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Markov-modeled Downlink Environment:
Opportunistic Multiuser Scheduling and the

Stability Region
Sugumar Murugesan, Philip Schniter, Senior Member, IEEE and Ness B. Shroff, Fellow, IEEE

Abstract— In this paper, we focus on the downlink of a cellular
system, which corresponds to the bulk of the data transfer
in such communication systems. We address the problem of
multiuser scheduling with partial channel information. In our
setting, the channel of each user is modeled by a two-state
Markov chain. The scheduler indirectly estimates the channel
via accumulated Automatic Repeat Request (ARQ) feedback
from the scheduled users and uses this information in future
scheduling decisions. This problem falls under the restless
multi-armed bandit processes that have been shown to be
PSPACE-hard to solve in general. Using a Partially Observable
Markov Decision Process (POMDP), we formulate a throughput
maximization problem and show that, despite the visible
complexity of this problem, a simple round-robin fashioned
scheduling policy optimizes the system for the special case of
three or less users in the system. We study the structure of
this policy for an arbitrary number of users and establish a
sufficient condition for the optimality of this policy. Drawing
equivalence with a genie-aided system and assuming random
arrivals of packets at the scheduler, we study the stability region
of the downlink system and derive explicit expressions for the
sum capacity of the downlink.

Index Terms – Markov channel, downlink, multiuser scheduling,
greedy policy, stability region.

I. INTRODUCTION

With the ever increasing demand for high data rates, oppor-
tunistic multiuser scheduling, introduced by Knopp and Hum-
blet in [1] and defined as allocating the resources to the user
experiencing the most favorable channel conditions has gained
immense popularity among wireless network designers. Op-
portunistic multiuser scheduling essentially taps the multiuser
diversity in the system and has motivated several researchers
(e.g., [2]–[6]) to study the performance gains obtained by
opportunistic scheduling under various scenarios. While the
i.i.d flat fading model is popularly used by these researchers
in modeling time varying channels (for a general treatment
on opportunistic scheduling with minimal assumptions on the
channel, see [7]), it fails to capture the memory in the channel
observed in realistic scenarios. This motivated the researchers
to consider the Gilbert Elliott model [8] that represents the
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channel by a two state Markov chain. Specifically, a user
experiences error-free transmission when it observes a “good”
channel, and unsuccessful transmission in a “bad” channel.
Several works have been done on opportunistic multiuser
scheduling under the assumption of this Markov modeled
channel (e.g., [9]–[13]). In these works, the channel state
information that is crucial for the success of any opportunistic
scheduling scheme is assumed to be readily available at the
scheduler. This is a simplifying assumption that does not hold
in reality, where a non-trivial amount of resource must be
spent in gathering the information on the channel state. A new
line of work (e.g., [14], [15]) attempts to exploit the memory
in the Markov-modeled channels to gather this information.
Specifically, Automatic Repeat reQuest (ARQ) feedback, that
is traditionally used for error control (e.g., [16]–[19]) at the
data link layer, is used to estimate the state of the Markov-
modeled channels.

In this paper, we combine these two lines of work: exploit
multiuser diversity in the Markov-modeled channels (e.g., [9]–
[13]) and use ARQ feedback to estimate the state of these
Markov-modeled channels (e.g., [14], [15]). Specifically, we
consider a Markov-modeled downlink system with an ARQ
feedback provision. Using a Partially Observable Markov
Decision Process (POMDP) formulation ([20]–[23]), we show
that, for N ≤ 3 users, a simple greedy policy that maximizes
the current reward is optimal in terms of the sum throughput.
The greedy policy can be implemented via a simple round-
robin based solution that does not require the statistics of the
underlying Markov chain, so that it is easily amenable for
practical implementation. Then, for the general N user case,
by exploiting the round-robin structure of the greedy policy,
we conjecture a sufficient condition for the optimality of the
greedy policy. We provide extensive simulations that suggest
that the greedy policy indeed satisfies this sufficient condition
and is likely to be optimal for an arbitrary number of users
in the system. After establishing an equivalence with a genie-
aided system, we next derive a simple expression for the sum
capacity of the Markov-modeled downlink system, for the two
user case. Assuming that the base station maintains separate
queues for the data meant for each user, we consider random
data arrivals. Under this assumption, we study the stabilizable
and the unstabilizable rate regions of the downlink system.

The paper is organized as follows. The problem setup is
described in Section II and followed by the proof of the
optimality of the greedy policy for the N = 2 case in
Section III. Section IV discusses the round-robin structure of
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the greedy policy. The sufficient condition for the optimality of
the greedy policy for the general case of N users is derived in
Section V. In the same section, we prove that the greedy policy
is optimal for N = 3 and make a conjecture about the N > 3
case. In Section VI, we derive the sum capacity of the Markov-
modeled downlink and obtain results on the stabilizable and
the unstabilizable rate regions of the downlink. Conclusions
are provided in Section VII.

II. PROBLEM SETUP

A. Channel Model
We consider downlink transmissions with N users. For each

user, there is an associated queue at the base station that
accumulates packets intended for that user. We assume an
infinite backlog at each queue in Sections III - V and relax
this condition in Section VI. The channel between the base
station and each user is modeled by an i.i.d two-state Markov
chain. We call this the ON-OFF channel with the ON state
allowing the successful transmission of a fixed length packet.
Time is slotted and the channel of each user remains fixed for
a slot and evolves into another state in the next slot according
to the Markov chain statistics. The time slots of all users are
synchronized. The two-state Markov channel is characterized
by a 2× 2 probability transition matrix

P =

[
p q
r s

]
, (1)

where
• p := prob(channel is ON in the current slot | channel was

ON in the previous slot)
• q := 1− p
• r := prob(channel is ON in the current slot | channel was

OFF in the previous slot)
• s := 1− r.

We assume that p ≥ r throughout this work. This assumption
implies that, for any user, the channel state is positively
correlated between adjacent time slots.

B. Scheduling Problem
The base station is the central controller that controls the

transmission to the users in each slot. In any time slot, the
base station does not know the exact channel state of the
users and it must schedule the transmission of the head of line
packet of exactly one user. Thus, a TDMA styled scheduling
is performed here. The power spent in each transmission is
fixed, and a traditional ARQ based transmission is deployed.
Here, at the beginning of a time slot, the head of line packet
of the scheduled user is transmitted. If the packet does not
go through, i.e, it cannot be decoded by the user (when the
channel is in the OFF state), a NACK is sent back from the
user at the end of the slot, and the packet is retained at the head
of the queue. If the packet goes through (when the channel
is in the ON state), an ACK is sent back and the packet is
removed from the queue. Note that both ACKs and NACKs are
assumed to be transmitted over a dedicated error-free channel.
This ARQ information, along with the label of the time slot
in which it is acquired, will be used in future scheduling

decisions. The performance metric that the base station aims
to maximize is the sum throughput of the system. Details will
be discussed in the next section.

C. Formal Problem Definition
Since the base station must make scheduling decisions

based only on a partial observation1 of the underlying Markov
chain, we employ techniques from partially observable Markov
decision process (POMDP) theory in this work. See [20] for
an overview of POMDP. We now proceed to introduce the
terms/entities that we use in this work, many of which are
borrowed from the POMDP literature. The key quantities used
throughout this paper are summarized in Appendix II.

Control interval k: Each time slot in our problem setup
will henceforth be called a control interval. The “end” of the
POMDP is fixed. A control interval is indexed by k if there
are k − 1 more intervals until the end of the process.

Action ak: Indicates the index of the user scheduled in
control interval k and hence takes on values from 1 . . .N .

Belief vector at the kth control interval πk: The ith element
of πk represents the probability that the channel of user i ∈
1 . . .N in the kth control interval is in the ON state, given all
the past information about the channel. Let fk denote the ARQ
feedback at the end of the control interval k from the scheduled
user ak. Let fk = 1 indicate an ACK and fk = 0 indicate a
NACK. The belief vector evolves from control interval k to
k − 12, ∀k > 1, as follows:

πk−1(i) =





p, if i = ak, fk = 1

r, if i = ak, fk = 0

pπk(i) + r(1− πk(i)), if i 6= ak.

(2)

where the first case indicates that user i is scheduled in control
interval k and an ACK feedback was received. Thus, according
to the Markov chain statistics in (1), πk−1(i) = p. The second
case is explained similarly when a NACK feedback is received.
The last case indicates that user i was not scheduled for
transmission in control interval k and hence the base station
must estimate the belief value at the current control interval
(πk−1(i)) from the belief value at the previous control interval
(πk(i)) and the Markov chain statistics in (1). It has been
proven in [20] that the belief vector πk is a sufficient statistic
to any information about the channels in the past control
interval, in our case, the scheduling decisions and the ARQ
information from the past. Thus the scheduling decision in any
control interval can be solely based on the belief vector for
that interval and not on the past ARQ or schedule information.

Scheduling Policy
�

k: A scheduling policy
�

k in the control
interval k is a mapping from the belief vector and the control
interval index to an action as follows:

�
k : (πk, k)→ ak ∀k ≥ 1, πk ∈ [0, 1]N .

Note that the scheduling policy can, in general, be time-
variant.

1In this case, the set of time-stamped ARQ feedback on the channels.
2Note that the index of the control intervals decrease with time, consistent

with the POMDP theory.
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Reward Structure: In any control interval k, a reward of 1 is
accrued when the transmission is successful, i.e, when fk = 1,
and no reward is accrued when fk = 0. Note that this reward
structure is defined to be consistent with our performance
metric, the sum throughput (to be discussed shortly).

Net Expected Reward in the control interval m, Vm: With
the belief vector, πm, and the scheduling policy, {

�
k}k≤m,

fixed, the net expected reward, Vm, is the sum of the reward,
Rm(πm, am), expected in the current control interval m
and E[Vm−1], the net reward expected in the future control
intervals conditioned on the belief vector and the scheduling
decision in the current control interval. Formally,

Vm(πm, {
�

k}k≤m)

= Rm(πm, am) + E[Vm−1(πm−1, {
�

k}k≤m−1)|πm, am],

(3)

where the expectation is over the belief vector πm−1. Since the
reward in each control interval is either 1 or 0, the expected
current reward can be written as

Rm(πm, am) = πm(am).

Performance Metric- the Sum Throughput, ηsum: For a given
scheduling policy, {

�
k}k≥1, the sum throughput is given by

ηsum({
�

k}k≥1) = lim
m→∞

Vm(πss, {
�

k}k≥1)

m
, (4)

where πss(i), i ∈ 1 . . .N is the steady state probability that
the channel of user i is ON in the underlying Markov chain.

Optimal Scheduling Policy, {
� ∗

k}k≥1:

{
� ∗

k}k≥1 := arg max
{
�

k}k≥1

ηsum({
�

k}k≥1). (5)

III. OPTIMAL SCHEDULING POLICY FOR TWO USERS

Consider the following policy:
̂�

k : (πk, k)→ ak = arg max
ak

Rk(πk, ak)

= arg max
i

πk(i) ∀k ≥ 1, πk ∈ [0, 1]N .

Since the above given policy attempts to maximize the ex-
pected current reward, without any regard to the expected
future reward, it follows an approach that is fundamentally
greedy in nature. For this reason, we henceforth call {̂� k}k≥1

the Greedy Policy.
Proposition 1: The sum throughput, ηsum, of the system is

maximized by the greedy policy {̂� k}k≥1 for the case when
N = 2, i.e.,

� ∗
k|N=2 = ̂�

k ∀k ≥ 1.

Proof: From Subsection II-C, to prove the optimality of
the greedy policy, it is sufficient to prove that the greedy policy
maximizes the net expected reward in any control interval, i.e.,
∀m ≥ 1, πm ∈ [0, 1]2,

{̂� k}k≤m = arg max
{
�

k}k≤m

Vm(πm, {
�

k}k≤m).

We proceed to prove the above statement for N = 2, using
induction. We first prove the following statement:

(P) If, for a fixed m > 1, ∀πm−1 ∈ [0, 1]2,

{̂� k}k≤m−1 = arg max
{
�

k}k≤m−1

Vm−1(πm−1, {
�

k}k≤m−1),

then, ∀πm ∈ [0, 1]2,

{̂� k}k≤m = arg max
{
�

k}k≤m

Vm(πm, {
�

k}k≤m).

In words, (P) states that, for any m > 1, if the greedy policy
maximizes the net expected reward in control interval m− 1,
then it maximizes the net expected reward in control interval
m as well. We prove (P) as follows. Let πm, am be fixed. The
net expected reward, Vm, under the policy {am, {̂� k}k≤m−1},
is given by

Vm(πm, {am, {̂� k}k≤m−1})

= πm(am) + E[Vm−1(πm−1, {̂
�

k}k≤m−1)|πm, am]. (6)

We now focus on the expected future reward,

E[Vm−1(πm−1, {̂
�

k}k≤m−1)|πm, am]

=

1∑

k=m−1

Eπk|πm,am

[
Rk(πk, âk)

]

=

1∑

k=m−1

Eπk+1|πm,am

[
Eπk|πk+1,πm,am

[
Rk(πk, âk)

]]
,

(7)

where we have used âk to emphasize the fact that, in every
control interval k ≤ m − 1, the action is chosen under the
greedy policy ̂�

k. Eπk|πm,am
[.] indicates the average over πk

conditioned on πm and am. Now consider the expected current
reward for the control interval k ≤ m−1, i.e., Rk, conditioned
on the belief vector of the previous control interval πk+1 and
the initial conditions πm, am. Let āk+1 indicate the index of
the user that is NOT scheduled in control interval k + 1 and
ak+1 indicate the scheduled user. We have the following two
cases.
1. When the ARQ feedback fk+1 = 1, (occurs with probability
πk+1(ak+1)):

πk(ak+1) = p

πk(āk+1) = pπk+1(āk+1) + r(1− πk+1(āk+1)).

Since p ≥ r, we have, πk(ak+1) ≥ πk(āk+1). Hence the
greedy policy chooses the action ak = ak+1 with the expected
current reward Rk = p.
2. When fk+1 = 0, (occurs with probability 1−πk+1(ak+1)):

πk(ak+1) = r

πk(āk+1) = pπk+1(āk+1) + r(1− πk+1(āk+1)).

Since p ≥ r, we have, πk(ak+1) ≤ πk(āk+1). Thus the greedy
policy chooses ak = āk+1 with the expected current reward
Rk = πk(āk+1) = pπk+1(āk+1) + r(1− πk+1(āk+1)).

Define the state vector Sl such that Sl(i) indicates the state
(1-ON/0-OFF) of the channel of user i in control interval l.
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Now, averaging over the two cases discussed above, we have

Eπk|πk+1,πm,am
Rk(πk , âk)

= πk+1(ak+1)p + (1− πk+1(ak+1))(pπk+1(āk+1)

+r(1− πk+1(āk+1)))

=
(
πk+1(ak+1) + (1− πk+1(ak+1))πk+1(āk+1)

)
p

+
(
(1− πk+1(ak+1))(1− πk+1(āk+1))

)
r

= P
(
{Sk+1(1) = 1 ∪ Sk+1(2) = 1}|πk+1

)
p

+P
(
{Sk+1(1) = 0 ∩ Sk+1(2) = 0}|πk+1

)
r.

Note that, in the last equation, the events {Sk+1(1) = 1 ∪
Sk+1(2) = 1} and {Sk+1(1) = 0 ∩ Sk+1(2) = 0} are
independent of πm and am given πk+1, since πk+1 is a
sufficient statistic to all the information prior to k + 1. The
reward expected in any future control interval, k ≤ m− 1, is
now given by

Eπk |πm,am

[
Rk(πk, âk)

]

= Eπk+1|πm,am

[
P

(
{Sk+1(1) = 1 ∪ Sk+1(2) = 1}|πk+1

)
p

+P
(
{Sk+1(1) = 0 ∩ Sk+1(2) = 0}|πk+1

)
r
]

= P
(
{Sk+1(1) = 1 ∪ Sk+1(2) = 1}|πm, am

)
p

+P
(
{Sk+1(1) = 0 ∩ Sk+1(2) = 0}|πm, am

)
r

= P
(
{Sk+1(1) = 1 ∪ Sk+1(2) = 1}|πm

)
p

+P
(
{Sk+1(1) = 0 ∩ Sk+1(2) = 0}|πm

)
r, (8)

where the last equation follows from the fact that Sl(i), for l ≤
m, i ∈ {1, 2} is independent of the action am, given the belief
vector πm. Thus, the reward expected in any future control
interval is independent of the current scheduling decision am.
Returning to (7), we have

E[Vm−1(πm−1, {̂
�

k}k≤m−1)|πm, am = 1]

= E[Vm−1(πm−1, {̂
�

k}k≤m−1)|πm, am = 2]. (9)

Thus, from (6),

Vm(πm, {am = 1, {̂� k}k≤m−1})

−Vm(πm, {am = 2, {̂� k}k≤m−1})

= πm(1)− πm(2). (10)

(P) follows from the above equation. Since
̂�

1 = arg max�
1

V1(π1,
�

1) ∀π1 ∈ [0, 1]2,

Proposition 1 follows from (P) by induction.
It has to be mentioned that a parallel work, [24], by Qing

Zhao et al., addresses a similar problem in a cognitive radio
setting where a single user attempts to opportunistically access
one of the several radio channels. Due to the fundamental dif-
ference in the application areas targeted, the overlap between
our paper and [24] is limited to the result on the optimality
of the greedy policy when N = 2 users. The proof technique
they have used involves evaluating the net expected reward
by averaging over the channel states of both the users in the
current control interval. Whereas, in our case, we average over
the belief vector. Moreover, we explicitly establish that the

reward expected to be accrued in any future control interval is
independent of the current scheduling decision. This is unlike
[24], where the independence result is obtained only for the
net future reward. Our independence result (summarized in
Corollary 2) will be pivotal in obtaining a simple, closed
form expression for the sum capacity of the Markov-modeled
downlink in Section VI.

Corollary 2: The reward expected to be accrued in any
future control interval k ≤ m − 1 is independent of the
scheduling decision am, as long as the greedy policy is
implemented in control interval k. Formally, ∀k ≤ m− 1,

Eπk|πm,am=1 Rk(πk, âk) = Eπk|πm,am=2 Rk(πk, âk),

where âk indicates the use of the greedy policy in control
interval k.
Corollary 2 follows form (8). The significance of the above
observation will be discussed in Section VI.

IV. STRUCTURE OF THE GREEDY POLICY FOR N USERS

Having established the optimality of the greedy policy for
the N = 2 users case, we now take a closer look at the
structure of the greedy policy. We begin by defining the
following quantity.
Schedule order vector, Ok: The ordered arrangement of the
index of the users in decreasing order of πk(i), i.e.,

Ok(1) = argmax
i

πk(i)

...
Ok(N) = argmin

i
πk(i).

Thus, under the greedy policy in k, ak = Ok(1).
We now discuss the evolution of Ok to Ok−1. Consider

any two users that are not scheduled in control interval k, i.e,
consider users i 6= ak and j 6= ak. Thus from (2), the belief
value of user i evolves from control interval k to k − 1 as
follows: πk−1(i) = pπk(i) + r(1−πk(i)) = (p− r)πk(i) + r.
Similarly, considering user j, πk−1(j) = (p − r)πk(j) + r.
Thus, since p ≥ r, πk−1(i) ≥ πk−1(j) if πk(i) ≥ πk(j), ∀i 6=
ak, j 6= ak, i.e., the order of the belief values of any two users
whose channels are not observed in the current control interval
is retained in the next control interval. This follows from the
positive correlation in time property of the underlying Markov
chain, facilitated by the assumption p ≥ r. Now consider the
user scheduled in control interval k, i.e., user ak. If the ARQ
feedback fk = 1, then πk−1(ak) = p. Since for any user
i 6= ak, πk−1(i) = pπk(i) + r(1−πk(i)) and since p ≥ r, we
have, πk−1(ak) ≥ πk−1(i), ∀i 6= ak. The preceding statement
can be interpreted as follows: the channel that was ON with
probability 1 in the previous control interval is more likely
to be ON in the current control interval than the channel that
was ON with probability less than 1 in the previous control
interval. When fk = 0, πk−1(ak) = r ≤ πk−1(i), ∀i 6= ak.
From the preceding observations,

Ok−1 =

{
[ak {Ok − ak}], if fk = 1

[{Ok − ak} ak], if fk = 0,
(11)
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where {Ok − ak} is the schedule order vector Ok with the
element valued ak removed. For instance, {[x y z] − y} =
[x z].

As a special case, when the greedy policy is employed in
control interval k, i.e., when ak = Ok(1),

Ok−1 =

{
Ok, if fk = 1

[Ok(2) Ok(3) . . . Ok(N) Ok(1)], if fk = 0.
(12)

The evolution of the schedule order vector under the greedy
policy is illustrated in Fig. 1 assuming πm(1) ≥ πm(2) . . . ≥
πm(N).

We are now in a position to make the following important
observation:
Let the greedy policy be implemented from control interval
m. Let the schedule order vector, Om, be available to the base
station. The scheduling algorithm is implemented as follows:
Schedule the user positioned at the top of the schedule order
vector (i.e., am = Om(1)). If an ACK is received, schedule
the same user again in the next control interval. Otherwise,
schedule the next user in the schedule order vector Om. Repeat
the same procedure in all the future control intervals. If the
bottom of the schedule order vector is reached, repeat from the
top. Formally, the algorithm is implemented in the following
simple steps

• Step 1: Initialize the control interval index k ← m and
the position of the scheduled user in the schedule order
vector as i← 1.

• Step 2: Schedule user Om(i) in control interval k, i.e.,
ak = Om(i).

• Step 3: If fk = 0 and i < N , then i ← i + 1. If fk = 0
and i = N , then i← 1.

• Step 4: k ← k − 1. If k > 0, then repeat steps 2-4.
Thus, the scheduling algorithm, under the greedy policy, boils
down to a simple round-robin algorithm with a change in
scheduling decision stimulated by a NACK feedback (illus-
trated in Fig. 2). The schedule order vector, Om, provides the
order of this round-robin approach. The greedy policy that
aims to maximize the expected current reward takes the form
of the round-robin algorithm due to the following properties
of the Markov channels in our problem:

• The shorter the time since a channel is observed to be
in the ON state, the more likely it is that the channel is
currently ON. This explains why the greedy policy, via
the round-robin algorithm, retains the scheduling decision
on receiving an ACK feedback.

• The longer the time since a channel is observed to be in
the OFF state, the more likely it is that the channel is
currently ON. This explains why the greedy policy, on
receiving a NACK feedback, schedules the user next in
the schedule order vector. Note that this user, assuming
the round robin algorithm has completed at least one full
cycle, has spent the most amount of time since being
observed to have an OFF channel.

Note that the round-robin algorithm does not involve evalu-
ating the belief vector in every control interval. Hence the
Markov transition matrix information is not required. This
structure makes the greedy policy particularly attractive from

an implementation point of view. Motivated by this develop-
ment, we proceed to examine the optimality of the greedy
policy in a general N user setting.

V. ON THE OPTIMALITY OF THE GREEDY POLICY FOR N
USERS

A. Sufficient Condition for the Optimality of the Greedy Policy
Consider a control interval m > 1 with belief vector πm and

action am. Let the users be indexed in the order of their belief
values in control interval m, i.e, Om = [1 . . .N ]. Assuming
{
�

k}k≤m−1 = {̂� k}k≤m−1 and recalling the definition of
state vector Sk from Section III, we rewrite the net expected
reward from (3) as follows

Vm(πm, {am, {̂� k}k≤m−1})

= πm(am) +
∑

Sm

PSm|πm
(Sm|πm)V̂m−1(Sm, Om−1),

where V̂m−1 is the expected future reward conditioned on the
state vector in control interval m. The hat on this quantity
emphasizes the use of the greedy policy in all k ≤ m − 1.
PSm|πm

(Sm|πm) is the conditional probability of the current
state vector Sm given the belief vector πm. Note that the
schedule order vector Om−1 is only a function of Om and the
state Sm(am), thus maintaining consistency with the amount
of information available for scheduling decision in the actual
problem setup. We now proceed to compare the net expected
reward when am = n and am = n+1 where n ∈ {1 . . .N−1}.
Let Y and X be random binary vectors of lengths n− 1 and
N−n−1 (empty when the length is non-positive) respectively.
Then,

Vm(πm, {am = n, {̂� k}k≤m−1})

= πm(n) +
∑

Y,X

PSm|πm
([Y 0 0 X ]|πm)×

V̂m−1

(
[Y 0 0 X ], [{Om − n} n]

)

+
∑

Y,X

PSm|πm
([Y 0 1 X ]|πm)×

V̂m−1

(
[Y 0 1 X ], [{Om − n} n]

)

+
∑

Y,X

PSm|πm
([Y 1 0 X ]|πm)×

V̂m−1

(
[Y 1 0 X ], [n {Om − n}]

)

+
∑

Y,X

PSm|πm
([Y 1 1 X ]|πm)×

V̂m−1

(
[Y 1 1 X ], [n {Om − n}]

)
,

(13)

where Om → Om−1, the evolution of the schedule order
vector, follows (11).

Since the Markov channel statistics are identical across the
users, we have the following symmetry property: for any k ≥1,

V̂k(Sk+1, Ok) = V̂k(S̃k+1, Õk)

if Sk+1(Ok(i)) = S̃k+1(Õk(i)) ∀ i ∈ {1 . . .N}. (14)
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Thus, for instance,

V̂m−1

(
[Y 0 1 X ], [{Om − n} n]

)

= V̂m−1

(
[Y 1 0 X ], [{Om − (n + 1)} (n + 1)]

)

= V̂m−1

(
[Y 1 X 0], [1 . . .N ]

)
.

Expanding Vm(πm, {am = n + 1, {̂� k}k≤m−1}) along the
lines of (13), and using the symmetry property, with further
mathematical simplification, we can evaluate the difference in
the net expected reward as follows,

Vm(πm, {am = n, {̂� k}k≤m−1})

−Vm(πm, {am = n + 1, {̂� k}k≤m−1})

=
(
πm(n)− πm(n + 1)

)
×

(
1−

∑

Y,X

[[
V̂m−1

(
[Y 1 X 0], [1 . . .N ]

)

−V̂m−1

(
[1 Y 0 X ], [1 . . .N ]

)]
×

PSm|πm

(
[Sm(1) . . . Sm(n− 1)] = Y |πm

)
×

PSm|πm

(
[Sm(n + 2) . . . Sm(N)] = X |πm

)])
.(15)

Proposition 3: A sufficient condition for the optimality of
the greedy policy is given as follows,

V̂m−1

(
[Y 1 X 0], [1 . . .N ]

)

−V̂m−1

(
[1 Y 0 X ], [1 . . .N ]

)
≤ 1, (16)

∀ m > 1, n ∈ {1 . . .N − 1}, Y , X being random binary
vectors of length n − 1 and N − n − 1 and {

�
k}k≤m−1 =

{̂� k}k≤m−1.
Proof: Let condition (16) be true. Let m > 1 be fixed.

Since, by assumption, πm(n) ≥ πm(n+1) ∀n ∈ {1 . . .N−1},
we have from (15),

Vm(πm, {am = n, {̂� k}k≤m−1})

≥ Vm(πm, {am = n + 1, {̂� k}k≤m−1}).

Therefore,

Vm(πm, {am = arg max
i

πm(i) = 1, {̂� k}k≤m−1})

≥ Vm(πm, {am ∈ {2 . . .N}, {̂� k}k≤m−1}).

We now have the following statement:

If ∀πm−1 ∈ [0, 1]N ,

{̂� k}k≤m−1 = arg max
{
�

k}k≤m−1

Vm−1(πm−1, {
�

k}k≤m−1),

then ∀πm ∈ [0, 1]N ,

{̂� k}k≤m = arg max
{
�

k}k≤m

Vm(πm, {
�

k}k≤m). (17)

Since ̂�
1 = argmax �

1
V1(π1,

�
1), ∀π1 ∈ [0, 1]N , using (17),

by induction, we have

{̂� k}k≤m = arg max
{
�

k}k≤m

Vm(πm, {
�

k}k≤m)

∀m ≥ 1, πm ∈ [0, 1]N .

The proposition follows from (5).

B. Optimality of the Greedy Policy with N = 3 Users
Proposition 4: When N = 3 users, the greedy policy

satisfies the sufficient condition in Proposition 3 and is hence
optimal.

Proof: With N = 3, n ∈ {1, 2}. The sufficient condition
in Proposition 3 becomes, ∀ m > 1,
[
V̂m−1

(
[1 X 0], [1 2 3]

)
− V̂m−1

(
[1 0 X ], [1 2 3]

)]
≤ 1

when n = 1,[
V̂m−1

(
[Y 1 0], [1 2 3]

)
− V̂m−1

(
[1 Y 0], [1 2 3]

)]
≤ 1

when n = 2, (18)
where X , Y are binary numbers and {

�
k}k≤m−1 =

{̂� k}k≤m−1. The proof of (18) is tedious and hence is moved
to the appendix to maintain continuity of the discussion.
Due to the complex relationship between the scheduling de-
cision in a control interval and the reward expected in the
future intervals, an analysis of the optimality of the greedy
policy for the general N -user case appears difficult. But
with support from simulation results, we conjecture that the
sufficient condition in Proposition 3 is satisfied for any value
of N , thus suggesting the optimality of the greedy policy for
any N . Fig. 3 plots the values of V̂m−1

(
[Y 1 X 0], [1 . . .N ]

)
−

V̂m−1

(
[1 Y 0 X ], [1 . . .N ]

)
for various values of n ∈

{1 . . .N − 1} when N = 5, P =

[
0.6324 0.3676
.0975 .9025

]
. In each

of the four subplots, Y and X are allowed to take on every
possible binary word of length n−1 and N−n−1, respectively.

VI. ON THE STABILITY REGION OF THE
MARKOV-MODELED DOWNLINK WITH N = 2 USERS

So far, we have assumed that the queues for each user
maintained at the base station are infinitely backlogged. This
assumption is not always true in practice, where packets arrive
at each queue according to arrival processes and arrival rates
dictated by the applications serving the users. In this scenario,
we are interested in the complete set of arrival rate vectors
that can be supported by the downlink system without leading
to the instability of any of the queues3. This complete set
of arrival rate vectors is known as the stability region of the
system. To examine the stability region, we first evaluate the
sum capacity of the downlink system.

A. Sum Capacity of the Markov-modeled Downlink
With the greedy policy established as the sum-throughput

maximizing scheduling policy for N = 2 users, the sum
capacity of the system is given by the sum throughput under
the greedy policy. We now give the following result.

Proposition 5: When N = 2, the sum capacity of the
given Markov-modeled downlink equals that of a genie-aided
Markov-modeled downlink where, at the end of every control
interval, the base station learns the state of the channels of all
the users in that control interval. The sum capacity is given as

Csum = psp + (1− ps)ps

with ps =
r

1− (p− r)
,

3A queue with backlog B is defined to be stable iff limb→∞
P (B > b)=0.
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where ps is the probability that the channel of user 1 (or 2)
is ON in steady state. The greedy policy achieves the sum
capacity of both systems.

Proof: We begin with the derivation of the sum through-
put of the greedy policy in the genie-aided system. From (4),
with πss(1) = πss(2) = ps,

ηgenie
sum ({̂� k}k≥1)

= lim
m→∞

V genie
m (πss, {̂

�
k}k≥1)

m

= lim
m→∞

1

m

(
ps

+
1∑

k=m−1

ESk+1(1),Sk+1(2)|πm=πss Rk(Sk+1(1), Sk+1(2))
)
,

where, for any k,

ESk+1(1),Sk+1(2)|πm=πss Rk(Sk+1(1), Sk+1(2))

= P
(
{Sk+1(1) = 1 ∪ Sk+1(2) = 1}|πm = πss

)
p

+P
(
{Sk+1(1) = 0 ∩ Sk+1(2) = 0}|πm = πss

)
r

= (2ps − p2
s)p + (1− ps)

2r

= psp + (1− ps)ps.

The last equation follows from the property of the steady state
probability: ps = psp+(1−ps)r. The sum throughput is now
given by,

ηgenie
sum ({̂� k}k≥1) = psp + (1− ps)ps, (19)

with ps derived as below.
The Markov chain transition matrix P =

[
p q
r s

]
can be

written as P = UΛV where

U =

[
1 1
1 −r

q

]

Λ =

[
1 0
0 p + s− 1

]

V =
1

1 + r
q

[
r
q

1

1 −1

]

with V U =

[
1 0
0 1

]
. Assuming4 p + s < 2,

lim
n→∞

P n =

[
r

1−(p−r) 1− r
1−(p−r)

r
1−(p−r) 1− r

1−(p−r)

]

⇒ ps =
r

1− (p− r)
.

We now proceed to prove that the sum throughput of the
greedy policy in the original system equals that of the greedy
policy in the genie-aided systems. Consider the scheduling
problem for the original system in control interval k under
the greedy policy. When the user scheduled in the previous
control interval ak+1 sends back an ACK, the scheduling
decision is retained in the current interval, i.e., ak = ak+1.
Otherwise, the other user is scheduled in k. This procedure is

4p + s = 2 leads to P =

»

1 0
0 1

–

, a trivial case with no steady state.

evident from the structure of the greedy policy discussed in
Section IV. We can interpret this decision logic as follows:

When at least one of the users had an ON channel
in the previous control interval, that user5 is identified
for scheduling in the current control interval k, leading
to an expected current reward Rk = p. Reward Rk = r
is accrued only when both the channels were in the OFF state.

From this observation we see that, under the greedy policy,
no improvement in sum throughput can be achieved even if
the channel states of both the users in control interval k + 1
were available for the scheduling decision in control interval k.
This establishes the equivalence between the original system
and the genie-aided system in terms of the sum throughput
achieved by the greedy policy. We have already proved the
sum throughput optimality of the greedy policy in the original
system when N = 2, in Section III. Thus the sum capacity of
the original system is given by (19).

We now proceed to prove that (19) is the sum capacity of the
genie-aided system as well by examining the sum throughput
optimality of the greedy policy in the genie-aided system. For
any control interval m, we rewrite the net expected reward
from (3) for the genie aided system below.

V genie
m (πm, {

�
k}k≤m)

= Rm(πm, am) + E[V genie
m−1 (πm−1, {

�
k}k≤m−1)|πm, am].

Note that since the current channel state of both the users
(Sm(1) and Sm(2)) are available at the base station at the end
of the control interval m, the belief vector πm−1 and hence
the expected future reward E[V genie

m−1 ] are independent of the
scheduling decision am. Therefore, using a proof technique
similar to that of Proposition 1, it can be proved that in any
control interval, the net expected reward is maximized by the
greedy policy in the genie-aided system. This establishes the
sum throughput optimality of the greedy policy in the genie-
aided system as well. The proposition thus follows.
Insights on the result in Proposition 5 can be obtained by ex-
amining the fundamental trade-off involved in the scheduling
decisions in the Markov-modeled downlink. Transmission to a
scheduled user and eventually obtaining ARQ feedback from
that user accomplishes the following two objectives:

• data transmission in the current slot, which influences the
current reward Rk.

• probing the channel of a user for future scheduling
decisions, which influences the expected reward in future
control intervals.

The optimal schedule strikes a balance between these two
objectives (that need not always contradict each other).

From the discussion in the proof of Proposition 5, we see
that, in the original system, the choice of the user whose
channel is probed becomes irrelevant as far as the future
reward is concerned6. That explains the result in Corollary 2
and why the greedy policy is optimal in the sum throughput
sense. Considering the genie-aided system, since the channel

5User ak+1 is given higher priority if both channels were ON.
6As long as one of the users is probed.
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state information of both the users are freely available to the
scheduler at the end of the control interval, there is no need to
probe the channel of any user to help with future scheduling
decisions. This makes the greedy policy the sum throughput
optimal for the genie-aided system as well.

B. Stabilizable and the Unstabilizable Rate Regions of the
Markov-Modeled Downlink

The stabilizable rate region of a two user queuing system is
defined such that if the arrival rate vector (λ1, λ2) belongs to
this region, then there exists a scheduling policy with per-user
throughput vector7 (µ1, µ2) such that

(λ1, λ2) � (µ1, µ2),

where � is the point wise inequality. Note that the above
condition is necessary and sufficient to ensure the stability of
the queues as defined in the beginning of this section. We now
introduce the following proposition.

Proposition 6: The Markov-modeled downlink has a stabi-
lizable rate region given by the set of points (λ1, λ2) such
that

(λ1, λ2) ∈ Hconvex(O, A1, S, A2)

where O = (0, 0)

A1 = (ps, 0)

S = (
Csum

2
,
Csum

2
)

A2 = (0, ps). (20)

with Csum and ps introduced in the previous subsection.
Hconvex(X) is the convex hull of the set of points X defined
as,

Hconvex(X)

=
{ size(X)∑

i=1

βixi

∣∣∣ xi ∈ X, βi ∈ R, βi ≥ 0,

size(X)∑

i=1

βi = 1
}
.

Proof: Refer to Fig. 4 for an idea on the relative positions
of the points A1, A2, S and O. Due to the inherent symmetry
between the users in the system, from the results of the
previous subsection, the service rate vector S can be achieved
by the greedy policy. The service rate vectors A1 and A2

can be achieved by scheduling transmission to only user 1
or 2, respectively, in every control interval. Any service rate
on the edges A1S or A2S can be achieved by time sharing
between the corresponding two policies. From the definition
of the convex hull, for any arrival rate vector belonging to the
region in (20), we can always find a stabilizing service rate
vector on one of the edges A1S or A2S. The proposition thus
follows.
The unstabilizable rate region of a two user queuing system
is such that, if (λ1, λ2) belongs to this region, then for every
scheduling policy with associated service rate vector (µ1, µ2),

(λ1, λ2) � (µ1, µ2).

With this definition we introduce the following proposition.

7Will henceforth be referred to as service rate vector.

Proposition 7: The Markov-modeled downlink has an un-
stabilizable rate region given by the set of points (λ1, λ2) such
that

(λ1, λ2) /∈ Hconvex(O, A1, B1, B2, A2)

where O = (0, 0)

A1 = (ps, 0)

B1 =
(
psp + (1− ps)

2r, (1− ps)psp
)

A2 = (0, ps)

B2 =
(
(1− ps)psp, psp + (1− ps)

2r
)
. (21)

Proof: The relative positions of the points
A1, A2, B1, B2, S and O are illustrated in Fig. 4.
We proceed by showing that (21) is an unstabilizable
region of the genie-aided system. This can be established
if we prove that any scheduling scheme in the genie-aided
system achieves a service rate vector within the convex
hull Hconvex(O, A1, B1, B2, A2). Consider a broad class of
schedulers in the genie-aided system, with each member
identified by the parameters αi ∈ [0, 1], i ∈ {1, . . . , 4}. A
member of this class follows the following decision logic in
control interval k:

• If
[
Sk+1(1)
Sk+1(2)

]
=
[
0
0

]
, schedule user 1 with probability α1

and user 2 w. p. 1− α1.

• If
[
Sk+1(1)
Sk+1(2)

]
=
[
0
1

]
, ak =

{
1 w.p. α2

2 w.p. 1− α2

• If
[
Sk+1(1)
Sk+1(2)

]
=
[
1
0

]
, ak =

{
1 w.p. α3

2 w.p. 1− α3

• If
[
Sk+1(1)
Sk+1(2)

]
=
[
1
1

]
, ak =

{
1 w.p. α4

2 w.p. 1− α4

Since
[
Sk+1(1)
Sk+1(2)

]
is a sufficient statistic for

[
Sk(1)
Sk(2)

]
, any

scheduling scheme in the genie-aided system falls under the
above class of schedulers or will have a member of this class
achieving the same service rate vector as itself. Thus it is now
sufficient to prove that the service rate vector achieved by any
member of this class belongs to Hconvex(O, A1, B1, B2, A2).

With α1 . . . α4 ∈ [0, 1] fixed, the service rate for user 1 is
given by

µ1 =
∑

i,j∈{0,1}

P
([

Sk+1(1)
Sk+1(2)

]
=

[
i
j

])
×

P
(
ak = 1

∣∣∣
[
Sk+1(1)
Sk+1(2)

]
=

[
i
j

] )
×

P (Sk(1) = 1|Sk+1(1) = i)

= (1− ps)
2α1r + (1− ps)psα2r + ps(1− ps)α3p

+p2
sα4p, (22)

with ps = r
1−(p−r) . Similarly,

µ2 = (1− ps)
2(1− α1)r + (1− ps)ps(1− α2)p

+ ps(1− ps)(1− α3)r + p2
s(1− α4)p, (23)

and the sum throughput is given by,

µ1 + µ2 = ps + (1− ps)ps(p− r)(α3 − α2).
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We see that the values of α1 and α4 are irrelevant from the sum
throughput point of view. Consider the following two cases.
Case 1, when α3 ≤ α2:

0 ≤ µ1 + µ2 ≤ ps.

Since A1(1) + A1(2) = A2(1) + A2(2) = ps, we have

(µ1, µ2) ∈ Hconvex(O, A1, A2). (24)

Case 2, when α3 > α2:

ps < µ1 + µ2 ≤ ps + (1− ps)ps(p− r) = psp + (1− ps)ps.

Since B1(1) + B1(2) = B2(1) + B2(2) = psp + (1− ps)
2r +

(1 − ps)psp = psp + (1 − ps)ps, we can find points EA1B1

and EA2B2
on edges A1B1 and A2B2 respectively, such that

EA1B1
(1) + EA1B1

(2) = EA2B2
(1) + EA2B2

(2) = µ1 + µ2.
Any point XA1B1

on the edge A1B1 can be written as a convex
combination of points A1 and B1, i.e., ∃ β ∈ [0, 1] such that

XA1B1
= A1β + B1(1− β)

=
(
psβ + (psp + (1− ps)

2r)(1− β),

(1− ps)psp(1− β)
)
.

With β = 1− (α3 − α2), we have XA1B1
(1) + XA1B1

(2) =
µ1 + µ2. Thus

EA1B1
=

(
ps(1− (α3 − α2)) + (psp + (1− ps)

2r)(α3 − α2),

(1− ps)psp(α3 − α2)
)
.

Due to the symmetry between A1, B1 and A2, B2, we have
EA2B2

= (EA1B1
(2), EA1B1

(1)). Using µ1 from (22), it can
be shown that, for any αi∈{1...4} ∈ [0, 1] with α3 > α2,

EA2B2
(1) ≤ µ1 ≤ EA1B1

(1). (25)

Since EA1B1
(1)+EA1B1

(2) = EA2B2
(1)+EA2B2

(2) = µ1+
µ2, (25) translates to,

(µ1, µ2) ∈ Hconvex(EA1B1
, EA1B1

).

The above relation along with the fact that EA1B1
∈

Hconvex(A1, B1) and EA2B2
∈ Hconvex(A2, B2) yields,

(µ1, µ2) ∈ Hconvex(A1, B1, B2, A2). (26)

Combining the results in (24) and (26), we establish that the
region in (21) is an unstabilizable region for the genie-aided
system. The proposition thus follows.
The stabilizable and the unstabilizable rate region results are
summarized in Fig. 5

Corollary 8: The stability region of the genie-aided system
is given by the set of points (λ1, λ2) such that

(λ1, λ2) ∈ Hconvex(O, A1, B1, B2, A2),

with O, A1, B1, B2 and A2 defined as before.
Proof: Consider a scheduler belonging to the class

introduced in the previous discussion. With {α1, α2, α3, α4} =
{1, 0, 1, 1}, from (22) and (23), it can be seen that the
service rate vector (µ1, µ2) = B1. With {α1, α2, α3, α4} =
{0, 0, 1, 0}, a service rate vector (µ1, µ2) = B2 can be
achieved. Both these policies are fundamentally greedy in

nature. However, the former gives priority to user 1 while
the latter to user 2. We have already seen that points A1

and points A2 can be achieved by scheduling to only user
1 or 2 respectively. Points along the edges A1B1, B1B2

and B2A2 can be achieved by time sharing between the
corresponding two policies. The preceding arguments es-
tablish Hconvex(O, A1, B1, B2, A2) as a stabilizable region
for the genie-aided downlink. We have already established
that Hconvex(O, A1, B1, B2, A2) is an unstabilizable region as
well, hence proving the corollary.

VII. CONCLUSION

We have considered the problem of scheduling under partial
channel state information in a Markov-modeled downlink with
ARQ feedback. Using POMDP formulation, we have shown
that, for N ≤ 3 users, a simple greedy policy that maximizes
the current reward is optimal in terms of sum throughput. By
developing a simple round-robin based implementation that
does not require the statistics of the underlying Markov chain,
we have shown that the greedy policy is attractive from a
practical point of view. We have also derived a sufficient
condition for the optimality of the greedy policy in the general
N user case. We conjectured that the greedy policy satisfies
this condition and is hence optimal for any number of users
in the system. By establishing an equivalence with a genie-
aided system, a simple expression for the sum capacity of
the Markov-modeled downlink system has been derived when
N = 2. Assuming random arrivals in the queues at the base
station, we have studied the stabilizable and the unstabilizable
rate regions of the downlink system for the two user case.
Before we conclude, note that our problem is a special case
of the restless multi-armed bandit problem [25]. This problem
has been shown to be PSPACE-hard to solve in general [26].
Thus our result on the optimality of the greedy policy may be
of importance in understanding the properties of the optimal
policy in the general restless multi-armed bandit processes.

APPENDIX I
PROOF OF PROPOSITION 4

We rewrite the sufficient condition from (18) below. For any
m > 1,
[
V̂m−1

(
[1 X 0], [1 2 3]

)
− V̂m−1

(
[1 0 X ], [1 2 3]

)]
≤ 1

when n = 1,[
V̂m−1

(
[Y 1 0], [1 2 3]

)
− V̂m−1

(
[1 Y 0], [1 2 3]

)]
≤ 1

when n = 2,

where X , Y are binary numbers and {
�

k}k≤m−1 =

{̂� k}k≤m−1.
We first consider n = 1. X = 0 is a trivial case. Hence, we

focus on X = 1. With V̂0 = 0 and 1 ≤ k ≤ m− 1, using an

Page 9 of 13 IEEE/ACM Transactions on Networking

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

10

expansion along the lines of (13), we have

V̂k

(
[1 1 0], [1 2 3]

)

= p + PSk|Sk+1=[110]([0 0 0])V̂k−1

(
[0 0 0], [2 3 1]

)

+PSk|Sk+1=[110]([0 0 1])V̂k−1

(
[0 0 1], [2 3 1]

)

+PSk|Sk+1=[110]([0 1 0])V̂k−1

(
[0 1 0], [2 3 1]

)

+PSk|Sk+1=[110]([0 1 1])V̂k−1

(
[0 1 1], [2 3 1]

)

+PSk|Sk+1=[110]([1 0 0])V̂k−1

(
[1 0 0], [1 2 3]

)

+PSk|Sk+1=[110]([1 0 1])V̂k−1

(
[1 0 1], [1 2 3]

)

+PSk|Sk+1=[110]([1 1 0])V̂k−1

(
[1 1 0], [1 2 3]

)

+PSk|Sk+1=[110]([1 1 1])V̂k−1

(
[1 1 1], [1 2 3]

)
.

Note that the schedule order vector evolves according to (12).
Using the symmetry property of (14), we rewrite

V̂k

(
[1 1 0], [1 2 3]

)

= p + PSk|Sk+1=[110]([0 0 0])V̂k−1

(
[0 0 0], [1 2 3]

)

+PSk|Sk+1=[110]([0 0 1])V̂k−1

(
[0 1 0], [1 2 3]

)

+PSk|Sk+1=[110]([0 1 0])V̂k−1

(
[1 0 0], [1 2 3]

)

+PSk|Sk+1=[110]([0 1 1])V̂k−1

(
[1 1 0], [1 2 3]

)

+PSk|Sk+1=[110]([1 0 0])V̂k−1

(
[1 0 0], [1 2 3]

)

+PSk|Sk+1=[110]([1 0 1])V̂k−1

(
[1 0 1], [1 2 3]

)

+PSk|Sk+1=[110]([1 1 0])V̂k−1

(
[1 1 0], [1 2 3]

)

+PSk|Sk+1=[110]([1 1 1])V̂k−1

(
[1 1 1], [1 2 3]

)
.

Similarly,

V̂k

(
[1 0 1], [1 2 3]

)

= p + PSk|Sk+1=[101]([0 0 0])V̂k−1

(
[0 0 0], [1 2 3]

)

+PSk|Sk+1=[101]([0 0 1])V̂k−1

(
[0 1 0], [1 2 3]

)

+PSk|Sk+1=[101]([0 1 0])V̂k−1

(
[1 0 0], [1 2 3]

)

+PSk|Sk+1=[101]([0 1 1])V̂k−1

(
[1 1 0], [1 2 3]

)

+PSk|Sk+1=[101]([1 0 0])V̂k−1

(
[1 0 0], [1 2 3]

)

+PSk|Sk+1=[101]([1 0 1])V̂k−1

(
[1 0 1], [1 2 3]

)

+PSk|Sk+1=[101]([1 1 0])V̂k−1

(
[1 1 0], [1 2 3]

)

+PSk|Sk+1=[101]([1 1 1])V̂k−1

(
[1 1 1], [1 2 3]

)
.

From the preceding equations,

V̂k

(
[1 1 0], [1 2 3]

)
− V̂k

(
[1 0 1], [1 2 3]

)

=pqr
(
V̂k−1

(
[1 0 1], [1 2 3]

)
− V̂k−1

(
[1 1 0], [1 2 3]

))

+p2s
(
V̂k−1

(
[1 1 0], [1 2 3]

)
− V̂k−1

(
[1 0 1], [1 2 3]

))

+q2r
(
V̂k−1

(
[0 1 0], [1 2 3]

)
− V̂k−1

(
[1 0 0], [1 2 3]

))

+qps
(
V̂k−1

(
[1 0 0], [1 2 3]

)
− V̂k−1

(
[0 1 0], [1 2 3]

))

=
[
p
(
V̂k−1

(
[1 1 0], [1 2 3]

)
− V̂k−1

(
[1 0 1], [1 2 3]

))

+q
(
V̂k−1

(
[1 0 0], [1 2 3]

)
− V̂k−1

(
[0 1 0], [1 2 3]

))]
×

(p− r). (27)

Now we examine two key quantities in (27).

V̂k

(
[1 0 0], [1 2 3]

)

= p + PSk|Sk+1=[100]([0 0 0])V̂k−1

(
[0 0 0], [1 2 3]

)

+PSk|Sk+1=[100]([0 0 1])V̂k−1

(
[0 1 0], [1 2 3]

)

+PSk|Sk+1=[100]([0 1 0])V̂k−1

(
[1 0 0], [1 2 3]

)

+PSk|Sk+1=[100]([0 1 1])V̂k−1

(
[1 1 0], [1 2 3]

)

+PSk|Sk+1=[100]([1 0 0])V̂k−1

(
[1 0 0], [1 2 3]

)

+PSk|Sk+1=[100]([1 0 1])V̂k−1

(
[1 0 1], [1 2 3]

)

+PSk|Sk+1=[100]([1 1 0])V̂k−1

(
[1 1 0], [1 2 3]

)

+PSk|Sk+1=[100]([1 1 1])V̂k−1

(
[1 1 1], [1 2 3]

)
.

Note that the symmetry property of (14) is used in the above
expansion. Similarly,

V̂k

(
[0 1 0], [1 2 3]

)

= r + PSk|Sk+1=[010]([0 0 0])V̂k−1

(
[0 0 0], [1 2 3]

)

+PSk|Sk+1=[010]([0 0 1])V̂k−1

(
[0 1 0], [1 2 3]

)

+PSk|Sk+1=[010]([0 1 0])V̂k−1

(
[1 0 0], [1 2 3]

)

+PSk|Sk+1=[010]([0 1 1])V̂k−1

(
[1 1 0], [1 2 3]

)

+PSk|Sk+1=[010]([1 0 0])V̂k−1

(
[1 0 0], [1 2 3]

)

+PSk|Sk+1=[010]([1 0 1])V̂k−1

(
[1 0 1], [1 2 3]

)

+PSk|Sk+1=[010]([1 1 0])V̂k−1

(
[1 1 0], [1 2 3]

)

+PSk|Sk+1=[010]([1 1 1])V̂k−1

(
[1 1 1], [1 2 3]

)
.

Together we have

V̂k

(
[1 0 0], [1 2 3]

)
− V̂k

(
[0 1 0], [1 2 3]

)

=
[
1−r

(
V̂k−1

(
[1 1 0], [1 2 3]

)
−V̂k−1

(
[1 0 1], [1 2 3]

))]
×

(p− r). (28)

Thus, with V̂0 = V̂−1 = 0, (27) becomes

V̂k

(
[1 1 0], [1 2 3]

)
− V̂k

(
[1 0 1], [1 2 3]

)

=

[
p
(
V̂k−1

(
[1 1 0], [1 2 3]

)
− V̂k−1

(
[1 0 1], [1 2 3]

))

+
[
1−r

(
V̂k−2

(
[1 1 0], [1 2 3]

)
−V̂k−2

(
[1 0 1], [1 2 3]

))]
×

q(p− r)

]
(p− r). (29)

For a fixed k ≤ m − 1, if V̂k−2

(
[1 1 0], [1 2 3]

)
−

V̂k−2

(
[1 0 1], [1 2 3]

)
∈ [0, 1] and V̂k−1

(
[1 1 0], [1 2 3]

)
−

V̂k−1

(
[1 0 1], [1 2 3]

)
∈ [0, 1] then, since p ≥ r, from (29),

V̂k

(
[1 1 0], [1 2 3]

)
− V̂k

(
[1 0 1], [1 2 3]

)
≥ 0. To examine the
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upper boundedness, we expand

V̂k

(
[1 1 0], [1 2 3]

)
− V̂k

(
[1 0 1], [1 2 3]

)

=

[
p
(
V̂k−1

(
[1 1 0], [1 2 3]

)
− V̂k−1

(
[1 0 1], [1 2 3]

))

+
[(

V̂k−2

(
[1 1 0], [1 2 3]

)
− V̂k−2

(
[1 0 1], [1 2 3]

))
×

qr(r − p)
]

+ qp− qr

]
(p− r)

≤ (p− r)
[
p + qr + q − qr

]
(under the given condition)

≤ 1.

Therefore, we have the following statement. For any k≤m−1,

If V̂k−2

(
[1 1 0], [1 2 3]

)
− V̂k−2

(
[1 0 1], [1 2 3]

)
∈ [0, 1]

and V̂k−1

(
[1 1 0], [1 2 3]

)
− V̂k−1

(
[1 0 1], [1 2 3]

)
∈ [0, 1]

then V̂k

(
[1 1 0], [1 2 3]

)
− V̂k

(
[1 0 1], [1 2 3]

)
∈ [0, 1].

(30)

Note that V̂1

(
[1 1 0], [1 2 3]

)
− V̂1

(
[1 0 1], [1 2 3]

)
= 0

and from (27), V̂2

(
[1 1 0], [1 2 3]

)
− V̂2

(
[1 0 1], [1 2 3]

)
=

q(p−r)2 ∈ [0, 1]. From the preceding observations along with
statement (30), we have, by induction, ∀ k ≤ m− 1,

0 ≤ V̂k

(
[1 X 0], [1 2 3]

)
− V̂k

(
[1 0 X ], [1 2 3]

)
≤ 1. (31)

This completes the first part of the proof, i.e, the n = 1 case.
The second part, n = 2 case, is proved if we show

V̂m−1

(
[Y 1 0], [1 2 3]

)
− V̂m−1

(
[1 Y 0], [1 2 3]

)
≤ 1.

Y = 1 is a trivial case. When Y = 0, from (28) and (31),
∀ k ≤ m− 1,

0 ≤ V̂k

(
[1 0 0], [1 2 3]

)
− V̂k

(
[0 1 0], [1 2 3]

)
≤ 1.

This proves the second part.

APPENDIX II
KEY QUANTITIES

N : Number of users in the downlink environment
p : prob (channel is ON in the current slot | channel

was ON in the previous slot)
q : prob (channel is OFF in the current slot | channel

was ON in the previous slot)
r : prob (channel is ON in the current slot | channel

was OFF in the previous slot)
s : prob (channel is OFF in the current slot | channel

was OFF in the previous slot)
ak : Index of the user scheduled in control interval k
πk : Belief vector in the control interval k
Rk : Expected current reward in the control interval k
Vk : Net expected reward in the control interval k
ηsum : Sum throughput
�

k : Scheduling policy applied in the control interval
k

̂�
k : Greedy scheduling policy applied in the control

interval k
� ∗

k : Optimal scheduling policy
Sk : State vector such that Sk(i) indicates the state

(1-ON/0-OFF) of the channel of user i in control
interval k

Ok : Schedule order vector in the control interval k,
the ordered arrangement of the index of the users
in decreasing order of πk(i)

Csum: Sum capacity of the downlink environment
ps : Steady state ON probability of the Markov chan-

nels
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Fig. 5. Stabilizable and Unstabilizable rate regions for the Markov-modeled
downlink.
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