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Existence and Performance of Shalvi–Weinstein
Estimators

Philip Schniter, Member, IEEE,and Lang Tong, Member, IEEE

Abstract—The Shalvi–Weinstein (SW) criterion has become
popular in the design of blind linear estimators of i.i.d. processes
transmitted through unknown linear channels in the presence of
unknown additive interference. Here, we analyze SW estimators
in a general multiple-input multiple-output (MIMO) setting that
allows near-arbitrary source/interference distributions and noisy
noninvertible channels. The main contributions of this paper are
i) simple tests for the existence of SW estimators for the desired
source and ii) bounding expressions for the MSE of SW estimators
that are a function of the minimum attainable MSE and the
kurtoses of the source and interferers.

Index Terms—Blind beamforming, blind deconvolution, blind
equalization, blind source separation, Shalvi–Weinstein algorithm.

I. INTRODUCTION

CONSIDER the linear estimation problem of Fig. 1, where
a desired source sequence combines linearly with

sources of interference through vector channels

. Our goal is to estimate the desired
source using the (vector) linear estimator . The linear
estimates that minimize the mean-squared error (MSE)

(1)

are generated by the minimum MSE (MMSE) estimator, or
Wiener estimator . Specification of , however,
requires knowledge of the joint statistics of the observed
sequence and the desired source sequence , which
are typically unavailable when the channel is unknown.

When only the statistics of the observed sequence are

known, it may still be possible to estimate up to un-

known magnitude and delay, i.e.,
for some , some , and all . The literature refers to
this problem asblind estimation (or blind deconvolution).

In [1], Shalvi and Weinstein showed that for i.i.d. sources,
noiseless invertible channels, and adequately parameterized es-
timators, perfect blind estimation is possible with knowledge
of only the second- and fourth-order moments of the estimates
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Fig. 1. Linear system model withK sources of interference.

. Based on this observation, they proposed a blind estima-
tion scheme that manipulates to maximize the absolute kur-
tosis of the estimates subject to a fixed variance, i.e.,

s.t. (2)

where, for zero-mean , we have and kur-
tosis

(3)

Although, in name, Shalvi and Weinstein have received credit
for the criterion of (2), it has a history that long predates their
publication [1]. In fact, the use of kurtosis as a blind estimation
criterion can be traced back to the early 1950s [2]. During the
late 1970s, Wiggins [3] successfully applied the kurtosis crite-
rion to problems in geophysical exploration, the results of which
prompted a more detailed analysis by Donoho in 1981 [4].

As proven independently in [1] and [4], unconstrained linear
estimators locally maximizing the SW criterion yield perfect
blind estimates of a single non-Gaussian i.i.d. source transmitted
through a noiseless invertible linear channel. In practical situa-
tions, however, we expect inadequately parameterized estima-
tors, noninvertible channels, as well as noise and/or interfer-
ence of a potentially non-Gaussian nature. Are Shalvi–Wein-
stein (SW) estimators useful in these cases? How do SW esti-
mates compare with optimal (linear) estimators, say, in a mean-
squared sense?

For a finite impulse response (FIR) estimator and noiseless
causal bounded-input bounded-output (BIBO) stable chan-
nels, Regalia and Mboup studied various properties of SW
minimizers [5]. Although they provided evidence that the SW
and MMSE estimators are closely related in many cases, their
approach did not lead to upper bounds on the performance of
the SW estimator.

Recently, Feng and Chi studied the properties of uncon-
strained infinite-dimensional SW estimators of a non-Gaussian
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source in the presence of Gaussian noise [6], [7]. Using a fre-
quency-domain approach, they observed relationships between
the Weiner and SW estimators that bear similarity1 to the
time–domain relationships derived previously by Regalia and
Mboup. The complexity of the analytical relationships derived
by Feng and Chi prevents their translation into meaningful
statements about the MSE performance of SW estimators,
however.

In this paper, we study the performance of constrained
FIR SW estimators under the assumptions of the model in
Section II-A: desired source with arbitrary non-Gaussian
distribution, noise and interference with arbitrary distribution,
and causal BIBO stable channels. The main contributions of
this paper are i) simple tests for the existence of SW estimators
for the desired source and ii) bounding expressions for the MSE
of SW estimators that are a function of the minimum MSE
attainable under the same conditions. These bounds, which are
derived under the multisource linear model of Fig. 1, provide a
formal link between the SW and Wiener estimators in a very
general context.

The organization of the paper is as follows. Section II dis-
cusses the properties of the system model and MSE estimation
criteria in detail, Section III derives the bound for the MSE per-
formance of the SW criterion, and Section IV presents the re-
sults of numerical simulations demonstrating the efficacy of our
bounding technique. Section V concludes the paper.

II. BACKGROUND

In this section, we give more detailed information on the
linear system model and the MSE, unbiased MSE, and SW cri-
teria. The following notation is used throughout.

transpose;
conjugate;
Hermitian;
Moore-Penrose pseudo-inverse.

Likewise, denotes expectation, the -norm defined
by , and the field of nonnegative real numbers. In
general, we use boldface lowercase type to denote vector quan-
tities and boldface uppercase type to denote matrix quantities.

A. Linear System Model

First, we formalize the linear time-invariant multichannel
model illustrated in Fig. 1. Say that the desired symbol sequence

and sources of interference
each pass through separate linear “channels” before being
observed at the receiver. The interference processes may
correspond, e.g., to interference signals or additive noise
processes.2 In addition, say that the receiver uses a sequence of

-dimensional vector observations to estimate (a possibly
delayed version of) the desired source sequence, where the case

corresponds to a receiver that employs multiple sensors

1Keep in mind that Regalia and Mboup studied constrained estimators in
noiseless settings, whereas Feng and Chi studied unconstrained estimators in
noisy settings.

2To model AWGN of variance� at P sensors, dedicateP Gaussian
sources s with corresponding channels of the formh (z) =
(0; . . . ; 0; � =� ; 0; . . . ; 0) .

and/or samples at an integer multiple of the symbol rate. The
observations can be written ,

where denote the impulse response coefficients of the

linear time-invariant (LTI) channel , which is assumed
to be causal BIBO stable. Note that such admit infinite
impulse response (IIR) channel models.

From the vector-valued observation sequence , the re-

ceiver generates a sequence of linear estimatesof ,

where is a fixed integer. Using to denote the impulse re-
sponse of the linear estimator , the estimates are formed as

We will assume that the linear system
is constrained FIR, i.e., certain coefficients of may be

held at zero.
In the sequel, we will focus almost exclusively on the global

channel-plus-estimator response . The
impulse response coefficients of can be written

(4)

allowing the estimates to be written as
Adopting the following vector notation helps to stream-

line the remainder of the paper.

For instance, the estimates can be rewritten concisely as

(5)

The source-specific unit vector will also prove convenient.
is a column vector with a single nonzero element of value

1 located such that
We now point out a few important properties of. First, it is

important to recognize that a particular channel and set of es-
timator constraints will restrict the set ofattainableglobal re-
sponses, which we denote by . For example, when the esti-
mator is unconstrained FIR, (4) implies that row ,
where

...
...

...
...

...
...

(6)
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Restricting the estimator to be sparse would generate different
attainable sets . Next, BIBO stable and imply
BIBO stable so that exists for all , and
thus, does as well. Finally, the fact thatis generated from
finite linear combinations of the rows of implies that lies in
a finite-dimensional subspace of.

Throughout the paper, we make the following assumptions on
the source processes.

S1) For all , is zero-mean i.i.d.
S2) are jointly statistically indepen-

dent.
S3) For all , .

S4) .
S5) If, for any , or is not real-valued, then

for all .

B. Mean-Squared Error Criterion

The well-known mean-squared error (MSE) criterion was de-
fined in (1) in terms of the estimate and the estimand .
Using S1)–S3), we may rewrite (1) in terms of the global re-
sponse :

(7)

Denoting MMSE quantities by the subscript “m,” it is well
known that, for FIR channels, S1)–S3) imply an MMSE
channel-plus-estimator of the form .
A similar expression can be derived for the IIR case. (For
derivations, see [8].)

C. Unbiased Mean-Squared Error

Since both symbol power and channel gain are unknown in
the “blind” scenario, blind estimators suffer from a gain am-
biguity. To ensure that our estimator performance evaluation is
meaningful in the face of such ambiguity, we base our evaluation
on normalized versions of the blind estimators and normalize by
the receiver gain . Given that the estimate can be decom-
posed into signal and interference terms as

(8)

where denotes with the term removed and de-

notes with the term removed, the normalized es-
timate can be referred to as “conditionally unbiased”

since .
The (conditionally) unbiased MSE (UMSE) associated with
, which is an estimate of , is then defined

(9)

Substituting (8) into (9), we find that

(10)

where the second equality invokes assumptions S1)–S3).

The UMSE criterion is similar to the popular “intersymbol
interference measure” that appears in, e.g., [1]. Note, however,
that the UMSE criterion measures the effects of additive noise
in addition to co-channel interference and ISI.

III. SW PERFORMANCEUNDER GENERAL ADDITIVE

INTERFERENCE

In this section, we derive tight bounds for the UMSE of SW
symbol estimators that

i) have a closed-form expression;
ii) support arbitrary additive noise and interference;
iii) support complex-valued channels and estimators;
iv) support IIR (as well as FIR) channels.

Sections III-A and B outline our approach, Section III-C
presents the main results, and Section III-D comments on these
results. Proof details appear in the Appendix.

A. Bounding Strategy

Since for , source assumptions S1)–S5)
imply that [9]

(11)

(12)

This allows us to rewrite the SW criterion (2) as

where denotes the unit sphere s.t. .
Although the SW criterion admits multiple solutions, we are

only interested in those that correspond to the estimation of the
zeroth user’s symbols at delay. Thus, the set of SW global
responses associated with the pair is defined by the local
maxima

where specifies the “dominant cone” associated with the
user/delay pair :

s.t.

It is not possible to write general closed-form expressions for
, making it difficult to characterize SW performance. In

fact, may be empty, although for now, we assume that
this is not the case.

It is, however, possible to say something about the location
of . Specifically, we know that within , there exist
neighborhoods of generating strictly lower than that
characterizing the local -maximizer . One such neigh-
borhood can be constructed as follows. Given a reference re-
sponse generating estimates with reference
kurtosis , a neighborhood containing is formed by

s.t.

(13)
as long as the boundary (hence, closure) of lies en-

tirely within . This claim is supported by the Weierstrass
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Fig. 2. Thick arcs demarcate the boundary of�Q on the horizontal plane
and thin arcs the boundary ofC \ S on the sphere forqqq 2 .

theorem [10, p. 40], which says that a continuous cost functional
must have a local maximum on a compact set if there exist points
in the interior that give cost strictly higher than anywhere on the
boundary. Note that the boundary of is essentially a

“level set” of cost functional within .
When , we have the SW-UMSE upper

bound

(14)

The choice of reference is important since it affects the tight-
ness (and existence) of bound (14). We will eventually choose
the scaled MMSE reference (when )
since it is an established benchmark with a closed-form expres-
sion, and we will derive conditions that ensure thatcan be
used to specify a valid local neighborhood of .

B. Bound Evaluation in Interference Space

Equation (14) requires maximization over a region of the unit
sphere in -space that would be cumbersome if attempted di-
rectly. It will be more convenient to reparameterize our quan-
tities in the interference space, as explained below. Since
both the SW and UMSE criteria are invariant to phase rota-
tion of (i.e., scalar multiplication of by for ), we
can, w.l.o.g., restrict the our attention to the set of “de-rotated”
global responses s.t. . For derotated responses

, we know , which implies that
such are completely described by their interference response

(which were defined in Section II-C). Moreover, these inter-
ference responses lie within the bounded region

s.t.

Essentially, is a projection of onto the interfer-
ence space, as illustrated in Fig. 2. Expressed in terms of the
interference response, (10) and (11) become

(15)

where is used to denote the components ofcorresponding
to user .

In terms of the interference response, (14) becomes

(16)

where is a translation of into the inter-
ference space [implied by (13) and (15)]

s.t.

(17)

Finally, since is strictly increasing in

(for ), (16) can be written as

where (18)

and thus, computation of the SW-UMSE bound reduces to com-
putation of the quantity .

Fig. 3(a) presents a summary of the bounding procedure in
the interference response space. The set of attainable inter-
ference responses is denoted by, which can be interpreted
as a projection of onto the interference space.
Notice that the reference responseand the SW response
both lie in the attainable set . Although the exact location of
the kurtosis local maximum is unknown, we know that it
lies within , as shown in Fig. 3(a) by the interior of
the shaded region. Thus, an upper bound on the UMSE of the
SW estimator can be calculated using, which is the supremal
value of over .

Fig. 3(b) depicts the situation that may occur when the
boundary of is not contained in . Essentially,
there exists noattainable local maximum inside
(i.e., for the desired user at delay); monotonically in-
creases as we move northeast alongtoward the boundary of
the open set . Our existence conditions will be sufficient
to avoid these cases.

C. Statement of Bounds

In this section, we present SW existence statements
and SW-UMSE bounds deduced via the method described
in Sections III-A and B. Proof details appear in the Ap-
pendix. We will use to denote the kurtosis ofnor-
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Fig. 3. Illustration of (a) SW-UMSE bounding technique in the�qqq-space. (b) Case where no attainable localjK j maximum exists for the desired user/delay pair.
Shaded regions denote�Q .

malized Wiener estimates, i.e., estimates associated with
response , so that . In addition,

, , and

.
Theorem 1: When the Wiener response lies in the dominant

cone associated with the desired user at delay(i.e., )
and

(19)

an SW estimator associated with the same user/delay exists, and
its UMSE can be upper bounded by

(20)

As shown in the Appendix, the kurtosis requirement (19) re-
quires sufficiently good Weiner performance.

While Theorem 1 presents a closed-form SW-UMSE
bounding expression in terms of the kurtosis of MMSE es-
timates, it is also possible to derive lower and upper bounds
in terms of the UMSE of the MMSE estimator. To do this,
we rewrite (19) and (20) using a slightly weaker existence
condition and looser bound. (See the Appendix for details of
this procedure.)

Theorem 2: If , where

(21)
then an SW estimator associated with the desired user at delay

exists, and its UMSE can be bounded as

where we have (22), shown at the bottom of the page.
Equation (22) leads to an elegant approximation of theextra

UMSE of SW estimators

Theorem 3: If , then the extra UMSE

of SW estimators can be bounded as ,
where

.

(23)

.

(22)
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Fig. 4. Upper bound on (a) SW-UMSE and (b) extra SW-UMSE versus
J (qqq ) (when� = 1) from (22) with second-order approximation from (23).
From left to right,f� ; � g = f�2; 2g, f0; 2g, andf0;1g.

Equation (23) implies that the extra UMSE of SW estima-
tors is upper bounded by approximately thesquareof the min-
imum UMSE. Fig. 4 plots the upper bound on SW-UMSE and
extra SW-UMSE from (22) as a function of for var-
ious values of and . The second-order approximation
based on (23) appears very good for all but the largest values of
UMSE.

D. Comments on the SW-UMSE Bounds

1) Implicit Incorporation of : First, recall that the
SW-UMSE bounding procedure incorporated, which is the
set of attainable global responses,only through the requirement
that . Thus, Theorems 1–3, which were written
under the reference choice , implicitly
incorporate the channel and/or estimator constraints that define

. For example, if is the MMSE response constrained to
the set of length-two FIR estimators, then SW-UMSE bounds
based on this will implicitly incorporate the length-two
FIR constraint. The implicit incorporation of the attainable set

makes these bounding theorems quite general and easy to
apply.

2) Effect of and : When and ,
the expressions in Theorems 1–3 simplify to

for

for

Note that the expressions above are independent of the specific
distributions of the desired and interfering sources. The case

occurs when either no sources are super-Gaussian or
no sources are sub-Gaussian, whereas occurs when
there is no source with absolute kurtosis greater than that of the
desired source.

In data communication models, it is typical that
and . This corresponds, e.g., to the following common
assumptions:

a) sub-Gaussian desired source in the presence of Gaussian
noise;

b) constant-modulus desired source in the presence of non-
super-Gaussian interference.

The case might arise from a nonconstant-modulus
desired source in the presence of constant modulus interference.
Note that condition (19) is not able to guarantee the existence
of a SW estimator for the desired user/delay when .

3) Generalization of Perfect SW-Estimation Prop-
erty: Finally, we note that the -based SW-UMSE
bound in Theorem 2 implies that the perfect SW-estimation
property, proven under more restrictive conditions in [1]
extends to the general multisource linear model of Fig. 1.

Corollary 1: SW estimators are perfect (up to a scaling)
when Wiener estimators are perfect.

Proof: From Theorem 2, .

IV. NUMERICAL EXAMPLES

Here, we present the results of experiments that compare the
UMSE bounds of Theorems 1 and 2 with the UMSE character-
izing SW estimators found by gradient descent3 under various
source/interference environments. In all experiments, ten non-
Gaussian sources are linearly mixed using random (zero-mean
Gaussian) mixture coefficients. The estimator observes the mix-
ture at eight sensors in the presence of AWGN and generates
linear estimates of a particular source using eight adjustable pa-
rameters. The AWGN is modeled using eight Gaussian sources
(i.e., one per sensor) with channel gains chosen to yield a par-
ticular SNR. We define SNR as the ratio of total power received
from the desired source to the AWGN power at each sensor.
Note that with eight sensors and 18 sources,is not full column
rank, and perfect estimation is not possible.

Figs. 5(a)–8(a) plot the UMSE upper bounds

and for comparison with . As a
means of “zooming in” on the small differences in UMSE,
Figs. 5(b)–8(b) plot the extra-UMSE upper bounds

and . In all plots, the -based bounds are
denoted by solid lines, the -based bounds are denoted by,
and the gradient-descent values are denoted by.

In Fig. 5, ten BPSK sources (i.e., ) mix with
Gaussian noise, corresponding to and .
Note, from Fig. 5(a), the tightness of the bounds for all but the
largest values of . Fig. 6 considers ten super-Gaussian

sources, with , in the presence of Gaussian noise.
From (22), we do not expect SW performance to differ from
the previous experiment since and stay the same.
This notion is confirmed by comparison of Figs. 5 and 6.

3Gradient descent results were obtained by the MATLAB routine “fmincon,”
which was initialized randomly in a small ball around the MMSE estimator.
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Fig. 5. Bounds on SW-UMSE for eight sensors, ten randomly mixed BPSK
sources, and AWGN at�20 dB.

Fig. 6. Bounds on SW-UMSE for eight sensors, ten randomly mixed sources
with K = 2, and AWGN at�20 dB.

Fig. 7 examines the estimation of a near-Gaussian signal
in the presence of BPSK and AWGN inter-

ference, corresponding to and .
Comparing this experiment with the previous two, notice that

here, is appreciably tighter than for
larger values of . Finally, Fig. 8 examines the perfor-

mance of a super-Gaussian signal in the presence

of impulsive-type noise . When , (19)
and (21) imply that we can only guarantee the existence of SW
estimators in situations where MMSE estimators are relatively
good. As the interference environment in this experiment
corresponds to , UMSE bounds exist only when

is less than about dB.

Fig. 7. Bounds on SW-UMSE for eight sensors, five randomly mixed BPSK
sources, and five randomly mixed sources withK = 0:8 (one of which is
desired), and AWGN at�20 dB.

Fig. 8. Bounds on SW-UMSE for eight sensors, five randomly mixed sources
with K = 8, five randomly mixed sources withK = 3 (one of which is
desired), and AWGN at�30 dB.

V. CONCLUSION

In this paper, we have derived sufficient conditions under
which SW estimators exist and derived upper bounds for the
UMSE of SW estimators. The existence conditions are simple
tests that guarantee an SW estimator for the desired user at a
particular delay. All results have been proven for vector-valued
IIR channels and constrained vector-valued FIR estimators. The
first existence/bound pair is a function of the kurtosis of the
MMSE estimates, whereas the second existence/bound pair is
a function of the minimum (i.e., Wiener) UMSE. Analysis of
the second bound shows that the extra UMSE of SW estimators
is upper bounded by approximately the square of the minimum
UMSE. Thus, SW estimators are very close (in a MSE sense)
to optimum linear estimators when the minimum MSE is small.
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Numerical simulations suggest that the bounds are reasonably
tight.

APPENDIX

DERIVATION DETAILS FOR SW-UMSE BOUNDS

A. Proof of Theorem 1

To establish the existence of , which is an attainable local
maximum within , we appeal to the Weierstrass the-

orem [10, p. 40], which states that a continuous cost functional
must have a local maximum on a compact set if there exist points
in the interior that give cost strictly higher than anywhere on the
boundary. If we can show that the “interior” set
exists and that its closure forms a compact set within , then
the continuous cost functional and the boundary cost

suffice to prove the existence of , which is an attainable
local maximum of within . Our existence proof will
consist of three steps: deriving conditions under which

i) closure ;
ii) closure is compact;
iii) is nonempty.

Step i) Since closure closure
, condition i) is implied by the following

equivalent statements. [Regarding the equivalence, recall
(17) and the fact that is open].

closure

closure

bndr
(24)

We focus now on (24). By definition, points on
the boundary of correspond to such that

and . By evalu-
ating gradient and Hessian, it can be shown4 that

bndr

Thus, we can guarantee closure
when

(25)

Step ii) closure is compact under (25)
since it is contained in the bounded set and since lies
in a finite dimensional subspace of.
Step iii) We now show that the presence of an attainable
reference in the desired cone and on the sphere (i.e.,

) coupled with the condition

(26)

is sufficient to guarantee that either is
nonempty or that . When the right inequality in

4Contact the corresponding author for details of all gradient/Hessian analyzes
mentioned in this appendix.

(26) is satisfied, gradient and Hessian arguments can be
used to show that is the unique global maximizer of

over , yielding a maximum value of . Thus,
when the left inequality in (26) is satisfied, there exists a
set of for which , implying [via
definition (17)] that is nonempty. If we can now
show that intersects the interior of (open) ,
then will be nonempty. Assume for now
that , i.e., is not a local maximum over

. (We will treat the other case momentarily.) Then,
there must exist a neighborhood of containing
over which . The previous expression implies
that is nonempty. Note that if the left
inequality in (26) was replaced by an equality (meaning that

provides perfect blind estimation), becomes
empty, and the previous arguments do not apply. However,
as this is the unique global maximizer over

, it is clear that , giving SW existence and
zero SW-UMSE [consistent with bound (20) for ].
To conclude, (26) and the condition suffice for our

three-step approach to the application of the Weierstrass the-
orem, implying the existence of . If, on the
other hand, , then the requirement that
implies the existence of directly.

The SW-UMSE upper bound in Theorem 1 follows from
upper bounding the maximum interference radiusdefined in
(18). For , (17) and the property
guarantee

(27)

(28)

where we arrive at (28) by dividing the previous inequality
by and substituting and

. Since the roots of
are given by

the satisfying (28) lie outside the closed interval .

Thus, is contained by

.

We will now show that there is no component of

that intersects , implying that an upper

bound for , which is the largest in , is given by
. First, it is straightforward to verify that the existence condi-

tion (26) guarantees and . Analyzing
gradient and Hessian, it can be shown that the supremum of

over the (open) set attains the



SCHNITER AND TONG: EXISTENCE AND PERFORMANCE OF SHALVI–WEINSTEIN ESTIMATORS 2039

value . Then, from existence condi-

tion (26) and the definition (17), we know that will

not intersect .
The fact that is upper bounded by the smaller root im-

plies the following bound:

(29)

Choosing the normalized Weiner reference

in (29) leads to Theorem 1. Note that this choice
requires that the Weiner response lies in the dominant cone of
the desired user/delay.

B. Proof of Theorem 2

From the Appendix, we know that the expressions in The-
orem 1 hold for any estimates generated by a reference response

generating kurtosis . For such , the
kurtosis-based UMSE upper bound appears in (29) and the ex-
istence condition in (26). [The Appendix separately established
SW existence and perfect blind estimation when ,
corresponding to the case . For the re-

mainder of this proof, however, we focus on the case

as represented by (26).] Noting that is a strictly
decreasing function of (over its valid range), an upper bound
for follows from a lower bound of . From (15)

Using , , and

from (26), we have the equation at the bottom of
the page.

When , we see that

which implies the bound

(30)

The existence condition (26) can also be rewritten using MMSE-
based quantities. We first rewrite (26) in terms ofand .

(31)

Having just shown that when
, a sufficient condition for the right inequality of (31)

is , which can be restated
as

(32)

For the left inequality in (31), we divide (27) by to see
that

Thus, is suf-
ficient for the left side of (31), which can be restated simply
as . However, using the fact
that , it can be shown that

. Thus, and (32) are sufficient for the
two inequalities in (31).

For the case when and ,
we know that

,
and .
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which implies the bound in (33), shown at the bottom of the
page. When , sufficient conditions for

are

It can be shown that the quadratic inequality above is satisfied
by

and since is strictly increasing

in , the following must also be sufficient:

(34)
Note that , and thus, (34) ensures the
right half of the existence condition (31). For the left half of
(31), we have the same sufficient condition as when .
Thus, and (34) are sufficient for the two inequalities
in (31).

These results are summarized in Theorem 2 under the choice
. Note that the UMSE conditions above guar-

antee that , so we need not state it explicitly.

C. Proof of Theorem 3

Here, we reformulate the upper bound (22). To sim-
plify the presentation of the proof, the shorthand notation

will be used.
Starting with the case , (22) says

from which routine manipulations yield

For such that , the binomial series [11] may be
used to claim

Applying the previous expression with
, we find that

Finally, subtraction of gives the first case in (23).
For the case , (22) says

from which routine manipulations yield the equation
at the bottom of the page. As before, we use the bi-
nomial series expansion for but now with

(33)
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.
After some algebra, we find

Finally, we apply the series approximation
with

for . Straightforward algebra yields

Taking the limit , it is evident that no problems arise
at the point . Subtraction of from the last statement
gives the second case in (23).
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