIR-MMSE-DFE. While the FIR-MMSE-DFE was

originally derived for LTI channels [17], it can be straightforwardly extended to the LTV channel case.3 and then

design a recursive algorithm to update the filter coefficients at the symbol rate assuming a fixed estimation delay

∆. In all simulations, BPSK symbols are transmitted over a noisy WSSUS Rayleigh-fading channel with uniform

power profile (i.e.,σ2
l = N−1

h ) that is generated using Jakes method [27]. Throughout, we assume IFDE uses an

ICI radius of D = dfdTsPNe and frame overlap factor ofP = 2. Both IFDE and FIR-MMSE-DFE designs are

based on known time-domain coefficients{hn,l}Nh−1
l=0 .

3See the “Fast FIR-MMSE-DFE Details” document which will be made available as a technical report.
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First, we establish IFDE-BDFE design rules for frame lengthPN and number-of-iterationsM . While we will see

that smaller values ofPN (for fixed Nh) are advantageous from a complexity standpoint (see Fig. 7), experiments4

suggest the choicePN ≥ 4Nh for good symbol error rate (SER) performance. With radix-2 FFTs in mind, we

choosePN = 2dlog2 4Nhe in the sequel. A related set of experiments5 has shown that SER performance improves

with M up to aboutM = 10, after which there is little additional improvement. Interestingly, we find that, after

2 iterations, IFDE-BDFE gives approximately the same performance as FIR-MMSE-DFE. Hence, we focus on

IFDE-BDFE-2 and IFDE-BDFE-10 in the sequel, i.e., IFDE-BDFE usingM = 2 andM = 10, respectively.

Next, we establish FIR-MMSE-DFE design rules for feedforward filter length Nf and estimation delay∆,

assuming that the feedback filter is just long enough to cancel all post-cursor ISI. To investigate the effect of∆, we

fixed Nf = Nh and conducted experiments6 measuring MSE for several values ofNf (assumingfdTs = 0.0075

and SNR=10dB). Since the choice∆ = Nf − 1 maximized performance in every case, we adopt this rule. To

investigate the effect ofNf , we fixed∆ = Nf − 1 and conducted experiments measuring MSE7 at several values

of SNR (whenfdTs = 0.0075 and Nh = 64). In every case, performance increased withNf , though the gains

diminished rapidly whenNf > Nh. With complexity in mind, we adopt the ruleNf = Nh.

Having established IFDE-BDFE and FIR-MMSE-DFE design rules, we are ready to compare the two ap-

proaches in performance and complexity. In Fig. 6, we compare SER performances whenNh = 64 and fdTs ∈

{0.001, 0.003, 0.0075} over a wide range of SNR. Note that, at allfdTs, IFDE-BDFE-2 performs equivalently to

FIR-MMSE-DFE whereas IFDE-BDFE-10 outperforms FIR-MMSE-DFE, significantly so when SNR> 5. We also

plot the matched-filter bound (MFB) [18]—the ultimate in (uncoded) receiver performance—which is not far from

IFDE-BDFE-10.

Figure 7 examines the multiplies-per-symbol ratio of FIR-MMSE-DFE to IFDE-BDFE-2 using the expressions in

Table III. Note that values> 1 in Fig. 7 imply a complexityadvantagefor IFDE-BDFE, and that this complexity

advantage increases withNh and decreases withfdTs. Since FIR-MMSE-DFE and IFDE-BDFE-2 have similar

performance, Fig. 7 constitutes a directcomplexitycomparison. A similar comparison8 between FIR-MMSE-DFE

and IFDE-BDFE-10 also shows complexity advantage over a wide range of(Nh, fdTs).

A final comment regarding the complexity comparison Fig. 7 isin order. One could argue that the FIR-MMSE-

4See Fig. 1 in the “Simulation Details” document.
5See Fig. 2 in the “Simulation Details” document.
6See Fig. 3 in the “Simulation Details” document.
7See Fig. 4 in the “Simulation Details” document.
8See Fig. 7 in the “Simulation Details” document.
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DFE, which—for our LTV channels—calculates a filter updateeverysymbol period, is “overkill” for slowly varying

channels. For these channels, decent performance should result from approximating the LTV channel response as

fixed over, say,Nf symbol intervals and designing a singlefixed MMSE-DFE to operate over thisNf -symbol

interval. In this case, there exist computationally efficient implementations that exploit the Toeplitz structure of the

channel matrix [17], [28]. But for what range of(fdTs, Nh) will the channel be “slow enough” for this block-LTI

approximation to hold? Numerical experiments9 at 10dB SNR have shown that this block-LTI approximation results

in an equivalent SNR loss of≈ 3dB whenfdTsNh > 0.11 and a loss of≈ 1dB whenfdTsNh > 0.06. For reference,

the curvesfdTsNh = 0.11 andfdTsNh = 0.06 were superimposed on Figs. 7.

VII. C ONCLUSION

In this paper, we presented an iterative frequency domain equalization (IFDE) scheme for single-carrier transmis-

sions over noisy doubly dispersive channels. Time-domain windowing is used make the effective ICI/IFI response

sparse, after which iterative symbol estimation is performed in the frequency domain. The estimation algorithm

leverages the finite-alphabet property of symbols, the sparse ICI/IFI structure, and the low computational cost of

the FFT. Simulations show that the IFDE performs significantly better than the FIR-MMSE-DFE and within about

1 dB of the MFB over the SNR range of interest. A fast version ofthe IFDE algorithm was also derived and its

complexity compared to that of a fast FIR-MMSE-DFE for LTV channels. The IFDE algorithm was found to yield

significant cost savings relative to the fast FIR-MMSE-DFE for reasonable channel lengths.
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APPENDIX I

CONDITIONAL MEAN AND VARIANCE

From (18), (20), and the definition ofµ(n)
l (b),

µ
(n)
l (b) = iH

l F H
∑

k

ik E{t̂(n)
k |sl = b}

= iH
l F H

∑

k

ik

(
t̄
(n)
k + g

(n)H
k

(
E{xk|sl = b} − Hk t̄

(n)))

= s̄
(n)
l + iH

l Q(n)Hil(b − s̄
(n)
l )

which leads to (22). In the last step above, we used the fact that E{xk|sl = b} = HkF
(
s̄(n) + il(b − s̄

(n)
l )
)

=

Hkt̄
(n)+HkFil(b−s̄

(n)
l ). Next we find an expression for[σ(n)

l (b)]2. Before doing so, however, it will be convenient

to note from (18) and (20) that

ŝ
(n)
l = iH

l F H
∑

k

ik

(
t̄
(n)
k + g

(n)H
k

(
xk − Hk t̄

(n)))

= iH
l F H

∑

k

ik

(
t̄
(n)
k + g

(n)H
k

(
HkFs + Ckν − HkF s̄(n)

))

= s̄
(n)
l + iH

l Q(n)H(s − s̄(n)) + iH
l P (n)Hν

= µ
(n)
l (b) + iH

l Q(n)H
(
s − s̄(n) + il(s̄

(n)
l − b)

)
+ iH

l P (n)Hν (43)

and that, sinceE{s|sl = b} = s̄(n) − il(s̄
(n)
l − b),

E
{(

s − s̄(n) + il(s̄
(n)
l − b)

)(
s − s̄(n) + il(s̄

(n)
l − b)

)H |sl = b
}

= Cov(s, s|sl = b)

= D(v(n)) − ili
H
l v

(n)
l . (44)

Using (43), (44), and the definition ofσ(n)
l (b),

[σ
(n)
l (b)]2 = E

{(
ŝ
(n)
l − µ

(n)
l (b)

)(
ŝ
(n)
l − µ

(n)
l (b)

)H |sl = b
}

= iH
l Q(n)H

(
D(v(n)) − ili

H
l v

(i)
l

)
Q(n)il + σ2iH

l P (n)HP (n)il

which leads to (23).
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APPENDIX II

FAST-IFDE DETAILS

A. Derivation of (36)

Here we derive an expression fory(n) enabling fast computation. First, however, we present a useful lemma.

Without loss of generality, we omit superscripts in this appendix.

Lemma 1. If H ∈ C
PN×PN has the banded structure of Fig. 1 with2ρD + 1 non-zero diagonals, and ifB =

F H
HF , then

[B]n,m =
1√
PN

ρD∑

d=−ρD

ej 2π

PN
nd[F diagd(H)]〈m−n〉

P N
.

Proof. Denotead = diagd(H), so that [H]n,m = an−m,m where ak,l := [ak]l. Then, sincead = 0 for d /∈

{−ρD, . . . , ρD},

[B]n,m =
1

PN

PN−1∑

k=0

PN−1∑

l=0

ej 2π

P N
nkak−l,le

−j 2π

P N
lm

=
1

PN

ρD∑

d=−ρD

ej 2π

PN
nd

PN−1∑

l=0

ad,le
−j 2π

P N
l(m−n)

=
1√
PN

ρD∑

d=−ρD

ej 2π

P N
nd[F ad]〈m−n〉

P N
,

where we used the substitutiond = k − l.

From (24), (37), (38), and Lemma 1

Qn,m =
1√
PN

2D∑

d=−2D

ej 2π

PN
nd[αd]〈m−n〉

PN
(45)

whereαd := F diagd(G). With αd,m := [αd]m, we find

yk =

PN−1∑

n=0

|Qn,k|2vn

=
1

PN

PN−1∑

n=0

vn

2D∑

d,l=−2D

e−j 2π

P N
n(l−d)αd,〈k−n〉

PN
α∗

l,〈k−n〉
PN

=
1

PN

PN−1∑

m=0

v〈k−m〉
P N

2D∑

d,l=−2D

e−j 2π

PN
(l−d)(k−m)αd,mα∗

l,m (46)

where, for (46),m = 〈k − n〉PN so thatn = 〈k − m〉PN . Defining the matrixDk := D(F ik) and the vector

β(d, l) such that[β(d, l)]m = αd,mα∗
l,m,

y =

2D∑

d,l=−2D

Dl−d C(v)DH
l−dβ(d, l) (47)
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Using the propertyDkF = 1√
PN

FT k,

Dl−d C(v)DH
l−d =

√
PNDl−dF D(F Hv)F HDH

l−d

=
1√
PN

FT l−d D(F Hv)T H
l−dF

H

=
1√
PN

F D
(
T l−dF

Hv
)
F H . (48)

Substituting (48) into (47) yields (36).

B. Derivation of (39)

Here we derive an expression forz(n) enabling fast computation. Without loss of generality, we omit su-

perscripts in this appendix. From the definition ofḡk we noticeCH
k gk = CH ḡk, and thus, with (11), (25),

and (41), we haveP = CH
∑

k ḡki
H
k F = CHḠF = D(b∗)JHF HḠF . Then we can writezk = ‖pk‖2 =

∑Nb−1
n=0 |b∗n[F HḠF ]〈n〉

P N
,k|2. SinceḠ is banded with2D+1 non-zero diagonals, Lemma 1 implies[F HḠF ]〈n〉

P N
,k =

1√
PN

∑D
d=−D ej 2π

P N
ndᾱd,〈k−n〉

PN
for ᾱd,m := [ᾱd]m. Thus

zk =
1

PN

Nb−1∑

n=0

∣∣∣∣∣b
∗
n

D∑

d=−D

ej 2π

P N
ndᾱd,〈k−n〉

P N

∣∣∣∣∣

2

=
1

PN

Nb−1∑

n=0

|bn|2
D∑

d,l=−D

e−j 2π

P N
n(l−d)ᾱd,〈k−n〉

P N
ᾱ∗

l,〈k−n〉
PN

=
1

PN

PN−1∑

m=0

b̄〈k−m〉
P N

D∑

d,l=−D

e−j 2π

P N
(l−d)(k−m)ᾱd,mᾱ∗

l,m

whereb̄m :=
∑Nb−1

n=0 |b〈n〉
P N

|2δ〈n〉
P N

−m. UsingDk from Appendix II-A, and defininḡβ(d, l) such that[β̄(d, l)]m =

ᾱd,mᾱ∗
l,m, we find that

z =
D∑

d,l=−D

Dl−d C(b̄)DH
l−dβ̄(d, l) (49)

where[b̄]m = b̄m. Similar to Appendix II-A, we substituteDl−d C(b̄)DH
l−d = 1√

PN
F D(T l−dF

H b̄)F H into (49)

to get (39).
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Fig. 1. Desired “banded” structure of matrixH(i, 0).
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L
(0)
l = 0 ∀l

for n = 0, 1, 2, . . .

for l = 0 . . . PN − 1,

s̄
(n)
l = tanh(L

(n)
l /2)

v
(n)
l = 1 − (s̄

(n)
l )2

end

t̄
(n)

= F s̄(n)

for k = 0 . . . PN − 1,

g
(n)
k =

`
HkF D(v(n))F H

H
H
k + σ2CkCH

k

´−1

× HkF D(v(n))F Hik

t̂
(n)
k = t̄

(n)
k + g

(n)H
k (xk − Hk t̄

(n)
)

end

ŝ(n) = F H t̂
(n)

Q(n) = F H
“ PPN−1

k=0 H
H
k g

(n)
k iH

k

”
F

P (n) =
“ PPN−1

k=0 CH
k g

(n)
k iH

k

”
F

for l = 0 . . . PN − 1,

L
(n+1)
l = L

(n)
l +

4
“
Re{Q(n)

l,l (ŝ
(n)
l − s̄

(n)
l )} + |Q(n)

l,l |2s̄(n)
l

”

q
(n)H
l D(v(n))q

(n)
l − |Q(n)

l,l |2v(n)
l + σ2‖pl‖2

end

end

TABLE I

SUMMARY OF ITERATIVE SYMBOL DETECTION.



24

Step Cost Per Step

1 H(i, `) = F J D(b)H(i, `)F for appropriatè PNNh + (Nh + eD)PN log2 PN

2 computex(i) from (35) ( eDLpst + 1)PN + 3
2
PN log2 PN

3 Σ =
√

PNC0C
H
0 2PN + 1

2
PN log2 PN

L
(0)
l = 0 ∀l 0

for n = 0, 1, . . . , M − 1

for l = 0, 1, . . . , PN − 1

s̄
(n)
l = tanh(L

(n)
l /2) 1

v
(n)
l = 1 − (s̄

(n)
l )2 1

end

t̄
(n)

= F s̄(n) 1
2
PN log2 PN

u(n) = F v(n) 1
2
PN log2 PN

4 R
(n)
0 = H0 C(u(n))HH

0 + Σ 3 eD3

for k = 0, 1, . . . , PN − 1

5 compute(R
(n)
k )−1 min

n
2 eD2+ 1

3
eD3, 7 eD2

o

6 g
(n)
k = (R

(n)
k )−1

Hk C(u(n))ik 2 eD2

t̂
(n)
k = t̄

(n)
k + g

(n)H
k (xk − Hk t̄

(n)
) eD2

end

ŝ(n) = F H t̂
(n)

PN log2 PN

7 compute{y(n)
l }PN−1

l=0 , {αd}2D
d=−2D from (36)-(38) 5 eD2PN + (4 eD2 + 2 eD)PN log2 PN

8 compute{z(n)
l }PN−1

l=0 from (39)-(41) eD2PN + ( eD2 + eD)PN log2 PN

for l = 0, 1, . . . , PN − 1

9 Q
(n)
l,l = 1√

PN

P2D

d=−2D
[α

(n)
d ]0 ej 2π

PN
ld 2 eD

L
(n+1)
l = L

(n)
l + 4

Re{Q
(n)
l,l

(ŝ
(n)
l

−s̄
(n)
l

)}+|Q(n)
l,l

|2s̄
(n)
l

y
(n)
l

−|Q(n)
l,l

|2v
(n)
l

+σ2z
(n)
l

6

end

end

TABLE II

FAST IMPLEMENTATION OF THE ITERATIVE SYMBOL DETECTOR

IFDE-noBDFE:

3M eD3/N +
h
2 + (Nh + eD) + M(5 eD2 + 3 eD + 2)

i
P log2 PN

+
h
3 + Nh + M

“
min{ 1

3
eD3, 5 eD2} + 11 eD2 + 2 eD + 8

”i
P

IFDE-BDFE:

3M eD3/N +
h
2 + (Lpst + 1)(Nh + eD) + M(5 eD2 + 3 eD + 2)

i
P log2 PN

+
h
3 + Lpst( eD + Nh) + Nh + M

“
min{ 1

3
eD3, 5 eD2} + 11 eD2 + 2 eD + 8

”i
P

FIR-MMSE-DFE:
9
2
N2

f − 1
2
Nf − 1

TABLE III

RELATIVE ALGORITHM COMPLEXITY (PER SYMBOL ).
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Step Cost2
4αk aH

k

ak Ak

3
5 = R−1

k 0

Θ
−1
k = Ak − α−1

k akaH
k

eD2

computeθ̃k and θ̃k 3 eD2

bk = −Θ
−1
k θ̃k

eD2

βk =
“
θ̃k − θ̃

H

k Θ
−1
k θ̃k

”−1 eD2

R−1
k+1 =

2
4Θ

−1
k + bkbH

k βk bkβk

bH
k βk βk

3
5 eD2

TABLE IV

RECURSIVEUPDATE OF(R
(n)
k )−1


