Proof Details for "Existence and Performance of Shalvi-Weinstein Estimators" ${ }^{\dagger}$

Philip Schniter

[^0]We assume in this document that all quantities are real-valued. Extension to complex-valued quantities is straightforward.

I. MAXima of $\left|\mathcal{K}_{y}\right|$ along the boundary of $\mathcal{C}_{\nu}^{(0)} \cap \mathcal{S}$.

From the definitions of the dominant cone $\mathcal{C}_{\nu}^{(0)}$ and the unit sphere \mathcal{S}, points \mathbf{q} on the boundary of $\mathcal{C}_{\nu}^{(0)} \cap \mathcal{S}$ have the properties that $\left|q_{\nu}^{(0)}\right|=\max _{(\ell, \delta) \neq(0, \nu)}\left|q_{\delta}^{(\ell)}\right|$ and $\|\underline{\boldsymbol{q}}\|_{2}^{2}=1$. For a particular pair of maximum elements $\left\{q_{\nu}^{(0)}, q_{\delta}^{(\ell)}\right\}$, let us define $\breve{\boldsymbol{q}}$ to be the vector $\underline{\boldsymbol{q}}$ with these two maximum elements omitted. Then since $1=\|\underline{\boldsymbol{q}}\|_{2}^{2}=2\left|q_{\nu}^{(0)}\right|^{2}+\|\breve{\boldsymbol{q}}\|_{2}^{2}$, we know that $\left|q_{\nu}^{(0)}\right|=\sqrt{\left(1-\|\breve{\boldsymbol{q}}\|_{2}^{2}\right) / 2}$. Note that $\breve{\boldsymbol{q}}$ parameterizes the $(\ell, \delta)^{t h}$ edge of the $\mathcal{C}_{\nu}^{(0)} \cap \mathcal{S}$ boundary when the magnitude of the largest coefficient in $\breve{\boldsymbol{q}}$ is at most $\left|q_{\nu}^{(0)}\right|$. (By the " $(\ell, \delta)^{t h}$ edge," we mean the boundary between the dominant cones of desired component $q_{\nu}^{(0)}$ and interference component $q_{\delta}^{(\ell)}$. The union of the $(\ell, \delta)^{t h}$ edges for all $(\ell, \delta) \neq(0, \nu)$ forms the boundary of the desired cone.)

The kurtosis of responses on the $(\ell, \delta)^{t h}$ edge can be written

$$
\begin{align*}
\mathcal{K}_{y} & =\sum_{k}\left\|\underline{\boldsymbol{q}}^{(k)}\right\|_{4}^{4} \mathcal{K}_{s}^{(k)} \\
& =\left|q_{\nu}^{(0)}\right|^{4} \mathcal{K}_{s}^{(0)}+\left|q_{\delta}^{(\ell)}\right|^{4} \mathcal{K}_{s}^{(\ell)}+\sum_{k}\left\|\breve{\boldsymbol{q}}^{(k)}\right\|_{4}^{4} \mathcal{K}_{s}^{(k)} \\
& =\left(1-\|\breve{\boldsymbol{q}}\|_{2}^{2}\right)^{2}\left(\mathcal{K}_{s}^{(0)}+\mathcal{K}_{s}^{(\ell)}\right) / 4+\sum_{k}\left\|\breve{\boldsymbol{q}}^{(k)}\right\|_{4}^{4} \mathcal{K}_{s}^{(k)} \tag{1}
\end{align*}
$$

where $\breve{\boldsymbol{q}}^{(k)}$ extracts the elements of $\breve{\boldsymbol{q}}$ corresponding to source k.
Below we evaluate the gradient and Hessian of \mathcal{K}_{y} to show that there exists a unique local maximum of $\left|\mathcal{K}_{y}\right|$ at the point $\breve{\boldsymbol{q}}=0$ as long as $\mathcal{K}_{s}^{(\ell)} \neq-\mathcal{K}_{s}^{(0)}$. Using straightforward calculus, it is possible to derive the component of the gradient of \mathcal{K}_{y} in the direction of $q_{b}^{(a)}$:

$$
\begin{equation*}
\left[\nabla_{\breve{\boldsymbol{q}}} \mathcal{K}_{y}\right]_{b}^{(a)}=\left(\left(\|\breve{\boldsymbol{q}}\|_{2}^{2}-1\right)\left(\mathcal{K}_{s}^{(0)}+\mathcal{K}_{s}^{(\ell)}\right)+4\left(q_{b}^{(a)}\right)^{2} \mathcal{K}_{s}^{(a)}\right) q_{b}^{(a)} \tag{2}
\end{equation*}
$$

and component of the Hessian in the directions $q_{b}^{(a)}$ and $q_{d}^{(c)}$:

$$
\left[\mathcal{H}_{\breve{\boldsymbol{q}}} \mathcal{K}_{y}\right]_{b, d}^{(a, c)}= \begin{cases}\left(2\left(q_{b}^{(a)}\right)^{2}+\|\breve{\boldsymbol{q}}\|_{2}^{2}-1\right)\left(\mathcal{K}_{s}^{(0)}+\mathcal{K}_{s}^{(\ell)}\right)+12\left(q_{b}^{(a)}\right)^{2} \mathcal{K}_{s}^{(a)}, & (a, b)=(c, d), \tag{3}\\ 2 q_{b}^{(a)} q_{d}^{(c)}\left(\mathcal{K}_{s}^{(0)}+\mathcal{K}_{s}^{(\ell)}\right), & (a, b) \neq(c, d) .\end{cases}
$$

A stationary point occurs when the gradient components obey $\left[\nabla_{\breve{\boldsymbol{q}}} \mathcal{K}_{y}\right]_{b}^{(a)}=0 \quad \forall(a, b) \notin\{(0, \nu),(\ell, \delta)\}$. Hence, from (2),

$$
\begin{equation*}
\left.q_{b}^{(a)}\right|_{\text {stationary }}=\frac{1}{2} \alpha_{b}^{(a)} \sqrt{\left(1-\|\breve{\boldsymbol{q}}\|_{2}^{2}\right) \frac{\mathcal{K}_{s}^{(0)}+\mathcal{K}_{s}^{(\ell)}}{\mathcal{K}_{s}^{(a)}}}, \quad \text { for } \quad \alpha_{b}^{(a)} \in\{-1,0,1\} . \tag{4}
\end{equation*}
$$

Note that for stationary point coefficients $q_{b}^{(a)} \neq 0$, we require that $0<\frac{\mathcal{K}_{s}^{(0)}+\mathcal{K}_{s}^{(\ell)}}{\mathcal{K}_{s}^{(a)}}<\infty$. (Recall $\|\breve{\boldsymbol{q}}\|_{2}^{2} \leq 1$.) Solving the family of equations (4) for $\|\breve{\boldsymbol{q}}\|_{2}^{2}$, and plugging the result back into (4), we can derive an explicit expression for the coefficients of a stationary point. Using $M^{(k)}$ to denote the number of nonzero gradient coefficients associated with the $k^{t h}$ source, it can be shown that

$$
\begin{equation*}
\left.q_{b}^{(a)}\right|_{\text {stationary }}=\alpha_{b}^{(a)}\left(\sqrt{\frac{4 \mathcal{K}_{s}^{(a)}}{\mathcal{K}_{s}^{(0)}+\mathcal{K}_{s}^{(\ell)}}+\mathcal{K}_{s}^{(a)} \sum_{k} \frac{M^{(k)}}{\mathcal{K}_{s}^{(k)}}}\right)^{-1} \tag{5}
\end{equation*}
$$

Evaluating the Hessian at the stationary points, we find from (4) and (3) that
$\left.\left[\mathcal{H}_{\breve{\boldsymbol{q}}} \mathcal{K}_{y}\right]_{b, d}^{(a, c)}\right|_{\text {stationary }}= \begin{cases}\frac{1}{2}\left(1-\|\breve{\boldsymbol{q}}\|_{2}^{2}\right)\left(\mathcal{K}_{s}^{(0)}+\mathcal{K}_{s}^{(\ell)}\right)\left(\left(\alpha_{b}^{(a)}\right)^{2}\left(\frac{\mathcal{K}_{s}^{(0)}+\mathcal{K}_{s}^{(\ell)}}{\mathcal{K}_{s}^{(a)}}+6\right)-2\right) & (a, b)=(c, d), \\ \frac{1}{2}\left(1-\|\breve{\boldsymbol{q}}\|_{2}^{2}\right)\left(\mathcal{K}_{s}^{(0)}+\mathcal{K}_{s}^{(\ell)}\right)\left(\alpha_{b}^{(a)} \alpha_{d}^{(c)} \frac{\mathcal{K}_{s}^{(0)}+\mathcal{K}_{s}^{(\ell)}}{\sqrt{\mathcal{K}_{s}^{(a)} \mathcal{K}_{s}^{(c)}}}\right) & (a, b) \neq(c, d) .\end{cases}$
Note that $\sqrt{\mathcal{K}_{s}^{(a)} \mathcal{K}_{s}^{(c)}}$ is positive when $\alpha_{b}^{(a)}$ and $\alpha_{d}^{(c)}$ are both nonzero: since we previously required that $\infty>\frac{\mathcal{K}_{s}^{(0)}+\mathcal{K}_{s}^{(\ell)}}{\mathcal{K}_{s}^{(a)}}>0$ and $\infty>\frac{\mathcal{K}_{s}^{(0)}+\mathcal{K}_{s}^{(\ell)}}{\mathcal{K}_{s}^{(c)}}>0$, it follows that $\mathcal{K}_{s}^{(a)}$ and $\mathcal{K}_{s}^{(c)}$ must be nonzero with the same sign.

For a stationary point to be a local maximum (minimum), it must have a negative (positive) definite Hessian. Furthermore, a matrix is ND (PD) if and only if all of its principle minors are ND (PD). Thus, we are motivated to consider the 2×2 Hessian minors. From (6), they have the form

$$
\frac{1}{2}\left(1-\|\breve{\boldsymbol{q}}\|_{2}^{2}\right)\left(\mathcal{K}_{s}^{(0)}+\mathcal{K}_{s}^{(\ell)}\right)\left[\begin{array}{cc}
\left(\alpha_{b}^{(a)}\right)^{2}\left(\frac{\mathcal{K}_{s}^{(0)}+\mathcal{K}_{s}^{(\ell)}}{\mathcal{K}_{s}^{(a)}}+6\right)-2 & \alpha_{b}^{(a)} \alpha_{d}^{(c)} \frac{\mathcal{K}_{s}^{(0)}+\mathcal{K}_{s}^{(\ell)}}{\sqrt{\mathcal{K}_{s}^{(a)} \mathcal{K}_{s}^{(c)}}} \tag{7}\\
\alpha_{b}^{(a)} \alpha_{d}^{(c)} \frac{\mathcal{K}_{s}^{(0)}+\mathcal{K}_{s}^{(\ell)}}{\sqrt{\mathcal{K}_{s}^{(a)} \mathcal{K}_{s}^{(c)}}} & \left(\alpha_{d}^{(c)}\right)^{2}\left(\frac{\mathcal{K}_{s}^{(0)}+\mathcal{K}_{s}^{())}}{\mathcal{K}_{s}^{(c)}}+6\right)-2 .
\end{array}\right]
$$

Consider the three cases:

1. $q_{b}^{(a)}=q_{d}^{(c)}=0$: Setting $\left\{\alpha_{b}^{(a)}, \alpha_{d}^{(c)}\right\}=\{0,0\}$, the matrix in (7) takes the form

$$
\frac{1}{2}\left(1-\|\breve{\boldsymbol{q}}\|_{2}^{2}\right)\left(\mathcal{K}_{s}^{(0)}+\mathcal{K}_{s}^{(\ell)}\right)\left[\begin{array}{cc}
-2 & 0 \\
0 & -2
\end{array}\right]
$$

which is ND when $\mathcal{K}_{s}^{(0)}+\mathcal{K}_{s}^{(\ell)}>0$ and PD when $\mathcal{K}_{s}^{(0)}+\mathcal{K}_{s}^{(\ell)}<0$.
2. $\underline{q}_{b}^{(a)} \neq 0, q_{d}^{(c)}=0$: Setting $\left\{\alpha_{b}^{(a)}, \alpha_{d}^{(c)}\right\}=\{ \pm 1,0\}$, the determinant of (7) equals

$$
-\frac{1}{2}\left(1-\|\breve{\boldsymbol{q}}\|_{2}^{2}\right)^{2}\left(\mathcal{K}_{s}^{(0)}+\mathcal{K}_{s}^{(\ell)}\right)^{2}(4+\underbrace{\frac{\mathcal{K}_{s}^{(0)}+\mathcal{K}_{s}^{(\ell)}}{\mathcal{K}_{s}^{(a)}}}_{\geq 0}),
$$

which is negative (assuming $\mathcal{K}_{s}^{(0)}+\mathcal{K}_{s}^{(\ell)} \neq 0$) implying (7) is indefinite.
3. $\underline{q_{b}^{(a)} \neq 0, q_{d}^{(c)} \neq 0 \text { : Setting }\left\{\alpha_{b}^{(a)}, \alpha_{d}^{(c)}\right\}=\{ \pm 1,1\} \text {, the determinant of (7) equals }}$

$$
\frac{1}{4}\left(1-\|\breve{\boldsymbol{q}}\|_{2}^{2}\right)^{2}\left(\mathcal{K}_{s}^{(0)}+\mathcal{K}_{s}^{(\ell)}\right)^{2}\left(4+\frac{\mathcal{K}_{s}^{(0)}+\mathcal{K}_{s}^{(\ell)}}{\mathcal{K}_{s}^{(a)}}+\frac{\mathcal{K}_{s}^{(0)}+\mathcal{K}_{s}^{(\ell)}}{\mathcal{K}_{s}^{(c)}}\right)
$$

which is positive (assuming $\mathcal{K}_{s}^{(0)}+\mathcal{K}_{s}^{(\ell)} \neq 0$), hence (7) is either ND or PD. Noting that the elements on the diagonal are positive when $\mathcal{K}_{s}^{(0)}+\mathcal{K}_{s}^{(\ell)}>0$ and negative when $\mathcal{K}_{s}^{(0)}+\mathcal{K}_{s}^{(\ell)}<0$, we see that (7) will be PD when $\mathcal{K}_{s}^{(0)}+\mathcal{K}_{s}^{(\ell)}>0$ and ND when $\mathcal{K}_{s}^{(0)}+\mathcal{K}_{s}^{(\ell)}<0$.

Note from (4) that $\mathcal{K}_{s}^{(0)}+\mathcal{K}_{s}^{(\ell)}=0$ implies $\breve{\boldsymbol{q}}=0$, thus the assumption that $\mathcal{K}_{s}^{(0)}+\mathcal{K}_{s}^{(\ell)} \neq 0$ in cases 2 and 3 above is justified. From the three cases above, we see that the only $\breve{\boldsymbol{q}}$ locally maximizing/minimizing \mathcal{K}_{y} are $\breve{\boldsymbol{q}}=0$ and $\breve{\boldsymbol{q}}$ with strictly nonzero elements. Taking the case $\mathcal{K}_{s}^{(0)}+\mathcal{K}_{s}^{(\ell)}>0$, the point $\breve{\boldsymbol{q}}=0$ yields a local \mathcal{K}_{y} maximum of $\left(\mathcal{K}_{s}^{(0)}+\mathcal{K}_{s}^{(\ell)}\right) / 4$ according to (1). When $\mathcal{K}_{s}^{(0)}+\mathcal{K}_{s}^{(\ell)}<0$, the point $\breve{\boldsymbol{q}}=0$ yields a local \mathcal{K}_{y} minimum of $\left(\mathcal{K}_{s}^{(0)}+\mathcal{K}_{s}^{(\ell)}\right) / 4$. In either case, $\left|\mathcal{K}_{y}\right|$ attains a local maximum at $\breve{\boldsymbol{q}}=0$. (Using similar arguments, it can be shown that $\breve{\boldsymbol{q}}$ with strictly nonzero elements yields a $\left|\mathcal{K}_{y}\right|$ local minimum.) To conclude, the local $\left|\mathcal{K}_{y}\right|$ maximum over the $(\ell, \delta)^{\text {th }}$ edge of the $\mathcal{C}_{\nu}^{(0)} \cap \mathcal{S}$ boundary occurs at $\breve{\boldsymbol{q}}=0$ as long as $\mathcal{K}_{s}^{(0)}+\mathcal{K}_{s}^{(\ell)} \neq 0$. (In the case $\mathcal{K}_{s}^{(0)}+\mathcal{K}_{s}^{(\ell)}=0$, it is easy to see from (1) that $\breve{\boldsymbol{q}}=0$ gives $\mathcal{K}_{y}=0$, and so $\breve{\boldsymbol{q}}=0$ must be a local minimum of the non-negative quantity $\left|\mathcal{K}_{y}\right|$.)

So far we have determined the local $\left|\mathcal{K}_{y}\right|$ maximum in the $\breve{\boldsymbol{q}}$ space. But earlier we specified that the valid region of $\breve{\boldsymbol{q}}$ is constrained to vectors whose largest element has magnitude of at most $\left|q_{\nu}^{(0)}\right|$. Hence, there is a possibility that the maximum value of $\left|\mathcal{K}_{y}\right|$ might not be attained at the local maximum of our desired region, but rather on the boundary of our desired region in the $\breve{\boldsymbol{q}}$ space. (The maximum of $\left|\mathcal{K}_{y}\right|$ will definitely be attained on the boundary of the $\breve{\boldsymbol{q}}$ region when $\mathcal{K}_{s}^{(0)}+\mathcal{K}_{s}^{(\ell)}=0$, where we found that no local maxima exist.) These boundary points have the property that there exists some pair $(m, n) \notin\{(0, \nu),(\ell, \delta)\}$ such that $\left|q_{n}^{(m)}\right|=\left|q_{\nu}^{(0)}\right|=\left|q_{\delta}^{(\ell)}\right|$. We can parameterize the boundary of the $\breve{\boldsymbol{q}}$ region using $\breve{\boldsymbol{q}}$, where $\breve{\boldsymbol{q}}$ if formed by removing the coefficients $q_{n}^{(m)}, q_{\nu}^{(0)}$ and $q_{\delta}^{(\ell)}$ from $\underline{\boldsymbol{q}}$. But writing

$$
\begin{align*}
\mathcal{K}_{y} & =\left|q_{\nu}^{(0)}\right|^{4} \mathcal{K}_{s}^{(0)}+\left|q_{\delta}^{(\ell)}\right|^{4} \mathcal{K}_{s}^{(\ell)}+\left|q_{n}^{(m)}\right|^{4} \mathcal{K}_{s}^{(m)}+\sum_{k}\left\|\breve{\boldsymbol{q}}^{(k)}\right\|_{4}^{4} \mathcal{K}_{s}^{(k)} \\
& =\left(1-\|\breve{\boldsymbol{q}}\|_{2}^{2}\right)^{2}\left(\mathcal{K}_{s}^{(0)}+\mathcal{K}_{s}^{(\ell)}+\mathcal{K}_{s}^{(m)}\right) / 9+\sum_{k}\left\|\breve{\boldsymbol{q}}^{(k)}\right\|_{4}^{4} \mathcal{K}_{s}^{(k)} \tag{8}
\end{align*}
$$

and noticing the similarities between (8) and (1), it is evident that the search for $\left|\mathcal{K}_{y}\right|$ maxima over $\breve{\boldsymbol{q}}$ is analogous to the search over $\breve{\boldsymbol{q}}$: we get a local maximum of $\left|\mathcal{K}_{y}\right|=\left|\mathcal{K}_{s}^{(0)}+\mathcal{K}_{s}^{(\ell)}+\mathcal{K}_{s}^{(m)}\right| / 9$ at $\breve{\mathscr{q}}=0$, with the possibility for a non-local maximum on the boundary of valid $\breve{\mathscr{q}}$. This process
(of searching over the boundary of the boundary of the boundary) repeats itself until we have no more free parameters. At the end, we have a family of candidate points $\{\underline{\boldsymbol{q}}\}$ with $M=2,3,4, \ldots$ nonzero coefficients of equal magnitude $\sqrt{1 / M}$, where the set of nonzero indices includes $(0, \nu)$. Using $M^{(k)}$ to denote the number of nonzero coefficients associated with the $k^{t h}$ source (so that $\left.M=\sum_{k} M^{(k)}\right)$, these candidate maxima have absolute kurtosis

$$
\begin{aligned}
\left|\mathcal{K}_{y}\right| & =\left.\left|\sum_{k} \sum_{i}\right| q_{i}^{(k)}\right|^{4} \mathcal{K}_{s}^{(k)} \mid \\
& =\left|\sum_{k} M^{(k)}(\sqrt{1 / M})^{4} \mathcal{K}_{s}^{(k)}\right| \\
& =\left|\frac{1}{M^{2}} \sum_{k} M^{(k)} \mathcal{K}_{s}^{(k)}\right| \\
& =\frac{1}{M^{2}}|\mathcal{K}_{s}^{(0)}+\underbrace{\left(M^{(0)}-1\right)}_{\geq 0} \mathcal{K}_{s}^{(0)}+\sum_{k \neq 0} M^{(k)} \mathcal{K}_{s}^{(k)}| \\
& \leq \frac{1}{M^{2}}\left|\mathcal{K}_{s}^{(0)}\right|+\frac{M-1}{M^{2}} \max _{k}\left|\mathcal{K}_{s}^{(k)}\right| \\
& \leq \frac{1}{4}\left(\left|\mathcal{K}_{s}^{(0)}\right|+\max _{k}\left|\mathcal{K}_{s}^{(k)}\right|\right)
\end{aligned}
$$

where the last step follows from the restriction $M \geq 2$. To conclude,

$$
\begin{equation*}
\max _{\underline{\boldsymbol{q}} \in \operatorname{bndr}\left(\mathcal{C}_{\nu}^{(0)} \cap \mathcal{S}\right)}\left|\mathcal{K}_{y}(\underline{\boldsymbol{q}})\right| \leq \frac{1}{4}\left(\left|\mathcal{K}_{s}^{(0)}\right|+\max _{k}\left|\mathcal{K}_{s}^{(k)}\right|\right) \tag{9}
\end{equation*}
$$

$$
\text { II. SUPREMA OF }\left|\mathcal{K}_{y}\right| \text { in } \mathcal{C}_{\nu}^{(0)} \cap \mathcal{S}
$$

Parameterizing $\underline{\boldsymbol{q}} \in \mathcal{C}_{\nu}^{(0)} \cap \mathcal{S}$ by $\overline{\boldsymbol{q}}$, which is $\underline{\boldsymbol{q}}$ with the element $q_{\nu}^{(0)}$ removed, we have

$$
\begin{align*}
\mathcal{K}_{y} & =\left|q_{\nu}^{(0)}\right|^{4} \mathcal{K}_{s}^{(0)}+\sum_{k}\left\|\overline{\boldsymbol{q}}^{(k)}\right\|_{4}^{4} \mathcal{K}_{s}^{(k)} \\
& =\left(1-\|\overline{\boldsymbol{q}}\|_{2}^{2}\right)^{2} \mathcal{K}_{s}^{(0)}+\sum_{k}\left\|\overline{\boldsymbol{q}}^{(k)}\right\|_{4}^{4} \mathcal{K}_{s}^{(k)} \tag{10}
\end{align*}
$$

which is exactly (1) if we make the substitutions $\mathcal{K}_{s}^{(\ell)} \rightarrow 3 \mathcal{K}_{s}^{(0)}$ and $\breve{\boldsymbol{q}} \rightarrow \overline{\boldsymbol{q}}$. Thus, the results of the previous section imply that there exists a unique local $\left|\mathcal{K}_{y}\right|$ maximum at $\overline{\boldsymbol{q}}=0$ (always, since $\left.\mathcal{K}_{s}^{(0)} \neq 0\right)$ attaining the value $\left|\mathcal{K}_{s}^{(0)}\right|$. Note that $\overline{\boldsymbol{q}}=0$ corresponds to $\underline{\boldsymbol{q}}=\mathbf{e}_{\nu}^{(0)}$.

We must also consider whether larger values of $\left|\mathcal{K}_{y}\right|$ are attained on the boundary of the open set $\mathcal{C}_{\nu}^{(0)} \cap \mathcal{S}$. Recalling that (9) gives an upper bound for $\left|\mathcal{K}_{y}\right|$ on the boundary, if

$$
\left|\mathcal{K}_{s}^{(0)}\right|>\frac{1}{4}\left(\left|\mathcal{K}_{s}^{(0)}\right|+\max _{k}\left|\mathcal{K}_{s}^{(k)}\right|\right),
$$

we can be sure that the supremum of $\left|\mathcal{K}_{y}\right|$ over $\mathcal{C}_{\nu}^{(0)} \cap \mathcal{S}$ is attained at the point $\underline{\boldsymbol{q}}=\mathbf{e}_{\nu}^{(0)}$ with value $\left|\mathcal{K}_{s}^{(0)}\right|$.

$$
\text { III. SUPREMA OF }\left|\mathcal{K}_{y}\right| \text { OVER }\left\{\overline{\boldsymbol{q}} \in \overline{\mathcal{Q}}_{\mathcal{C} \cap \mathcal{S}}:\|\overline{\boldsymbol{q}}\|_{2}^{2}>\frac{1}{2}\right\}
$$

To determine the suprema of $\left|\mathcal{K}_{y}\right|$ over

$$
\overline{\mathcal{Q}}_{\mathcal{C} \cap \mathcal{S},>0.5}:=\left\{\overline{\boldsymbol{q}} \in \overline{\mathcal{Q}}_{\mathcal{C} \cap \mathcal{S}}:\|\overline{\boldsymbol{q}}\|_{2}^{2}>\frac{1}{2}\right\}
$$

we first consider the interior of $\overline{\mathcal{Q}}_{\mathcal{C} \cap \mathcal{S},>0.5}$. Since we have shown (in the previous section) that the unique local maximum within $\overline{\mathcal{Q}}_{\mathcal{C} \cap \mathcal{S}}$ occurs at $\overline{\boldsymbol{q}}=0$, there exists no local maximum within $\overline{\mathcal{Q}}_{\mathcal{C} \cap \mathcal{S},>0.5}$, and thus the supremum over $\overline{\mathcal{Q}}_{\mathcal{C} \cap \mathcal{S},>0.5}$ is attained on the boundary. Since

$$
\operatorname{bndr}\left(\overline{\mathcal{Q}}_{\mathcal{C} \cap \mathcal{S},>0.5}\right)=\operatorname{bndr}\left(\overline{\mathcal{Q}}_{\mathcal{C} \cap \mathcal{S}}\right) \cup\left\{\overline{\boldsymbol{q}}:\|\overline{\boldsymbol{q}}\|_{2}^{2}=\frac{1}{2}\right\}
$$

the $\left|\mathcal{K}_{y}\right|$ supremum over $\operatorname{bndr}\left(\overline{\mathcal{Q}}_{\mathcal{C} \cap \mathcal{S},>0.5}\right)$ will either occur on the boundary of $\overline{\mathcal{Q}}_{\mathcal{C} \cap \mathcal{S}}$ or in $\{\overline{\boldsymbol{q}}$: $\left.\|\overline{\boldsymbol{q}}\|_{2}^{2}=\frac{1}{2}\right\}$.

Since we have already examined $\left|\mathcal{K}_{y}\right|$ on $\operatorname{bndr}\left(\overline{\mathcal{Q}}_{\mathcal{C} \cap \mathcal{S}}\right)$, we now focus on $\mathcal{K}_{y}(\overline{\boldsymbol{q}})$ when $\|\overline{\boldsymbol{q}}\|_{2}^{2}=$ $\frac{1}{2}$. Such $\overline{\boldsymbol{q}}$ can be parameterized by $\breve{\boldsymbol{q}}$, defined as $\underline{\boldsymbol{q}}$ with elements $q_{\nu}^{(0)}$ and $q_{\delta}^{(\ell)}$ omitted, for all combinations $(\ell, \delta) \neq(0, \nu)$. Since $1=\|\underline{\underline{q}}\|_{2}^{2}=\left|q_{\nu}^{(0)}\right|^{2}+\|\overline{\boldsymbol{q}}\|_{2}^{2}=\left|q_{\nu}^{(0)}\right|^{2}+\frac{1}{2}$, we have $\left|q_{\nu}^{(0)}\right|^{2}=\frac{1}{2}$, and since $\frac{1}{2}=\|\overline{\boldsymbol{q}}\|_{2}^{2}=\left|q_{\delta}^{(\ell)}\right|^{2}+\|\breve{\boldsymbol{q}}\|_{2}^{2}$, we have $\left|q_{\delta}^{(\ell)}\right|^{2}=\frac{1}{2}-\|\breve{\boldsymbol{q}}\|_{2}^{2}$. Thus

$$
\begin{align*}
\mathcal{K}_{y} & =\sum_{k}\left\|\underline{q}^{(k)}\right\|_{4}^{4} \mathcal{K}_{s}^{(k)} \\
& =\left|q_{\nu}^{(0)}\right|^{4} \mathcal{K}_{s}^{(0)}+\left|q_{\delta}^{(\ell)}\right|^{4} \mathcal{K}_{s}^{(\ell)}+\sum_{k}\left\|\breve{\boldsymbol{q}}^{(k)}\right\|_{4}^{4} \mathcal{K}_{s}^{(k)} \\
& =\frac{1}{4} \mathcal{K}_{s}^{(0)}+\left(\frac{1}{2}-\|\breve{\boldsymbol{q}}\|_{2}^{2}\right)^{2} \mathcal{K}_{s}^{(\ell)}+\sum_{k}\left\|\breve{\boldsymbol{q}}^{(k)}\right\|_{4}^{4} \mathcal{K}_{s}^{(k)} . \tag{11}
\end{align*}
$$

We now evaluate the gradient and Hessian of $\mathcal{K}_{y}(\breve{\boldsymbol{q}})$. From (11), the \mathcal{K}_{y} gradient component in the direction of $q_{b}^{(a)}$ equals

$$
\begin{equation*}
\left[\nabla_{\breve{\boldsymbol{q}}} \mathcal{K}_{y}\right]_{b}^{(a)}=4\left(\left(\|\breve{\boldsymbol{q}}\|_{2}^{2}-\frac{1}{2}\right) \mathcal{K}_{s}^{(\ell)}+\left(q_{b}^{(a)}\right)^{2} \mathcal{K}_{s}^{(a)}\right) q_{b}^{(a)} \tag{12}
\end{equation*}
$$

and Hessian component in the directions $q_{b}^{(a)}$ and $q_{d}^{(c)}$ equals

$$
\frac{1}{4}\left[\mathcal{H}_{\breve{\boldsymbol{q}}} \mathcal{K}_{y}\right]_{b, d}^{(a, c)}= \begin{cases}\left(2\left(q_{b}^{(a)}\right)^{2}+\|\breve{\boldsymbol{q}}\|_{2}^{2}-\frac{1}{2}\right) \mathcal{K}_{s}^{(\ell)}+3\left(q_{b}^{(a)}\right)^{2} \mathcal{K}_{s}^{(a)}, & (a, b)=(c, d) \tag{13}\\ 2 q_{b}^{(a)} q_{d}^{(c)} \mathcal{K}_{s}^{(\ell)}, & (a, b) \neq(c, d)\end{cases}
$$

A stationary point occurs when the gradient components obey $\left[\nabla_{\breve{q}} \mathcal{K}_{y}\right]_{b}^{(a)}=0 \quad \forall(a, b) \notin\{(0, \nu),(\ell, \delta)\}$. Hence, from (2),

$$
\begin{equation*}
\left.q_{b}^{(a)}\right|_{\text {stationary }}=\alpha_{b}^{(a)} \sqrt{\left(\frac{1}{2}-\|\breve{\boldsymbol{q}}\|_{2}^{2}\right) \frac{\mathcal{K}_{s}^{(\ell)}}{\mathcal{K}_{s}^{(a)}}}, \quad \text { for } \quad \alpha_{b}^{(a)} \in\{-1,0,1\} \tag{14}
\end{equation*}
$$

Note that for stationary point coefficients $q_{b}^{(a)} \neq 0$, we require that $0<\frac{\mathcal{K}_{s}^{(\ell)}}{\mathcal{K}_{s}^{(a)}}<\infty$. (Recall $\|\breve{\boldsymbol{q}}\|_{2}^{2} \leq \frac{1}{2}$.) Evaluating the Hessian at the stationary points, we find from (14) and (13) that

$$
\left.\frac{1}{4}\left[\mathcal{H}_{\breve{\boldsymbol{q}}} \mathcal{K}_{y}\right]_{b, d}^{(a, c)}\right|_{\text {stationary }}= \begin{cases}\left(\frac{1}{2}-\|\breve{\boldsymbol{q}}\|_{2}^{2}\right) \mathcal{K}_{s}^{(\ell)}\left(\left(\alpha_{b}^{(a)}\right)^{2}\left(2 \frac{\mathcal{K}_{s}^{(\ell)}}{\mathcal{K}_{s}^{(a)}}+3\right)-1\right) & (a, b)=(c, d) \tag{15}\\ \left(\frac{1}{2}-\|\breve{\boldsymbol{q}}\|_{2}^{2}\right) \mathcal{K}_{s}^{(\ell)}\left(2 \alpha_{b}^{(a)} \alpha_{d}^{(c)} \frac{\mathcal{K}_{s}^{())}}{\sqrt{\mathcal{K}_{s}^{(a)} \mathcal{K}_{s}^{(c)}}}\right) & (a, b) \neq(c, d)\end{cases}
$$

Note that $\sqrt{\mathcal{K}_{s}^{(a)} \mathcal{K}_{s}^{(c)}}$ is positive when $\alpha_{b}^{(a)}$ and $\alpha_{d}^{(c)}$ are both nonzero: since $\frac{\mathcal{K}_{s}^{(\ell)}}{\mathcal{K}_{s}^{(a)}}>0$ and $\frac{\mathcal{K}_{\mathcal{(})}^{(\ell)}}{\mathcal{K}_{s}^{(c)}}>0$, then $\mathcal{K}_{s}^{(a)}$ and $\mathcal{K}_{s}^{(c)}$ must be nonzero with the same sign. As before, we examine the 2×2 principle minors:

1. $q_{b}^{(a)}=q_{d}^{(c)}=0$: Using $\left\{\alpha_{b}^{(a)}, \alpha_{d}^{(c)}\right\}=\{0,0\}$, the matrix takes the form

$$
4\left(\frac{1}{2}-\|\breve{\boldsymbol{q}}\|_{2}^{2}\right) \mathcal{K}_{s}^{(\ell)}\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]
$$

which is ND when $\mathcal{K}_{s}^{(\ell)}>0$ and PD when $\mathcal{K}_{s}^{(\ell)}<0$.
2. $\underline{q}_{b}^{(a)} \neq 0, q_{d}^{(c)}=0$: Using $\left\{\alpha_{b}^{(a)}, \alpha_{d}^{(c)}\right\}=\{ \pm 1,0\}$, the matrix takes the form

$$
8\left(\frac{1}{2}-\|\breve{\boldsymbol{q}}\|_{2}^{2}\right) \mathcal{K}_{s}^{(\ell)}\left[\begin{array}{cc}
\frac{\mathcal{K}_{s}^{(\ell)}}{\mathcal{K}_{s}^{(l)}}+1 & 0 \\
0 & -1
\end{array}\right],
$$

which is indefinite (assuming $\mathcal{K}_{s}^{(\ell)} \neq 0$).
3. $\underline{q_{b}^{(a)} \neq 0, q_{d}^{(c)} \neq 0}$: Using $\left\{\alpha_{b}^{(a)}, \alpha_{d}^{(c)}\right\}=\{ \pm 1,1\}$, the determinant equals

$$
16\left(\frac{1}{2}-\|\breve{\boldsymbol{q}}\|_{2}^{2}\right)^{2}\left(\mathcal{K}_{s}^{(\ell)}\right)^{2}\left(1+\frac{\mathcal{K}_{s}^{(\ell)}}{\mathcal{K}_{s}^{(a)}}+\frac{\mathcal{K}_{s}^{(\ell)}}{\mathcal{K}_{s}^{(c)}}\right),
$$

which is positive (assuming $\mathcal{K}_{s}^{(\ell)} \neq 0$), hence the matrix is either ND or PD. Noting from (15) that the elements on the diagonal will be positive when $\mathcal{K}_{s}^{(\ell)}>0$ and negative when $\mathcal{K}_{s}^{(\ell)}<0$, we see that the minor will be PD when $\mathcal{K}_{s}^{(\ell)}>0$ and ND when $\mathcal{K}_{s}^{(\ell)}<0$.

Since $\mathcal{K}_{s}^{(\ell)}=0$ implies $\breve{\boldsymbol{q}}=0$, the assumption that $\mathcal{K}_{s}^{(\ell)} \neq 0$ in cases 2 and 3 above is justified. From the three cases above, we see that the only $\breve{\boldsymbol{q}}$ locally maximizing/minimizing \mathcal{K}_{y} are $\breve{\boldsymbol{q}}=0$ and $\breve{\boldsymbol{q}}$ with strictly nonzero elements. Taking the case $\mathcal{K}_{s}^{(\ell)}>0$, the point $\breve{\boldsymbol{q}}=0$ yields a local \mathcal{K}_{y}
maximum of $\left(\mathcal{K}_{s}^{(0)}+\mathcal{K}_{s}^{(\ell)}\right) / 4$ according to (11). When $\mathcal{K}_{s}^{(\ell)}<0$, the point $\breve{\boldsymbol{q}}=0$ yields a local \mathcal{K}_{y} minimum of $\left(\mathcal{K}_{s}^{(0)}+\mathcal{K}_{s}^{(\ell)}\right) / 4$. In either case, $\left|\mathcal{K}_{y}\right|$ attains a local maximum of $\left|\mathcal{K}_{s}^{(0)}+\mathcal{K}_{s}^{(\ell)}\right| / 4$ at $\breve{\boldsymbol{q}}=0$. (Using similar arguments, it can be shown that $\breve{\boldsymbol{q}}$ with strictly nonzero elements yields a $\left|\mathcal{K}_{y}\right|$ local minimum.) If we compare these maxima over all choices (ℓ, δ), we find that $\left|\mathcal{K}_{y}\right|$ is upper bounded by $\left|\mathcal{K}_{s}^{(0)}\right| / 4+\max _{k}\left|\mathcal{K}_{s}^{(k)}\right| / 4$.

To conclude, the supremum of $\left|\mathcal{K}_{y}\right|$ over $\overline{\mathcal{Q}}_{\mathcal{C} \cap \mathcal{S},>0.5}$ occurs on the boundary of $\overline{\mathcal{Q}}_{\mathcal{C} \cap \mathcal{S},>0.5}$ and attains a value of at most $\left|\mathcal{K}_{s}^{(0)}\right| / 4+\max _{k}\left|\mathcal{K}_{s}^{(k)}\right| / 4$. Note that, since $\overline{\mathcal{Q}}_{\mathcal{C} \cap \mathcal{S},>0.5}$ is open, the supremum exists outside the set.

[^0]: \dagger Submitted for publication in IEEE Transactions on Signal Processing.
 P. Schniter is with Department of Electrical Engineering at The Ohio State University, Columbus OH 43210.

 Direct all correspondence to: Phil Schniter, OSU Dept. of Electrical Engineering, 2015 Neil Ave, Columbus, OH, 43210 USA. (614) 247-6488, (614) 292-7596 FAX, schniter@ee.eng.ohio-state.edu.

