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Abstract—The constant modulus (CM) criterion has become
popular in the design of blind linear estimators of sub-Gaussian
i.i.d. processes transmitted through unknown linear channels in the
presence of unknown additive interference. The existence of mul-
tiple CM minima, however, makes it difficult for CM-minimizing
schemes to generate estimates of the desired source (as opposed to
an interferer) in multiuser environments. In this paper, we present
three separate sufficient conditions under which gradient descent
(GD) minimization of CM cost will locally converge to an estimator
of the desired source at a particular delay. The sufficient condi-
tions are expressed in terms of statistical properties of the initial
estimates, specifically, CM cost, kurtosis, and signal-to-interfer-
ence-plus-noise ratio (SINR). Implications on CM-GD initializa-
tion methods are also discussed.

Index Terms—Blind beamforming, blind deconvolution, blind
equalization, blind multiuser detection, constant modulus algo-
rithm, Godard algorithm.

I. INTRODUCTION

CONSIDER the linear estimation problem of Fig. 1, where
a desired source sequence combines linearly with

interfering sources through vector channels
. Our goal is to estimate the desired source using the

(vector) linear estimator . The linear estimates that
minimize the mean-squared error (MSE)

(1)

are generated by the minimum MSE (MMSE) estimator, or
Wiener estimator . Specification of , however,
requires knowledge of the joint statistics of the observed
sequence and the desired source , which are
typically unavailable when the channel is unknown.

When only the statistics of the observed signal are
known, it may still be possible to estimate up to unknown
magnitude and delay, i.e., for
some , some , and all . The literature refers to this
problem asblind estimation (or blind deconvolution).

Minimization of the so-called constant modulus (CM) cri-
terion [1], [2] has become perhaps the most studied and im-
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Fig. 1. Linear system model withK sources of interference.

plemented means of blind equalization for data communication
over dispersive channels (see, e.g., [3] and the references within)
and has also been used successfully as a means of blind beam-
forming (see, e.g., [4]). The CM criterion is defined below in
terms of the estimates and a design parameter.

(2)

The popularity of the CM criterion is usually attributed to 1)
the existence of a simple adaptive algorithm (known as the CM
algorithm or CMA [1], [2]) for estimation and tracking of the
CM-minimizing estimator and 2) the excellent MSE per-
formance of CM-minimizing estimators. The second of these
two points was first conjectured in the original works [1], [2]
and recently established by the authors for arbitrary linear chan-
nels and additive interference [5].

Perhaps the greatest challenge facing successful application
of the CM criterion in arbitrary interference environments
results from the difficulty in determining CM-minimizing
estimates of the desired source (as opposed to mistakenly esti-
mating an interferer). The potential for “interference capture”
is a direct consequence of the fact that the CM criterion exhibits
multiple local minima in the estimator parameter space, each
corresponding to a CM estimator of a particular source at a
particular delay. Such multimodality might be suspected from
(2); the CM criterion is based on a particular property of the
estimates , and one can imagine a case in which this
property is satisfied to a similar extent by, e.g.,
and when and have the same
statistics.

Various “multiuser” modifications of the CM criterion have
been proposed to jointly estimate all sub-Gaussian sources
present in a multisource environment. Some of these techniques
add a non-negative term to the CM criterion, which penalizes
correlation between any pair of parallel estimator outputs,
forcing the estimators to generate estimates ofdistinct
sources [6]–[8]. Other techniques use the CM criterion in a suc-
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cessive interference cancellation scheme, whereby estimates of
the strongest sub-Gaussian sources are used to remove their
respective contributions to the received signal before estimation
of the th source [9]. Both of these approaches, however,
require knowledge of the number of (non-Gaussian) sources,
result in significant increase in computational complexity
when the number of sources is large, and generate estimators
with questionable MSE performance. Instead, we focus on
the well-known standard CM (or “Godard” [1]) criterion and
consider desired-source convergence as an outcome of proper
initialization.

Closed-form expressions for CM estimators do not gener-
ally exist, and thus, gradient descent (GD) methods provide the
typical means of solving for these estimators. Because exact
gradient descent requires statistical knowledge of the received
process that is not usually available in practical situations,sto-
chasticGD algorithms such as CMA are used to estimate and
track the (possibly time-varying) CM estimator. It is widely ac-
cepted, however, that small step-size stochastic GD algorithms
exhibit mean transient and steady-state behaviors very close to
those of exact GD under typical operating conditions [10], [11].
Hence, we circumvent the details of stochastic adaptation by
restricting our attention to (exact) GD minimization of the CM
cost. An important property of GD minimization is that the lo-
cation of algorithm initialization completely determines the sta-
tionary point to which the GD trajectory will eventually con-
verge. The description of the CM-GD regions-of-convergence
(ROC) in terms of estimator parameters appears to be a very
difficult problem, however, and attempts at finding closed-form
expressions for the ROC boundaries have thus far been unsuc-
cessful [12], [13].

In this paper, we derive three sufficient conditions under
which CM-GD minimization will generate an estimator for the
desired source. The conditions are expressed in terms of statis-
tical properties of the initial estimates, specifically, CM cost,
kurtosis, and signal to interference-plus-noise ratio (SINR).
Earlier attempts at describing the interference capture or “local
convergence” properties of CMA have been made by Treichler
and Larimore in [14] and Li and Ding in [15]. Treichler and
Larimore constructed a simplifying approximation to the mean
behavior of CMA for the case of a constant envelope signal
in tonal interference and inferred the roles of initial SINR and
initial estimator parameterization on desired convergence. Li
and Ding derived a sufficient kurtosis condition for the local
convergence of the Shalvi–Weinstein algorithm (SWA) [16]
and suggested that the condition applies to small-stepsize
CMA as well. Our analysis and simulations suggest that the
local convergence behavior of CMA differs from that of SWA,
contrasting certain claims of [15].

The organization of the paper is as follows. Section II dis-
cusses relevant properties of the system model and of the CM
criterion, Section III derives initialization conditions sufficient
for CM-GD convergence to desired source estimates, and Sec-
tion IV discusses the implications of these conditions on choice
of CM-GD initialization scheme. Section V presents numerical
simulations verifying our analyzes, and Section VI concludes
the paper.

II. BACKGROUND

In this section, we give more detailed information on the
linear system model and the CM criterion. The following no-
tation is used throughout:

transpose;
conjugation;
hermitian;
expectation.

In addition, denotes the identity matrix, the field of
non-negative real numbers, and the -norm defined by

. In general, we use boldface lowercase type to
denote vector quantities and boldface uppercase type to denote
matrix quantities.

A. Linear System Model

First, we formalize the linear time-invariant multichannel
model illustrated in Fig. 1. Say that the desired symbol sequence

and sources of interference each
pass through separate linear “channels” before being observed
at the receiver. The interference processes may correspond, e.g.,
to interference signals or additive noise processes. In addition,
say that the receiver uses a sequence of-dimensional vector
observations to estimate (a possibly delayed version of)
the desired source sequence, where the case corresponds
to a receiver that employs multiple sensors and/or samples at
an integer multiple of the symbol rate. The observations can
be written , where denote
the impulse response coefficients of the linear time-invariant
(LTI) channel . We assume that is causal and
bounded-input bounded-output (BIBO) stable. Note that such

admit infinite-duration impulse response (IIR) channel
models.

From the vector-valued observation sequence , the re-
ceiver generates a sequence of linear estimatesof ,
where is a fixed integer. Using to denote the impulse re-
sponse of the linear estimator , the estimates are formed as

. We will assume that the linear system
is BIBO stable withconstrainedARMA structure, i.e., the

th element of takes the form

where the “active” numerator coefficients and
the active denominator coefficients are constrained
to the polynomial indices and , respectively.

In the sequel, we will focus almost exclusively on the global
channel-plus-estimator . The impulse
response coefficients of can be written

(3)
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allowing the estimates to be written as

. Adopting the following vector notation helps to
streamline the remainder of the paper.

For instance, the estimates can be rewritten concisely as

(4)

We now point out two important properties of. First, it is
important to recognize that placing a particular structure on the
channel and/or estimator will restrict the set ofattainableglobal
responses, which we will denote by . For example, when the
estimator is FIR, (3) implies that row , where

...
...

...
...

...
...

(5)
Restricting the estimator to be spare or autoregressive, for
example, would generate a different attainable set. Next,
BIBO stable and imply BIBO stable so
that exists for all , and thus, does as well.

Throughout the paper, we make the following assumptions on
the source processes.

S1) For all , is zero-mean i.i.d.
S2) are jointly statistically indepen-

dent.
S3) For all , .
S4) , where denotes kurtosis:

(6)

S5) If, for any , or is not real-valued, then

for all .
Note that S4) assumes the desired source is “sub-Gaussian,”
whereas S5) assumes that all sources are “circularly-symmetric”
if any of the global responses or sources are complex valued.

B. Signal to Interference-Plus-Noise Ratio

Given global response, we can decompose the estimate into
signal and interference terms:

(7)

where denotes with the term removed, and denotes
with the term removed.

The SINR associated with , which is an estimate of ,
is then defined as

SINR (8)

where the equality invokes assumptions S1)–S3).

C. Constant Modulus Criterion

The constant modulus (CM) criterion, which was introduced
independently in [1] and [2], was defined in (2) in terms of the
estimates . In (2), is a positive parameter known as the
“dispersion constant.” Although is often chosen according to
the (marginal) statistics of the desired source process (when they
are known), we will see below that the choice ofdoes not affect
the SINR performance of the CM-minimizing estimator.

For general sources, channels, and estimators fitting the
framework of Fig. 1 and S1)–S5), the authors have bounded
the MSE performance of the CM-minimizing estimator [5].
To avoid the inherent gain ambiguity1 of blind estimators,
the analysis examined conditionally unbiased MSE (UMSE)
performance, which can be directly related to SINR as follows:
UMSE SINR [5]. An approximation of one of these
bounds is given below. Let SINR denote the maximum (i.e.,
Wiener) SINR associated with estimation of the desired source
at delay . Then, the SINR characterizing CM-minimizing
estimators of the desired source at the same delay can be
written as

SINR SINR SINR SINR (9)

as long as SINR . Here, and are constants that
depend on the kurtoses of the desired and interfering sources.
As an example, and dB when no
sources are super-Gaussian, and no sources have kurtosis less
than the desired source [i.e., ].

From (9), it can be seen that the SINR of CM-minimizing
estimators approaches infinity as the Wiener SINR approaches
infinity. In other words, the conditions leading to perfect Wiener
estimators also lead to CM-minimizing estimators, which are
“perfect” up to a gain ambiguity [3], [17]. Equation (9) also
shows that the SINR performance of CM-minimizing estimators
is insensitive to choice of dispersion constant.

III. SUFFICIENT CONDITIONS FORLOCAL CONVERGENCE OF

CM-GD

A. Main Idea

The set of global responses associated with the desired source
( ) at estimation delay will be denoted and defined
as follows.

s.t. (10)

1Gain ambiguity occurs when both the symbol power and channel gain are
unknown.
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Note that under S1)–S3), the previous definition associates an
estimator with a particular {source, delay} combination if and
only if that {source, delay} contributes more energy to the es-
timate than any other {source, delay}. Choosing, as a reference
set, the responses on the boundary of with minimum CM
cost

(11)

we will denote the set of all responses in with CM cost no
higher than by

s.t.

The main idea is this. Since all points in a CM gradient de-
scent (CM-GD) trajectory have CM cost less than or equal to
the cost at initialization, a CM-GD trajectory initialized within

must be entirely contained in and, thus, in .
In other words, when a particular responseyields sufficiently
small CM cost, CM-GD initialized from will preserve the
{source, delay} combination associated with. Note that initial-
izing within is sufficient, but not necessary, for eventual
CM-GD convergence to a stationary point in .

Since the size and shape of are not easily characteriz-
able, we find it more useful to derive sufficient CM-GD initial-
ization conditions in terms of well-known statistical quantities
such as kurtosis and SINR. It has been shown that CM cost and
kurtosis are closely related [15], and we will see that transla-
tion between these two quantities is relatively straightforward.
Translation of the initial CM-cost condition into an initial SINR
condition is more difficult but can be accomplished through def-
inition of SINR , the SINR above which all have scaled
versions in :

SINR s.t. SINR

s.t. (12)

If initializations in the set SINR SINR are
scaled so that they lie within , the resulting CM-GD tra-
jectories will remain within and, hence, within .
In other words, when a particular responseyields sufficiently
high SINR, CM-GD initialized from a properly scaled version
of will preserve the source/delay combination associated with
. This sufficient SINR property is formalized below.
Since and SINR are all invariant to phase rota-

tion (i.e., scalar multiplication by for ) of and ,
respectively, we can (w.l.o.g.) restrict our attention to the “dero-
tated” set of global responses s.t. . Such allow
parameterization in terms of gain and interference re-
sponse (defined in Section II-B), where . In terms of
the pair , the SINR (8) can be written

SINR

Fig. 2. Illustration of maximum interference gainb (a) below which all
global responses with gaina are contained in the CM cost regionQ (qqq ). Note
that SINR(a; b ) = cot (�).

so that (12) becomes

SINR s.t.

s.t.

(13)

Under particular conditions onand (which will be made
explicit in Section III-B), there exists a maximum interference
gain , specified as a function of system gain, below which all

are contained in :

s.t.

(14)

For an illustration of , , and , see Fig. 2. Now,
consider the quantity

SINR

Since SINR is a decreasing function of (over
its valid domain), (14) implies that

SINR

Using the previous expression to minimize SINR in accordance
with (13) yields the key quantities defined in (12):

SINR SINR (15)

SINR (16)

To summarize, when SINR SINR and ,
CM-GD initialized from will preserve the {source, delay}
combination associated with.

B. Derivation of Sufficient Conditions

In this section, we formalize the previously described ini-
tialization conditions for CM-GD local convergence. The main
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steps in the derivation are presented as theorems and lemmas,
with proofs appearing in the Appendix.

It is convenient to now define thenormalizedkurtosis [not to
be confused with in (6)]:

(17)

Under the following definition of

otherwise
(18)

our results will hold for both real-valued and complex-valued
models. Note that under S1) and S5), represents the nor-
malized kurtosis of a Gaussian source. It can be shown that the
normalized and un-normalized kurtoses are related by

under S3) and S5). Next, we define the min-
imum and maximum (normalized) interference kurtoses.

(19)

(20)

where “dim” denotes the dimension of a vector. Note that the
second case in (19) applies only when the desired source con-
tributes zero intersymbol interference (ISI). The following kur-
tosis-based quantities will also be convenient in the sequel.

(21)

(22)

(23)

Lemma 1: The CM cost (2) may be written in terms of global
response as

(24)

Lemma 2: The minimum CM cost on the boundary of
is

(25)

Theorem 1: If are initial estimates of the desired source
at delay [i.e., for ] with CM
cost

(26)

then estimators resulting from subsequent CM-minimizing gra-
dient descent will also yield estimates of the desired source at
delay .

Theorem 2: If are initial estimates of the desired source
at delay [i.e., for ] with
variance and normalized kurtosis

(27)

then estimators resulting from subsequent CM-minimizing gra-
dient descent will also yield estimates of the desired source at
delay .

Theorem 3: If , and if are
initial estimates with variance and SINR
SINR , where we have (28), shown at the bottom of the
page, then estimators resulting from subsequent CM-mini-
mizing gradient descent will also yield estimates of the desired
source at delay .

We now make a few comments on the theorems. First, notice
the stringent gain condition in Theorems 2 and 3.
Is this a necessary component of our sufficient conditions? The
answer is a qualified yes. It is possible to construct situations

SINR (28)
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in which the critical values of kurtosis from (27) or SINR from
(28) are satisfied, yet misconvergence occurs because the gain
condition is not satisfied.2 Fortunately, it appears
that such scenarios are quite rare unlessis far from or
unless the SINR and/or kurtosis conditions are themselves near
violation. Thus, in practice, successful CM-GD convergence
should be quite robust to small violations in the gain condition.
We mention that itis possible to rederive Theorems 2 and 3 so
that they guarantee convergence for initialin a bounded in-
terval around and appropriately adjusted kurtosis/SINR
requirements. This should be evident from the proofs in the
Appendix.

Finally, it should be pointed out that the relatively compli-
cated expressions in Theorem 3 simplify under the operating
conditions commonly encountered in, e.g., data communica-
tion. When the sources of interference are nonsuper-Gaussian
(i.e., ) and none have kurtosis less than the desired
source [i.e., ], we find that , and thus,
SINR or 3.8 dB.

IV. I MPLICATIONS FORCM-GD INITIALIZATION SCHEMES

In the previous section, we have shown that there exist sta-
tistical properties of initial estimates guaranteeing that subse-
quent CM gradient descent will produce an estimator of the
same source at the same delay. In this section, we suggest how
one might satisfy these initialization conditions.

We consider CM initialization procedures that are capable of
being described by the following two-step procedure: 1) design
of one or more initialization hypotheses and 2) choice among
hypotheses. Note that most popular CM initialization proce-
dures, such as the single-spike scheme discussed below, fall
within this general framework.

In evaluating a CM-GD initialization scheme, we must then
consider the difficulty in both the design and evaluation of
initialization hypotheses. The theorems in the previous section
suggest that when a particular source or delay is desired, ini-
tialization hypotheses should be designed to either i) maximize
SINR or ii) minimize CM cost or kurtosiswhen the initial
estimates are known to correspond to a desired source/delay
combination.

A. “Single-Spike” Initialization

The so-called single-spike initialization, which was first
proposed in [1], is quite popular in single-user environments.
Single-spike initializations for single-sensor baud-spaced
equalizers (i.e., ) are characterized by impulse re-
sponses with a single nonzero coefficient, i.e., .
There exists a straightforward extension to multirate/mul-
tichannel (i.e., ) estimators: for

. For , this has been
called the “double-spike” initialization [17]. The spike position
is often an important design parameter, as we explain below.

Since the spike method yields an initial global response
equaling (a delayed version of) the channel response, the

2Thus, initial kurtosis cannot be the sole indicator of CM-GD convergence,
as claimed in [15].

TABLE I
SINGLE-SPIKE KURTOSES FORSPIB MICROWAVE CHANNEL MODELS

AND 20 dB SNR

kurtosis of the initial estimates can be expressed directly in
terms of the channel coefficients :

If we assume a single sub-Gaussian user in the presence of ad-
ditive white Gaussian noise (AWGN) of variance at each
sensor, the previous expression simplifies to

(29)

Table I shows initial kurtoses from (29) for Signal Pro-
cessing Information Base3 (SPIB) microwave channel models in
AWGN (resulting in 20 dB SNR at channel output), along with
the critical kurtosis from (27). From Table I, we see that the
single-spike initialization procedure generates estimates with
kurtosis less than the critical value for all SPIB channels. The
implication is thatthe CM gradient descent from a single-spike
initialization with magnitude chosen in accordance with The-
orem 2 typically preserves the estimation delay of the initial es-
timates. Similar conjectures have been made in [15] and [17].

Since MMSE performance is known to vary (significantly)
with estimation delay, the recently established connection
between Wiener and CM performance [5] implies that the MSE
performance of CM-minimizing estimators should also vary
with estimation delay. Thus, from our observations on the local
convergence of single-spike initializations, we conclude that
the asymptotic MSE performance of CM-GD estimators can be
directly linked to the choice of initial spike delay.

B. Initialization Using Partial Information

Although the single-spike scheme has desirable properties in
(noisy) single-user applications, one would not expect it to yield
reliable estimates of the desired source when in the presence

3The SPIB microwave channel database resides athttp : ==spib:
rice:edu=spib=microwave:html.
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of significant sub-Gaussian interference since single-spike ini-
tialized CM-GD might lock onto a sub-Gaussian interferer in-
stead of the desired source. With partial knowledge of the de-
sired user’s channel, however, it may be possible to construct
rough guesses of the desired estimator that are good enough for
use as CM-GD initializations. Then, if the initialization satisfies
the sufficient conditions in the previous section, we know that
CM-GD can be used to design an estimator with nearly optimal
MSE performance (as discussed in Section II-C). The “partial
knowledge” may come in various forms, for example, short
training records in semi-blind equalization applications, rough
direction-of-arrival knowledge in array applications, spreading
sequences in code-division multiple access (CDMA) applica-
tions, or desired polarization angle in cross-pole interference
cancellation.

We have seen that various criteria could be used to design and
evaluate initialization hypotheses. Since reliable evaluation of
higher order statistics typically require a larger sample size than
second-order statistics, the design and/or evaluation of SINR-
based initializations might be advantageous when sample size
is an issue. For this reason, SINR-based methods will be con-
sidered for the remainder of this section. Still, good results have
been reported for kurtosis-based CM-GD initialization schemes
for CDMA applications when sample size is not an issue [18].

The SINR-maximizing linear estimator is given by Wiener
estimator . It can be shown that the Wiener estimator
has the form [19]

(30)

where denotes pseudo-inverse. As evident from (30),
design of requires knowledge of the desired channel

in addition to the autocorrelation of the received
signal. Although various methods exist for the design of blind
SINR-maximizing (i.e., MSE-minimizing) estimators based
on partial knowledge of , the Wiener expression (30)
suggests the following CM initialization when given only a

channel estimate and knowledge of .

(31)

Note that (31) may require additional scaling to satisfy the
-requirements of Theorems 2 and 3.

V. NUMERICAL EXAMPLES

In Fig. 3, CM-GD minimization trajectories conducted in es-
timator space are plotted in channel-plus-estimator space (

) to demonstrate the key results of this paper. CM-GD can
be described by the update equation ,
where , is a vector containing the
estimator parameter coefficients,is a vanishingly small pos-
itive stepsize, and denotes the gradient with respect to

. When the estimator is FIR, we can write , im-
plying the global-response CM-GD update equation

. In all experiments, we use a two-param-
eter estimator and an FIR channel that corresponds to the fol-

Fig. 3. CM-GD trajectories in channel-plus-estimator space (qqq 2 ) for (a)
� = 1 and� = 1, (b) � = 2 and� = 1, and (c)� = 2 and
� = 4. Q boundaries (dash-dotted), SINR boundaries (dashed),
� boundaries (dotted), andJ (qqq) < J (qqq ) regions (shaded) are also shown.
Channel estimators resulting in� of (23) are shown by the fat shaded arcs.
Note that dotted and dash-dotted lines are coincident in (a), whereas dotted,
dash-dotted, and dashed lines are coincident in (c).

lowing arbitrarily-chosen channel matrix (having condition
number 3):

Fig. 3(a)–(c) depicts the boundaries as dash-dotted lines,
the SINR boundaries as dashed lines, and the bound-
aries as dotted lines. Note that in Fig. 3(a), the dash-dotted
and dotted lines are coincident, whereas in Fig. 3(c), the dash-
dotted, dashed, and dotted lines are coincident. The three sub-
plots in Fig. 3 differ only in the kurtosis of the desired source: In
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Fig. 4. Estimated probability of convergence to desired source/delay for random channels and random initializations scaled according to Theorem 3 as a function
of initialization SINR. (a)� = 1 with interfering� 2 f1; 3g. (b) � = 2 with interfering� 2 f1; 2g. (c) � = 2 with interfering� 2 f2; 4g.
SINR from (28) shown by dashed lines.

Fig. 3(a), the sources have and , in Fig. 3(b),
they have and , whereas in Fig. 3(c), they
have and .

The following three behaviors can be observed in every sub-
plot of Fig. 3. First, all trajectories entering into (which
is denoted by the shaded region between the dash-dotted lines)
converge to an estimator for the desired source, confirming
Theorem 1. Next, all trajectories initialized with small enough
kurtosis (indicated by the region between the dotted lines) and
proper gain (indicated by the fat shaded arc) converge to an
estimator for the desired source, thus confirming Theorem 2.
Finally, all trajectories initialized with high enough SINR (in-
dicated by the region between the dashed lines) and proper gain
(again indicated by the fat shaded arc) converge to estimators
for the desired source, confirming Theorem 3.

Fig. 3 suggests that the sufficient-SINR condition of The-
orem 3 is more restrictive than the sufficient-kurtosis condi-

tion of Theorem 2, which in turn is more restrictive than the
-based condition of Theorem 1: The sufficient-SINR region

(between the dashed lines) is contained by the sufficient-kur-
tosis region (between the dotted lines), which is contained by
the sufficient- region (between the dash-dotted lines). The rel-
ative ordering of these three conditions is, in fact, formally im-
plied by the proofs in the Appendix.

We stress again that initial kurtosis or SINR is not sufficient
for desired local convergence; initial estimator gain plays an im-
portant role. This is demonstrated by Fig. 3(a) and (b), wherein
some trajectories initialized within the SINR SINR
region (between the dashed lines), but with insufficient initial
gain, converge to the undesired equilibria . Al-
though recognized in [14], this fact was overlooked in [15], re-
sulting in some overly strong claims about the convergence be-
havior of CMA.

In Fig. 4, we examine probability of CM-GD convergence to
desired {source, delay} versus SINR for higher dimensional es-
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timators. CM gradient descents randomly initialized in a ball
around (and subsequently normalized according to The-
orem 3) were conducted using random channel matrices

with zero-mean Gaussian elements. Every data point
in Fig. 4 represents an average of 500 CM-GD simulations.
Fig. 4(a) demonstrates and ten interfering sources
with ; Fig. 4(b) demonstrates , five interfering
sources with , and five interfering sources with
; Fig. 4(c) demonstrates , five interfering sources with

, and five interfering sources with .
Fig. 4 also confirms the claim of Theorem 3: All prop-

erly-scaled CM-GD initializations with SINR greater than
SINR converge to the desired source. Recalling that the
SINR condition is sufficient, but not necessary, for desired
convergence, it is interesting to note that both Figs. 3 and 4
suggest that the sufficiency of our SINR condition becomes
“looser” as the kurtosis of the desired source rises above the
minimum interference kurtosis (i.e., as increases).

VI. CONCLUSIONS

In this paper, we have derived, under the general linear
model of Fig. 1, three sufficient conditions for the convergence
of CM-minimizing gradient descent to an estimator for a par-
ticular source at a particular delay. The sufficient conditions are
expressed in terms of statistical properties of initial estimates,
i.e., estimates generated by an estimator parameterization
from which the gradient descent procedure is initialized. More
specifically, we have proven that when initial estimators result
in sufficiently low CM cost, or in sufficiently low kurtosisand
a particular variance, CM-GD will preserve the source/delay
combination associated with the initial estimator. In addition,
we have proven that when the SINR of the initial estimators
(with respect to a particular source/delay combination) is above
a prescribed threshold and the estimates have a particular
variance, CM-GD will converge to an estimator of the same
source/delay. These results suggest ways in whicha priori
channel knowledge may be used to predict and control the
convergence behavior of CMA and are of particular importance
in multiuser applications.

APPENDIX

DERIVATION DETAILS FORLOCAL CONVERGENCECONDITIONS

This Appendix contains the proofs of the theorems and
lemmas found in Section III-B.

A. Proof of Lemma 1

See [5] or [19].

B. Proof of Lemma 2

We are interested in computing the minimum CM cost on the
boundary of the set . The approach we take is to minimize

over a set containing bndr , which, as shown below, still
yields a minimum within bndr . Specifically, we consider
the set

for bndr

If represents the {source, delay} pair of minimum in-
terference kurtosis [recall the definition of in (19)], we
henceforth use to denote with the terms and
removed. Then, we have

Plugging the two previous equations into (24), we find that

where

(32)

Zeroing the partial derivative of w.r.t. yields

(33)

and thus

(34)

using the abbreviation

(35)



2794 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 48, NO. 10, OCTOBER 2000

Gradient and Hessian analysis [19] reveals that when
, the (unique) global minimum of oc-

curs at , implying [via (34)] that

(36)

C. Proof of Theorem 1

If satisfies , then by defi-
nition, . (Note that for to be meaningful,
we also require that it be an attainable global response, i.e.,

.) Combining with the fact that a
CM-GD trajectory initialized within remains entirely
within , we conclude that a CM-GD trajectory initialized
at remains entirely within . Using the expres-
sion (25) appearing in Lemma 2, we arrive at (26).

D. Proof of Theorem 2

Continuing the arguments used in the proof of Lemma 1, the
CM cost expression (24) can be restated as follows [19].

From Theorem 1, a CM cost satisfying (26) suffices to guarantee
the desired CM-GD property. Normalizing (26) by and plug-
ging in the previous expression, we obtain the equivalent suffi-
cient conditions

It is now apparent that the critical value of depends on the
gain . Maximizing the critical kurtosis w.r.t. can be
accomplished by finding, which zeros the partial derivative of

w.r.t. . Straightforward calculus reveals that the maximizing
value of is

which implies that the maximum critical kurtosis is

Since S1)–S3) imply that , the expression for
above is easily rewritten in terms of estimate variance

.

E. Proof of Theorem 3

Section III-A established that estimators yielding gainand
producing estimates of SINRgreater than SINR are con-
tained within the set , and thus, further CM-GD adap-
tation of these estimates will guarantee estimation of the de-
sired source. In this section, we will derive explicit formulas
for the quantities SINR and . This will be accomplished
through (15) and (16) after first solving for defined in
(14).

To find , (14) may be translated as

s.t.

(37)

To proceed further, the CM cost expression (24) must be
rewritten in terms of gain and interference response
(which was defined in Section II-B). Using the fact that

Plugging the previous expression into (24), we find that

(38)

From (25) and (38), the following statements are equiva-
lent, as shown in (39) at the bottom of the next page. The
reversal of inequality in (39) occurs because
[as implied by S4)]. Using the definition of in (20),

implies that

.
(40)
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Thus, with defined in (22), the following becomes a suffi-
cient condition for (39).

.
(41)

Focusing first on the super-Gaussian case ( ), we
see from (41) that valid satisfying (37) can be deter-
mined by solving for the roots of

Specifically, we are interested in the smaller root when
and the larger root when . In either

of these two cases, the appropriate root has the form

(42)

When instead, becomes linear, and

(43)

As a valid interference power, we require that
. Straightforward manipulations show that for all valid

super-Gaussian values of (i.e., )

(44)

From (41), it can be seen that the same arguments may be
applied to the nonsuper-Gaussian case ( ) by setting

to zero. This yields

(45)

with the requirement that .
The expressions for in (42), (43), and (45) can now

be used to calculate SINR and given in (15) and (16).

First, we tackle the super-Gaussian case ( ). As-
suming for the moment that , we plug (42) into (15)
to obtain

SINR

(46)
Since the fraction on the right of (46) is non-negative and strictly
decreasing in over the valid range

identified by (44), finding that minimizes this
expression [in accordance with (16)] can be accomplished by
finding that maximizes . To find these maxima,
we first write using (39):

where , , and are independent of. Computing the
partial derivative with respect to the quantity and setting it
equal to zero, we find that

(47)

Plugging into (39) and using the definition of in (21)
gives the simple result . With this
value of , requirement (44) translates into

(48)

In the super-Gaussian case, we know that
, and hence, (48) simplifies to

Finally, plugging into (46) gives

SINR (49)

(39)
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Revisiting the super-Gaussian case with , we plug
(43) into (15) and get

SINR

Again, the quantity to be minimized is strictly decreasing in
over . As above, maximization of
yields the of (47) and the same condition on

. Applying these to the previous equation

SINR (50)

For the nonsuper-Gaussian case ( ), we plug (45)
into (15) and obtain

SINR (51)

Since (51) equals (46) with (i.e., when
), the nonsuper-Gaussian will have the sameas (47) and

the same translation of (44) given by (48). After substituting
into (48), the nonsuper-Gaussian property implies

that (48) simplifies again to

Plugging from (47) into (51), the nonsuper-Gaussian
SINR becomes

SINR (52)

Finally, S1)–S3) imply that , linking the
critical gain in (47) to the critical estimate variance in
(23), yielding Theorem 3.
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