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Abstract—We propose novel cooperative transmission proto-
cols for delay-limited coherent fading channels consisting of
(half-duplex and single-antenna) partners and one cell site. In our
work, we differentiate between the relay, cooperative broadcast
(down-link), and cooperative multiple-access (CMA) (up-link)
channels. The proposed protocols are evaluated using Zheng–Tse
diversity–multiplexing tradeoff. For the relay channel, we inves-
tigate two classes of cooperation schemes; namely, amplify and
forward (AF) protocols and decode and forward (DF) protocols.
For the first class, we establish an upper bound on the achievable di-
versity–multiplexing tradeoff with a single relay. We then construct
a new AF protocol that achieves this upper bound. The proposed
algorithm is then extended to the general case with relays
where it is shown to outperform the space–time coded protocol
of Laneman and Wornell without requiring decoding/encoding
at the relays. For the class of DF protocols, we develop a dynamic
decode and forward (DDF) protocol that achieves the optimal
tradeoff for multiplexing gains . Furthermore,
with a single relay, the DDF protocol is shown to dominate the class
of AF protocols for all multiplexing gains. The superiority of the
DDF protocol is shown to be more significant in the cooperative
broadcast channel. The situation is reversed in the CMA channel
where we propose a new AF protocol that achieves the optimal
tradeoff for all multiplexing gains. A distinguishing feature of the
proposed protocols in the three scenarios is that they do not rely on
orthogonal subspaces, allowing for a more efficient use of resources.
In fact, using our results one can argue that the suboptimality of
previously proposed protocols stems from their use of orthogonal
subspaces rather than the half-duplex constraint.

Index Terms—Cooperative diversity, diversity–multiplexing
tradeoff, dynamic decode and forward (DDF), half-duplex node,
multiple-access channel, nonorthogonal amplify and forward
(NAF), relay channel.

I. INTRODUCTION

RECENTLY, there has been a growing interest in the design
and analysis of wireless cooperative transmission proto-

cols (e.g., [1]–[17]). These works consider several interesting
scenarios (e.g., fading versus additive white Gaussian noise
(AWGN) channels, ergodic versus quasi-static channels, and
full-duplex versus half-duplex transmission) and devise appro-
priate transmission techniques and analysis tools, based on the
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settings. Here, we focus on the delay-limited coherent channel
and adopt the same setup as considered by Laneman, Tse, and
Wornell in [3]. There, the authors imposed the half-duplex
constraint (either transmit or receive, but not both) on the co-
operating nodes and proposed several cooperative transmission
protocols. In this setup, the basic idea is to leverage the antennas
available at the other nodes in the network as a source of virtual
spatial diversity. The proposed protocols in [3] were classified
as either amplify and forward (AF), where the helping node re-
transmits a scaled version of its soft observation, or decode and
forward (DF), where the helping node attempts first to decode
the information stream and then re-encodes it using (a possibly
different) codebook. All the proposed schemes in [3] used a
time-division multiple-access (TDMA) strategy, where the two
partners relied on the use of orthogonal subspaces to repeat
each other’s signals. Later, Laneman and Wornell extended
their DF strategy to the partners scenario [4]. Other followup
works have focused on developing practical coding schemes
that attempt to exploit the promised information-theoretic gains
(e.g., [5], [6]).

As observed in [3], [4], previously proposed cooperation
protocols suffer from a significant loss of performance in high
spectral efficiency scenarios. In fact, the authors of [3] posed
the following open problem: “a key area of further research is
exploring cooperative diversity protocols in the high spectral
efficiency regime.” This remark motivates our work here, where
we present more efficient (and in some cases optimal) AF and
DF protocols for the relay, cooperative broadcast (CB), and
cooperative multiple-access (CMA) channels. To establish the
gain offered by the proposed protocols, we adopt the diversity–
multiplexing tradeoff as our measure of performance. This
powerful tool was introduced by Zheng and Tse for point-to-
point multiple-input multiple-output (MIMO) channels in [18]
and later used by Tse, Viswanath, and Zheng to study the
(noncooperative) multiple-access channel in [19].

In the following, we summarize the main results of this paper,
some of which were initially reported in [20]–[24].

1. For the single-relay channel, we establish an upper bound
on the achievable diversity–multiplexing tradeoff by the
class of AF protocols. We then identify a variant within
this class, referred to as the nonorthogonal amplify and
forward (NAF) protocol, that achieves this upper bound.
We then propose a dynamic decode and forward (DDF)
protocol and show that it achieves the optimal tradeoff
for multiplexing gains .1 Furthermore, the
DDF protocol is shown to outperform all AF protocols

1The multiplexing gain “ ” will be defined rigorously in the sequel.
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for arbitrary multiplexing gains. Finally, the two proto-
cols (i.e., NAF and DDF) are extended to the scenario
with relays where we characterize their tradeoff
curves. Notably, the NAF protocol is shown to outperform
the space–time-coded protocol of Laneman and Wornell
(LW-STC) [4] without requiring decoding/encoding at the
relays.

2. For the cooperative broadcast channel, we present a mod-
ified version of the DDF protocol to allow for reliable
transmission of the common information. We then char-
acterize the tradeoff curve of this protocol and use this
characterization to establish its superiority compared to
AF protocols. In fact, we argue that the gain offered by
the DDF is more significant in this scenario (as compared
to the relay channel).

3. For the symmetric multiple-access scenario, we propose
a novel AF cooperative protocol where an artificial inter-
symbol-interference (ISI) channel is created. We prove
the optimality (in the sense of diversity–multiplexing
tradeoff) of this protocol by showing that, for all multi-
plexing gains (i.e., ), it achieves the diversity–
multiplexing tradeoff of the corresponding point-
to-point channel. One can then use this result to argue
that the suboptimality of the schemes proposed in [3] was
dictated by the use of orthogonal subspaces rather than
the half-duplex constraint. We also utilize this result to
shed more light on the fundamental difference between
half-duplex relay and CMA channels.

Before proceeding further, a brief remark regarding two in-
dependent prior works [8], [9] is in order. In [7], [8], Nabar,
Bölcskei, and Kneubuhler considered the half-duplex single-
relay channel, under almost the same assumptions as in [3] (i.e.,
the only difference is that, for diversity analysis, the relay-des-
tination channel was assumed to be nonfading) and proposed
a set of AF and DF protocols. In one of their AF protocols
(NBK-AF), Nabar et al. allowed the source to continue trans-
mission over the whole duration of the codeword, while the relay
listened to the source for the first half of the codeword and re-
layed the received signal over the second half. This makes the
NBK-AF protocol identical to the NAF protocol [7], [21]. Here,
we characterize the diversity–multiplexing tradeoff achieved by
this protocol while relaxing the assumption of nonfading relay-
destination channel which is invoked in the analysis reported
in [8]. Using this analysis, we establish the optimality of this
scheme within the class of linear AF protocols. Furthermore,
we generalize the NAF protocol to the case of arbitrary number
of relays and characterize its achieved tradeoff curve. In [9],
Prasad and Varanasi derived upper bounds on the diversity–mul-
tiplexing tradeoffs achieved by the DF protocols proposed in [8].
In the sequel, we establish the gain offered by the proposed DDF
protocol by comparing its diversity–multiplexing tradeoff with
the upper bounds in [9]. Finally, we emphasize that, except for
the single-relay NAF protocol, all the other protocols proposed
in this paper are novel.

In this paper, we use to mean , to mean
, and to mean nearest integer to toward plus in-

finity. and denote the set of real and complex -tuples,
respectively, while denotes the set of nonnegative -tu-

ples. We denote the complement of set , in , by ,
while means . denotes the identity
matrix, denotes the autocovariance matrix of vector , and

denotes the base- logarithm.
The rest of the paper is organized as follows. In Section II,

we detail our modeling assumptions and review, briefly, some
results that will be extensively used in the sequel. The half-du-
plex relay channel is investigated in Section III where we de-
scribe the NAF and DDF protocols and derive their tradeoff
curves. In Section IV, we extend the DDF protocol to the co-
operative broadcast channel. Section V is devoted to the CMA
channel where we propose a new AF protocol and establish its
optimality, in the symmetric scenario, with respect to the diver-
sity–multiplexing tradeoff. In Section VI, we present numerical
results that show the signal-to-noise (SNR) gains offered by the
proposed schemes in certain representative scenarios. Finally,
we offer some concluding remarks in Section VII. To enhance
the flow of the paper, we collect all the proofs in the Appendix.

II. BACKGROUND

First, we state the general assumptions that apply to the three
scenarios considered in this paper (i.e., relay, broadcast, and
multiple-access). Assumptions pertaining to a specific scenario
will be given in the related section.

1. All channels are assumed to be flat Rayleigh-fading and
quasi-static, i.e., the channel gains remain constant during
a coherence interval and change independently from one
coherence interval to another. Furthermore, the channel
gains are mutually independent with unit variance. The
additive noises at different nodes are zero-mean, mutu-
ally independent, circularly symmetric, and white com-
plex Gaussian. Furthermore, the variances of these noises
are proportional to one another such that there will always
be fixed offsets between the different channels’ s SNRs.

2. All nodes have the same power constraint, have a single
antenna, and operate synchronously. Only the receiving
node of any link knows the channel gain; no feedback
to the transmitting node is permitted (the incremental re-
laying protocol proposed in [3] cannot, therefore, be con-
sidered in our framework). Following in the footsteps of
[3], all cooperating partners operate in the half-duplex
mode, i.e., at any point in time, a node can either transmit
or receive, but not both. This constraint is motivated by,
e.g., the typically large difference between the incoming
and outgoing signal power levels. Though this half-duplex
constraint is quite restrictive to protocol development, it
is nevertheless assumed throughout the paper.

3. Throughout the paper, we assume the use of random
Gaussian codebooks, where a codeword spans the entire
coherence interval of the channel. Furthermore, we as-
sume asymptotically large code lengthes. This implies
that the diversity–multiplexing tradeoffs derived in this
paper serve as upper bounds for the performance of the
proposed protocols with finite code lengths. Results re-
lated to the design of practical coding/decoding schemes
that approach the fundamental limits established here
will be reported elsewhere.
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Next we summarize several important definitions and results
that will be used throughout the paper.

1. The SNR of a link is defined as

(1)

where denotes the average energy available for trans-
mission of a symbol across the link and denotes the
variance of the noise observed at the receiving end of the
link. We say that is exponentially equal to , de-
noted by , when

(2)

In (2), is called the exponential order of . and
are defined similarly.

2. Consider a family of codes indexed by operating
SNR , such that the code has a rate of bits
per channel use (BPCU) and a maximum-likelihood (ML)
error probability . For this family, the multiplexing
gain “ ” and the diversity gain “ ” are defined as

(3)

3. The problem of characterizing the optimal tradeoff be-
tween the reliability and throughput of a point-to-point
communication system over a coherent quasi-static flat
Rayleigh-fading channel was posed and solved by Zheng
and Tse in [18]. For a MIMO communication system with

transmit and receive antennas, they showed that, for
any , the optimal diversity gain is
given by the piecewise-linear function joining the
pairs for ,
provided that the code length satisfies .

4. We say that protocol uniformly dominates protocol
if, for any multiplexing gain , .

5. Assume that is a Gaussian random variable with zero
mean and unit variance. If denotes the exponential order
of , i.e.,

(4)

then the probability density function (pdf) of can be
shown to be

Careful examination of the previous expression reveals
that

for
for .

(5)

Thus, for independent random variables
distributed identically to , the probability that

belongs to set can be characterized by

for (6)

provided that is not empty. In other words, the expo-
nential order of only depends on . This is due to
the fact that the probability of any set, consisting of -tu-
ples with at least one negative element, de-
creases exponentially with SNR and therefore can be ne-
glected compared to which decreases polynomially
with SNR.

6. Consider a coherent linear Gaussian channel, i.e.,

where and denote the signal and noise
components of the observed vector, respectively. For this
channel, the pairwise error probability (PEP) of the ML
decoder, denoted as , averaged over the ensemble of
random Gaussian codes, is upper bounded by

(7)

7. The following lemma will be used in characterizing the
diversity–multiplexing tradeoff of the DDF protocols.

Lemma 1: Consider a coherent linear Gaussian channel of
data rate and codeword length . The error probability of the
ML decoder which utilizes a fraction of the codeword such that
the mutual information between the received and transmitted
signals exceeds , averaged over the ensemble of random
Gaussian codes, can be made arbitrarily small provided that the
codeword length is sufficiently large.

Proof: Please refer to the Appendix.

III. THE HALF-DUPLEX RELAY CHANNEL

In this section, we consider the relay scenario in which
relays help a single source to better transmit its message to
the destination. As the vague descriptions “help” and “better
transmit” suggest, the general relay problem is rather broad and
only certain subproblems have been studied (for example, see
[25]). In this work, we focus on two important classes of relay
protocols. The first is the class of AF protocols, where a re-
laying node can only process the observed signal linearly be-
fore retransmitting it. The second is the class of DF protocols,
where the relays are allowed to decode and re-encode the mes-
sage using (a possibly different) codebook. Here we emphasize
that, a priori, it is not clear which class (i.e., AF or DF) offers a
better performance (e.g., [3]).

A. Amplify and Forward (AF) Protocols

We first consider the single-relay scenario (i.e., ).
For this scenario, we derive the optimal diversity–multiplexing
tradeoff and identify a specific protocol within this class, i.e.,
the NAF protocol [7], [21], that achieves this optimal tradeoff.
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We then extend the NAF protocol to the general case with an
arbitrary number of relays.

Under the half-duplex constraint, it is easy to see that any
single-relay AF protocol can be mathematically described by
some choice of the matrices , , and in the following
model:

(8)

In (8), represents the vector of observations at the
destination, the vector of source symbols,
the vector of noise samples (of variance ) observed by the
relay, and the vector of noise samples (of variance

) observed by the destination. The variables , , and
denote the source-relay channel gain, source-destination

channel gain, and relay-destination channel gain, respectively.
and are diagonal matrices. In

this protocol, the source can potentially transmit a new symbol
in every symbol interval of the codeword, while the relay
listens during the first symbols and then, for the remaining

symbols, transmits linear combinations of the noisy
observations using the coefficients in . In fact,
by letting , , , and (with

denoting the relay repetition gain),
we obtain Laneman–Tse–Wornell AF (LTW-AF) protocol [3].
Finally, we note that when the source symbols are independent,
the average energy constraint translates to

(9)

where and .

Theorem 2: The optimal diversity gain for the cooperative
relay scenario with a single AF relay is upper-bounded by

(10)

Proof: Please refer to the Appendix.

The upper bound on , as given by (10), is shown in
Fig. 1. Having Theorem 2 at hand, it now suffices to identify
an AF protocol that achieves this upper bound in order to es-
tablish its optimality. Toward this end, we observe that, in the
proof of Theorem 2, the only requirements on such that the
protocol described by (8) could potentially achieve the optimal
diversity–multiplexing tradeoff are for to be square (of di-
mension ) and full-rank. Furthermore, should not
violate the relay average energy constraint as given by (9). Thus,
the simple choices

for (11)

inspire the NAF protocol [7], [21]. In particular, the source
transmits on every symbol interval in a cooperation frame,
where a cooperation frame is defined as two consecutive

Fig. 1. Optimal diversity–multiplexing tradeoff for a single-relay AF protocol.

symbol intervals. The relay, on the other hand, transmits only
once per cooperation frame; it simply repeats the (noisy) signal
it observed during the previous symbol interval. It is important
to realize that this design is dictated by the half-duplex con-
straint, which implies that the relay can repeat at most once per
cooperation frame. We denote the repetition gain by and, for
frame , we denote the information symbols by . The
signals received by the destination during frame are thus,

where the repetition gain must satisfy (11). Note that, in
order to decode the message, the destination needs to know
the relay repetition gain , the source-relay channel gain , the
source-destination channel gain , and the relay-destination
channel gain . Now, we are ready to establish the optimality
of the NAF protocol with respect to the diversity–multiplexing
tradeoff.

Theorem 3: The NAF protocol achieves the optimal diver-
sity–multiplexing tradeoff for the AF single-relay scenario,
which is

(12)

Proof: Please refer to the Appendix.
Three remarks are now in order.
1. As shown in Fig. 1, the NAF protocol enjoys uniform

dominance over the direct transmission scheme (i.e., no
cooperation) and LTW-AF protocol. This dominance
can be attributed to relaxing the orthogonality constraint
whereby one can reap two distinct benefits: rate en-
hancement via continuous transmission and diversity
enhancement via cooperation. It is interesting to note
that this dominance is achieved while only half of the
symbols are repeated by the relay.

2. From Fig. 1, one can see that for multiplexing gains
greater that , the diversity gain achieved by the NAF
relay protocol is identical to that of the noncooperative
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Fig. 2. The super-frame in the NAF protocol with relays.

protocol. This is due to the fact that the AF cooperative
link provided by the relay cannot support multiplexing
gains greater than —a consequence of the half-duplex
constraint. Hence, for multiplexing gains larger than ,
there is only one link from the source to the destination,
and, thus, the tradeoff curve is identical to that of a
point-to-point system with one transmit and one receive
antenna. Later, we will show that the proposed DDF
strategy avoids this drawback.

3. As shown in the proof of Theorem 3, the achievability of
the optimal tradeoff is not very sensitive to the choice of
the repetition gain “ ” (i.e., for a wide range of choices,
the NAF protocol achieves the optimal tradeoff). In prac-
tice, one should optimize the repetition gain, experimen-
tally if needed, to minimize the outage probability at the
target rate and SNR.

The NAF protocol can be extended to the case of arbitrary
number of relays (i.e., ) as follows. First, we define a
super-frame as a concatenation of consecutive cooper-
ation frames. Within each super-frame, the relays take turns
repeating the signals they previously observed as they did in the
case of a single relay (refer to Fig. 2). Thus, the destination’s
received signals during a super-frame will be

...

where the source-relay channel gain, relay-destination channel
gain, relay-repetition gain, and relay-observed noise for relay

are denoted by , , , and ,
respectively. As before, represents the source–destination
channel gain. The quantities , , and represent the
received signal, noise sample, and source symbol, respectively,
during the th symbol interval of the th cooperation frame. Note
that there is nothing to be gained by having more than one relay
transmitting the same symbol simultaneously. Also, similar to
the single-relay NAF scenario, the destination needs to know
all relay repetition gains as well as all channel gains

and . The following theorem characterizes the
diversity–multiplexing tradeoff achieved by this protocol.

Theorem 4: The diversity–multiplexing tradeoff achieved by
the NAF protocol with relays is characterized by

Proof: The proof is virtually identical to that of The-
orem 3, and hence, is omitted for brevity.

It is interesting to note that the generalized NAF protocol uni-
formly dominates the LW-STC. This can be attributed to the
fact that in the generalized NAF protocol, in contrast to the
LW-STC protocol, the source transmits over the whole duration
of the codeword. The generalized NAF protocol offers the ad-
ditional advantage of low complexity since it does not require
decoding/encoding at the relays.

B. Decode and Forward (DF) Protocols

In this class of protocols, we allow for the possibility of
decoding/encoding at the different relays. In [3], Laneman,
Tse, and Wornell presented a particular variant of DF protocols
(LTW-DF) where the source transmits in the first half of the
codeword. Based on its received signal in this interval, the relay
attempts to decode the message. It then re-encodes and trans-
mits the encoded stream in the second half of the codeword. In
[4], Laneman and Wornell derived the diversity–multiplexing
tradeoff achieved by this scheme (i.e., ), which
is depicted in Fig. 3. Here, we propose a DDF protocol and
characterize its tradeoff curve. This characterization reveals
the uniform dominance of this protocol over all known full-
diversity (i.e., ) protocols proposed for the half-duplex
single-relay channel and furthermore establishes its optimality,
over a certain range of multiplexing gains (i.e., ).
We first describe and analyze the protocol for the case of a
single relay. Generalization to relays will then follow.

Similar to the previous section, we assume that a codeword
consists of consecutive symbol intervals, during which all
the channel gains remain unchanged. In the DDF protocol,
the source transmits data at a rate of BPCU during every
symbol interval in the codeword. The relay, on the other hand,
listens to the source until the mutual information between its
received signal and source signal exceeds . It then decodes
and re-encodes the message using an independent Gaussian
codebook and transmits it during the rest of the codeword. The
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Fig. 3. Diversity–multiplexing tradeoff for the DDF protocol with one relay.

dynamic nature of the protocol is manifested in the fact that we
allow the relay to listen for a time duration that depends on the
instantaneous channel realization to maximize the probability
of successful decoding. We denote the signals transmitted by
the source and relay as and , respectively,
where is the number of symbol intervals the relay waits
before starting transmission. Using this notation, the received
signals (at the destination) can be written as

for

for

From the protocol description, it is clear that the number of sym-
bols where the relay listens should be chosen as

(13)

where is the source-relay channel gain, and . One
can now see the dependence of this choice of on the instanta-
neous channel realization and that this choice, together with the
asymptotically large , guarantees that when , the relay
average probability of error with a Gaussian code ensemble is
arbitrarily small.2 Clearly, when , the relay does not con-
tribute to the transmission of the message, and hence, incorrect
decoding at the relay in this case does not affect performance.
Here, we observe that, in contrast to the NAF protocol, the des-
tination does not need to know the source-relay channel gain.
It does, however, need to know the relay waiting time , along,
with the source-destination and relay-destination channel gains.
The following theorem describes the diversity–multiplexing
tradeoff achievable with this cooperation protocol.

Theorem 5: The diversity–multiplexing tradeoff achieved by
the single-relay DDF protocol is given by

if
if .

(14)

Proof: Please refer to the Appendix.

2This point will be established rigorously in the proofs of Theorem 5 and
Lemma 1.

The diversity–multiplexing tradeoff of (14) is shown in Fig. 3.
It is now clear that the DDF protocol is optimal for
since it achieves the genie-aided diversity (where the relay is
assumed to know the information message a priori). For

, the DDF protocol suffers from a loss, compared to the
genie-aided strategy, since, on the average, the relay will only
be able to help during a small fraction of the codeword. It is
easy to see that, the performance for this range of multiplexing
gains cannot be improved through employing a mixed AF and
DF strategy. In fact, the DDF strategy dominates all such strate-
gies.3 It remains to be seen whether there exists a strategy that
closes the gap to the genie-aided strategy when or not.
Note also that the gain offered by the DDF protocol, compared
to AF protocols, can be attributed to the ability of this strategy
to transmit independent Gaussian symbols after successful de-
coding. In AF strategies, in contrast, the relay is limited to re-
peating the noisy Gaussian symbols it receives from the source.
Fig. 3 also compares the DDF protocol with the DF protocol pro-
posed in [8], which we refer to as NBK-DF. In this comparison,
we utilize the upper bound derived by Prasad and Varanasi on
the diversity–multiplexing tradeoff of the NBK-DF, which was
reported in [9]. One can see from Fig. 3 that the NBK-DF pro-
tocol does not achieve any diversity gain greater than one. This
can be attributed to the fact that in this protocol, the message is
split up into two parts, out of which, only one is retransmitted
by the relay. Fig. 3 also shows that for multiplexing gains close
to one, the NBK-DF upper bound outperforms the DDF pro-
tocol. Therefore, in this range, the comparison between the two
protocols depends on the tightness of the NBK-DF upper bound
which was not discussed in [9].

Next, we describe the generalization of the DDF protocol to
the case of multiple relays. In this case, the source and relays
cooperate in nearly the same manner as in the single-relay case.
Specifically, the source transmits during the whole codeword
while each relay listens until the mutual information between
its received signal and the signals transmitted by the source and
other relays exceeds . It is assumed that every relay knows
the codebooks used by the source and other relays. Once a relay
decodes the message, it uses an independent codebook to re-en-
code the message, which it then transmits for the rest of the
codeword. Note that, since the source-relay channel gains may
differ, the relays may require different wait times for decoding.
This complicates the protocol, since a given relay’s ability to
decode the message requires precise knowledge of the times
at which every other relay begins its transmission. To address
this problem, the codeword is divided into a number of seg-
ments, and relays are allowed to start transmission only at the
beginning of a segment. In between the segments, every relay
is allowedto broadcast a (well-protected) beacon, informing all
other relays whether or not it will start transmission. Judicious
choice of the segment length, relative to the codeword length,
results in only a small loss compared to the genie-aided case,
whereby all relays know all decoding times a priori. Here, we
assume that the number of segments is sufficiently large and the
length of the beacon signals is much smaller than the segment

3The proof for this is rather straightforward, and hence, is omitted here for
brevity.
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Fig. 4. Diversity–multiplexing tradeoff for the NAF, DDF, LW-STC, and
genie-aided protocols with four relays.

Fig. 5. Diversity–multiplexing tradeoff for the DDF protocol with different
number of relays.

length. Therefore, in characterizing the diversity–multiplexing
tradeoff achieved by this protocol, we ignore the losses associ-
ated with the beacons and the quantization of the starting times
for the different relays.

Theorem 6: The diversity–multiplexing tradeoff achieved by
the DDF protocol with relays is characterized by

.
(15)

Proof: Please refer to the Appendix.

The diversity-multiplexing tradeoff (15) is shown in Figs. 4
and 5 for different values of . While the loss of the DDF pro-
tocol compared to the genie-aided protocol increases with , it
is not clear at the moment if this loss is due to the half-duplex
constraint or due to the suboptimality of the DDF strategy.

IV. THE HALF-DUPLEX COOPERATIVE BROADCAST

(CB) CHANNEL

We now consider the CB scenario, where a single source
broadcasts to destinations. This model corresponds to a gen-
eralized version of a single-cell downlink where the destina-
tions are allowed to cooperate through helping one another in
receiving their messages. Similar to the relay channel scenario,
we adopt the quasi-static flat Raleigh-fading model for all the
source-destination and inter-destination channels. We assume
that the message intended for destination con-
sists of two parts. A common part of rate BPCU,
which is intended for all of the destinations and an individual
part of rate BPCU, which is specific to the th
destination. The total rate is then and the
multiplexing gain tuple is given by . We
define the overall diversity gain based on the performance of
the worst receiver as

where we require all the receivers to decode the common infor-
mation.4 Now, as a first step, one can see that if , i.e.,
if there is no common message, then the techniques developed
for the relay channel can be exported to this setting through a
proportional time sharing strategy. With this assumption, all of
the properties of the NAF and DDF protocols, established for
the relay channel, carry over to this scenario. The problem be-
comes slightly more challenging when . In fact, it is easy
to see that, for a fixed total rate , the highest probability of
error corresponds to the case where all destinations are required
to decode all the messages. This translates to the following con-
dition (that applies to any cooperation scheme):

(16)

So, we will focus the following discussion on this worst case
scenario, i.e.,

(17)

The first observation is that, in this scenario, the only AF
strategy that achieves the full rate extreme point
is the noncooperative protocol. Any other AF strategy will re-
quire some of the nodes to retransmit, and therefore not to listen
during parts of the codeword,5 which prevents it from achieving
full rate. Fortunately, this drawback can be avoided in the DDF
protocol. The reason is that, in this protocol, any node will start
helping only after it has successfully decoded the message. We
now propose a protocol for the CB scenario that is a direct ex-
tension of the DDF relay protocol. This will be referred to as the
CB-DDF protocol in the sequel. The only modification needed,
compared to the relay channel case, is that now every destination
can act as a relay for the other destinations, based on its instanta-
neous channel gain. Specifically, the source transmits during the
whole codeword while each destination listens until the mutual
information between its received signal and the signals trans-
mitted by the source and other destinations exceeds . Once a

4Clearly, this definition does not allow for different quality of service (QoS)
constraints.

5This follows from the half-duplex constraint.
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Fig. 6. The cooperation frame, super-frame, and coherence interval in the
CMA-NAF protocol with sources.

destination decodes the message, it uses an independent code-
book to re-encode the message, which it then transmits for the
rest of the codeword. Similar to the relay channel, it is assumed
that every destination knows the codebooks used by the source
and other destinations. Also, the protocol must include a mech-
anism that keeps every destination informed of the retransmis-
sion starting times of all the other destinations. Again, in de-
riving the following result, we ignore the associated cost of this
mechanism, relying on the asymptotic assumptions.

Theorem 7: The diversity–multiplexing tradeoff achieved by
the CB-DDF protocol with destinations is given by

.
(18)

Proof: Please refer to the Appendix.

It is interesting to note that this is exactly the same tradeoff
obtained in the relay channel. This implies that requiring all
nodes to decode the message does not entail a price in terms
of the achievable tradeoff.

V. THE HALF-DUPLEX COOPERATIVE MULTIPLE-ACCESS

(CMA) CHANNEL

In this section, we consider the CMA scenario, where
sources transmit their independent messages to a common des-
tination. This model corresponds to a generalized version of a
single-cell uplink where the sources are allowed to cooperate.
The CMA scenario was previously considered in [1], [3] (and
references therein). Again, the same quasi-static flat Rayleigh-
fading model is invoked for all the channels. We assume sym-
metry so that all sources transmit information at the same rate
and are limited by the same power constraint. The basic idea of
the proposed protocol, which we refer to as the CMA-NAF pro-
tocol, is to create an artificial ISI channel. Toward this end, each
of the sources transmits once per cooperation frame, where a
cooperation frame is defined as consecutive symbol-intervals
(refer to part a) of Fig. 6). Each source is assigned unique trans-
mission and reception symbol intervals within the cooperation

frame. During its transmission symbol interval, a source trans-
mits a linear combination of its own symbol and the signal it ob-
served during its most recent reception symbol interval. In other
words, every source, in addition to sending its own symbol,
helps another source by repeating the (noisy) signal it last re-
ceived from it. Without loss of generality, we set the th source
transmission symbol interval equal to .

We now provide an illustrative example for the case.
Here we assume that sources 1, 2, and 3 help sources 3, 1,
and 2, respectively. For the th source and the th cooperation
frame, denotes the transmission, the (assigned) recep-
tion, and the originating symbol. Using and to denote
the broadcast and repetition gains of the th source, respectively,
the signals transmitted during the first two cooperation frames
would be (in chronological order)

Using to denote the th-source-to- th-source channel gain,
and to denote the noise observed by the th source during
its th-frame reception symbol interval, the assigned receptions
become

Using to denote the th-source-to-destination channel gain,
and to denote the noise observed by the destination during
the th symbol interval of the th frame, the signals observed at
the destination would be

The source-observed noises have variance for all , ,
and the destination-observed noises have variance for
all , . Note that, as mandated by our half-duplex constraint, no
source transmits and receives simultaneously. The broadcast and
repetition gains should be chosen to satisfy the average
power constraint

(19)

Let us now define consecutive cooperation frames as a
super-frame (refer to part b) of Fig. 6). We will assume that
helper assignments are fixed within a super-frame but are sched-
uled to change across super-frames. We impose the following
requirements on helper scheduling.

1. In each super-frame, every source is helped by a different
source.

2. Across super-frames, every source is helped equally by
every other source.
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Fig. 7. Comparison of the outage probability for the NAF relay, LTW-AF, and noncooperative protocols .

Among the many scheduling rules that satisfy these require-
ments, we choose the following circular rule. In super-frame ,
sources with indices are assigned helpers with in-
dices given by the th right circular shift of , where

. For example, when , the helper
configurations are given by the following table.

Super-frame
index

Helper assigned to

Since this scheduling algorithm generates distinct helper
configurations, the length of the super-frames is chosen such
that a coherence-interval consists of consecutive super-
frames (refer to part c) of Fig. 6). To achieve maximal diversity
for a given multiplexing gain, it is required that all codewords
span the entire coherence interval. For this reason, we choose
codes of length given by

(20)

Similar to the broadcast channel, defining the multiplexing
gain and diversity gain for the CMA channel requires some
care. Note that, using (3), the pair can be defined for
communication between the th source and the destination.
However, since we assumed a symmetric CMA setup, all
multiplexing gains are equal, i.e., for all . Furthermore,
since CMA-NAF mandates that only one source transmits in
any symbol interval, the destination’s multiplexing gain is also
equal to . That is, the destination receives information at rate

given by

(21)

We define the overall diversity gain based on the worst case
probability of error for the information streams, i.e.,

With these definitions, Theorem 8 establishes the optimality of
the CMA-NAF in the symmetric scenario with sources.

Theorem 8: The CMA-NAF protocol achieves the optimal
(genie-aided) diversity–multiplexing tradeoff for the symmetric
scenario with sources, given by

(22)

Proof: Please refer to the Appendix.

Theorem 8 not only establishes the optimality of the
CMA-NAF protocol, but also it shows that the half-duplex
constraint does not entail any cost, in terms of diversity–mul-
tiplexing tradeoff, in the symmetric CMA channel. One can
now attribute the suboptimality of the CMA schemes reported
in [3], [4] to the use of orthogonal subspaces. It is interesting
to observe that one can achieve the optimal tradeoff in the
symmetric CMA channel with a simple AF strategy. In fact,
by comparing Theorems 2 and 8, one can see the fundamental
difference between the half duplex CMA and relay channels.

VI. NUMERICAL RESULTS

In this section, we report numerical results that quantify the
performance gains offered by the proposed protocols. These
numerical results correspond to outage probabilities and are
meant to show that the superiority of the proposed protocols
in terms of diversity-multiplexing tradeoff translates into sig-
nificant SNR gains. In Figs. 7–9, we compare the proposed
protocols with the noncooperative (direct transmission) and
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Fig. 8. Comparison of the outage probability for the DDF relay, LTW-AF, and noncooperative protocols .

Fig. 9. Comparison of the outage probability for the CMA-NAF, LTW-AF, and genie-aided protocols .

the LTW-AF protocols. To ensure fairness, we have imposed
more strict power constraints on the NAF and the DDF relay
protocols; specifically, we lowered the average transmission
energy of the source and the relay from to during the
interval when both are transmitting. This way, the total average
energy per symbol interval, spent by any of the protocols con-
sidered here6 is . While one may find other energy allocation
strategies that offer performance improvement (in terms of the
outage probability), any such optimization will not affect the
achievable diversity–multiplexing tradeoff, and hence, will not
be pursued here. To obtain lower bounds on the gains offered
by the DDF and CMA-NAF protocols, we assume a noiseless

6In the CMA-NAF protocol, the constant average energy per symbol interval
is automatically implied.

source-relay channel for the LTW-AF and NAF relay protocols.
For the DDF relay and the CMA-NAF protocols, the SNR of
the link between the two cooperating partners was assumed
to be only 3 dB better than that of the relay-destination or
source-destination channels. We optimized the broadcast and
repetition gains for the CMA-NAF protocol experimentally. In
all the considered cases, the outage probabilities are computed
through Monte Carlo simulations.

Fig. 7 shows the performance gain offered by the NAF
relay protocol over both the noncooperative protocol and
the LTW-AF protocol at high SNRs and two different data
rates. The same comparison is repeated in Fig. 8 with the
DDF protocol where, as expected, the gains are shown to be
larger. The CMA channel is considered in Fig. 9, where the
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optimality of the CMA-NAF protocol is shown to translate
into significant SNR gains. It is also interesting to note that
the gap between CMA-NAF performance and genie-aided
strategy is less than 3 dB when the date rate is equal to 2 BPCU.
We can also observe that the gains offered by the DDF and
CMA-NAF protocols compared with the LTW-AF protocol
increase with the data rate. This is a direct consequence of the
higher multiplexing gains achievable with our newly proposed
protocols. Overall, these results re-emphasize the fact that the
full diversity criterion alone7 is a rather weak design tool.

We conclude this section with a brief comment on our choice
for the diversity–multiplexing tradeoff as our design tool. This
choice is inspired by the convenient tradeoff, between analytical
tractability and accuracy, that this tool offers. Ideally, one should
seek cooperation schemes that minimize the outage probability
at the target rate and SNR. Unfortunately, it is easy to see that
such an approach would lead to an intractable problem even in
very simplified scenarios. Our results, on the other hand, demon-
strate that one can use the diversity–multiplexing tradeoff to
analytically guide the design in many relevant scenarios. From
the accuracy point of view, our simulation results validate that
schemes with better tradeoff characteristics always offer signif-
icant SNR gains at sufficiently high SNRs. In this context, the
main drawback of the diversity–multiplexing tradeoff is that it
fails to predict at which SNR the promised gains will start to
appear. For example, from the figures, one can see that the DDF
and CMA-NAF schemes yield performance gains at relatively
moderate SNRs whereas the NAF protocol only offers gain at
larger SNRs.

VII. CONCLUSION

In this paper, we considered the design of cooperative proto-
cols for a system consisting of half-duplex nodes. In particular,
we differentiated between three scenarios. For the relay channel,
we investigated the AF and DF protocols. We established the
uniform dominance of the proposed DDF protocol compared to
all known full diversity cooperation strategies and its optimality
in a certain range of multiplexing gains. We then proceeded to
the cooperative broadcast channel where the gain offered by the
DDF strategy was argued to be more significant, as compared
to the relay channel. For the multiple-access scenario, we pro-
posed a novel AF cooperative protocol where an artificial ISI
channel was created. We proved the optimality (in the sense of
diversity–multiplexing tradeoff) of this protocol by showing that
it achieves the same tradeoff curve as the genie-aided
point-to-point system.

Our results reveal interesting insights on the structure of
optimal cooperation strategies with half-duplex partners. First,
we observe that, without the half-duplex constraint, achieving
the optimal tradeoff in the three channels considered here is
rather straightforward (i.e., one can easily construct a simple
AF strategy that results in an -tap ISI channel, and hence,
the optimal tradeoff). With the half-duplex constraint, more
care is necessary in constructing the cooperation strategies, but,
as shown, one can still achieve the optimal tradeoff in many
relevant scenarios. One of the important insights is that one

7Full diversity corresponds to the point on the tradeoff curve.

should strive to transmit independent symbols as frequently as
possible (as observed in [7], [21] for the relay channel case).
Indeed, the optimality of the proposed CMA-NAF protocol
stems from exploiting the distributed nature of the information
to enable transmission of an independent symbol in every
symbol interval. It is now easy to see that the use of orthogonal
subspaces to enable cooperation, as in [3] for example, entails
a significant loss in the achievable tradeoff.

This work poses many interesting questions. For example,
proving (or disproving) the optimality of the DDF protocol for
the single-relay channel and is an open problem. Gener-
alizations of the proposed schemes to multiple-antenna nodes,
cooperative automatic retransmission request (ARQ) channels
[23], scenarios with different QoS constraints, and asymmetric
CMA channels are of definite interest. Finally, the design of
practical coding/decoding strategies that approach the funda-
mental limits achievable with Gaussian codes and ML decoding
is an important venue to pursue.

APPENDIX

In this appendix, we collect all the proofs.

A. Proof of Lemma 1

For simplicity, we consider the real AWGN channel (the com-
plex channel is a straightforward extension), i.e.,

for

where is the received signal over the th symbol interval,
is the channel gain, and is the independent and identically

distributed (i.i.d.) Gaussian noise sample during symbol interval
. In our analysis, we derive the average probability of error,

where averaging is invoked with respected to the ensemble of
Gaussian codes, conditioned on a particular , which is assumed
to be known at the decoder. We denote this error probability by

. Toward this end, we divide a codeword into segments,
each consisting of symbol intervals, i.e., . In our
analysis, we consider the asymptotic scenario where and
grow to infinity. The ML decoder waits for segments before
it starts decoding, where is given by

(23)

In (23), denotes the mutual information between
and . Notice that assuming the data rate to be less than the
channel capacity guarantees . Also, observe that the
fraction of codeword that the decoder has to wait before de-
coding is given by

Our analysis is based on exactly the same techniques used to
establish the achievability of the AWGN channel capacity, i.e.,
we first upper-bound the ML error probability with that of a
typical set decoder and then take the average of the latter error
probability, over the ensemble of random Gaussian codebooks.
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In particular, following exactly the same argument as in [26,
Theorem 10.1.1], we get

for sufficiently large and . This follows from the choice of
in (23). It is important to note that the transmission rate

is constant, i.e., independent of , and is not known to the
transmitter.

B. Proof of Theorem 2

Due to the source average energy constraint, setting and
to anything other than the identity matrix will reduce the

mutual information between and . Since we are interested in
obtaining an upper bound, we will choose and

, in which case (8) reduces to

(24)

Using singular value decomposition (SVD), the matrix can
be factored as

where and are unitary and
where is nonnegative diagonal with the diag-
onal elements in decreasing order. Using these matrices, we de-
fine , , , and , for unitary
transformation

The unitary property of and implies that and
, as well as

(25)

In terms of the new variables, (24) becomes

(26)

with

(27)

If we denote the nonzero diagonal elements of as ,
then (27) can be written as

and

where , , and represent the th element of , , and ,
respectively, and where , ,

, and

(28)

(29)

Note that, according to the SVD theorem

(30)

Because is diagonal, (and therefore, ) is maxi-
mized when are mutually
independent, in which case we would have

(31)

The mutual information between and is given by

(32)

A lower bound on is easily obtained by re-
placing by

(33)

Since is an increasing function on the cone of pos-
itive-definite Hermitian matrices and since
(where represents the largest eigenvalue of ), we get
the following upper bound on :

(34)

From (33) and (34), we conclude that

Now, since is of the same exponential order as , the
bounds converge as grows to infinity. That is,
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Plugging in for and from (28) and (29), respectively, we
get

It is then straightforward to see that

(35)

where , , and are the exponential orders of ,
, and , respectively. In deriving this expression,

we have assumed that ; as explained earlier,
we do not need to consider realizations in which , , or
are negative. Similarly

which, together with (35), (25), and (31), results in

(36)

For the quasi-static fading setup, the outage event is defined
as the set of channel realizations for which the instantaneous
capacity falls below the target data rate. Thus, our outage event

becomes

Letting grow with according to

and using (36), we conclude that, for large

(37)

and thus,

(38)

As Zheng and Tse have shown in [18, Lemma 5], pro-
vides an upper bound on (i.e., the optimal diversity gain
at multiplexing gain )

(39)

From (37) and (38), it is easy to see that the right-hand side
of (39) is maximized when is set to its maximum, which,

according to (30), is . This is the case when is
full-rank. On the other hand, itself is maximized
when (assuming an even codeword length ), which
corresponds to being a square matrix. For this , can
be shown to take the value of the right-hand side of (10). This
completes the proof.

C. Proof of Theorem 3

The proof closely follows that for the MIMO point-to-point
communication system in [18]. In particular, we assume that the
source uses a Gaussian random codebook of codeword length ,
where is taken to be even, and data rate , where increases
with according to

The error probability of the ML decoder, , can be upper-
bounded using Bayes’ rule

where denotes the outage event. The outage event is chosen
such that dominates , i.e.,

(40)

in which case

(41)

In order to characterize , we note that, since the destination
observations during different frames are independent, the upper
bound on the ML conditional PEP (recalling (7)), assuming to
be even, changes to

(42)

where and denote the covariance matrices of destina-
tion observation’s signal and noise components during a single
frame

(43)

(44)

Let us define , , , and as the exponential orders of
, , , and , respectively. Then the con-

straint on given in (11) implies the following constraint on :

(45)

We assume is chosen such that the exponential order
becomes
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Fig. 10. Outage region for the NAF protocol with a single relay.

which satisfies the constraint given by (45). Interestingly, if we
consider , then becomes zero and vanishes
in the expressions. Plugging (43) and (44) into (42), we obtain

With rate BPCU and codeword length , we have a
total of codewords. Thus,

for

is the average of over the set of channel re-
alizations that do not cause an outage (i.e., ). Using (5), one
can see that

for

Now, is dominated by the term corresponding to the min-
imum value of over

(46)

Using (6), can be expressed

(47)

Comparing (46) and (47), we realize that for (40) to be met,
should be defined as

Then, for any , it is possible to choose to
make arbitrarily large, ensuring (40). Note that,
because of (41), provides a lower bound on the diversity
gain achieved by the protocol. But , as given by (47), turns
out to be identical to right-hand side of (10) (refer to Fig. 10).
Thus, the optimal diversity–multiplexing tradeoff for this sce-
nario is indeed given by (12) and the NAF protocol achieves it.

D. Proof of Theorem 5

Instead of considering specific codes, in the following we
upper-bound the average probability of error over random
Gaussian ensemble of codebooks (employed by both the source
and relay). Therefore, averaging is invoked with respect to both
the fading channel distribution and the random codebooks. It is
then straightforward to see that there is at least one codebook
in this ensemble whose average performance, now with respect
only to the fading channel distribution, is better than the predic-
tions of our upper bound. For the single-relay DDF protocol, the
error probability of the ML decoder, averaged over the ensemble
of Gaussian codebooks and conditioned on a certain channel
realization, can be upper-bounded using Bayes’ rule to give

where and denote the events that the relay decodes
source’s message erroneously and its complement, respec-
tively. The first step in the proof follows from Lemma 1 by
observing that if (13) is met, i.e., if the mutual information
between the signal transmitted by the source and the signal
received by the relay exceeds , then can be made
arbitrarily small, provided that the code length is sufficiently
large. This means that for any and for a sufficiently large
code length,

Taking the average over the ensemble of channel realizations
gives

This means that the exponential order of , i.e., destina-
tion’s ML error probability assuming error-free decoding at the
relay, provides a lower bound on the diversity gain achieved by
the protocol. Therefore, we only need to characterize ,
which for the sake of notational simplicity, we will denote by

in the sequel. To characterize , we note that the corre-
sponding PEP (recalling (7)) is given by

Defining , , and as the exponential orders of ,
, and , respectively, gives

for

where . At a rate of BPCU and a codeword
length of , there are a total of codewords. Thus,

for

(48)
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Examining (48), we realize that for (40) to hold, should be
defined as

(49)

so that it is possible to choose to make arbitrarily large,
ensuring (40). As before, is given by (47), which turns
out to be identical to given by (14). To see this, one needs
to consider four different categories of channel realizations. The
first category is when both and are greater than one. For
this category

(50)

The second category is when and . It is easy
to see from (49) that for this category

(51)

The third category to be considered is when and
. Before proceeding further, note that from (13), one can

show that

(52)

This implies that , since is nonnegative. Returning back
to (49), it is easy to verify that for this category

(53)

Now, if , then from (53) and (52) we get

or

.

(54)
On the other hand, if , then

or

for

This means that , for the third category, is
indeed given by (54). It is noteworthy that the tradeoff curves
given by (50), (51), and (54), are all better than the genie-aided

Fig. 11. Outage region for the DDF protocol with a single relay .

Fig. 12. Outage region for the DDF protocol with a single relay .

tradeoff. In other words, the diversity gain achieved by this pro-
tocol is determined by the fourth category, where both and
are less than or equal to one. For this category, one needs to con-
sider two cases (note that (52) is still valid, implying ). The
first case, when , is very easy. Referring to Fig. 11
reveals that, in this case, and, therefore,

is equal to (the genie-aided tradeoff). The second
case, when , is a little bit more difficult. As can
be seen from Fig. 12, in this case

(55)

From (52) and (55), we conclude that

(56)

which gives (14). Again, according to (41), provides a
lower bound on the diversity gain achieved by the protocol. On
the other hand, is also an upper bound on the achieved
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diversity since: 1) for is the genie-aided
diversity and 2) for , it is easy to see that

, , and correspond to a channel outage
for any . Thus, (14) is the diversity achieved by the DDF
protocol and the proof is complete.

E. Proof of Theorem 6

Inspired by the single-relay case, we use ensembles of
Gaussian codebooks at the source and all the relays. To charac-
terize the diversity–multiplexing tradeoff achieved by the DDF
protocol with relays, we first label the nodes according
to the order in which they start transmission. That is, the source
is labeled as node 1, the first relay that starts transmission as
node 2, and so on. We then use Bayes’ rule to upper-bound
the error probability of the ML decoder, averaged over the
ensemble of Gaussian codebooks and conditioned on a certain
channel realization, to get

(57)

where , , denotes the event that node de-
codes the source message in error, while denotes its com-
plement. Let us now examine , i.e., the prob-
ability that node makes an error in decoding
the source message, assuming error-free decoding at all pre-
vious nodes. It follows from Lemma 1, that if the mutual in-
formation between the signals transmitted by the source and ac-
tive relays and the signal received by node exceeds , then

can be made arbitrarily small, provided that
the code length is sufficiently large. This means that for any

and for sufficiently large code lengths

(58)

Using (58), (57) can be written as

Taking the average over the ensemble of channel realizations
gives

This means that the exponential order of , i.e., des-
tination’s ML error probability assuming error-free decoding at
all of the relays, provides a lower bound on the diversity gain
achieved by the protocol. Therefore, we only need to charac-
terize , which for the sake of notational simplicity,
we will denote by in the sequel. To characterize , we note
that the corresponding PEP is upper-bounded by

As before, the gain of the channel that connects the th node to
the destination is denoted by , while the gain of the channel
that connects nodes and is denoted by . We use to
denote the number of symbol intervals in the codeword during
which a total of nodes are transmitting, so that ,
with denoting the total codeword length. Note that
is the number of symbol intervals that relay has to wait,
before the mutual information between its received signal and
the signals that the source and other relays transmit exceeds .
Thus,

for (59)

Defining and as the exponential orders of and ,
respectively, we have

Choosing for a total of codewords, the fol-
lowing expression for the conditional error probability can be
derived:

Thus, is the set of channel realizations that satisfy

which can be simplified to

(60)

As before, is characterized by

(61)

Defining , , lets us simplify
(60) and (61) to

(62)

(63)

From the definition of , it follows that

Note that (59) can also be simplified to

for
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or

for (64)

In order to characterize , we need to consider three
cases. The first case is when . In this case, (62) simplifies
to

Let us define , and
. It immediately follows that , .

It is also easy to verify that

and (65)

where . From (65), it can be seen that

where

(66)
The infimum value corresponds to and

or , , and , . But
we assumed , so

(67)

From (64), it follows that

(68)

Now, from (66) and (68) we conclude that

(69)
where

(70)

It turns out that (70) is an increasing function of . Therefore,
its infimum corresponds to . Now, examining ,
i.e.,

we realize that, for , it decreases with , thus, its
infimum corresponds to . On the other hand, for

, becomes an increasing function of , which
means that its infimum corresponds to , i.e.,

.
(71)

The second case to be considered is when ,
. It immediately follows that

(72)

In this case, (62) can be written as

(73)

If , then from (73), we get

(74)

On the other hand, from (64), it follows that

(75)
Now, from (72), (74), and (75) one can see that

with

The infimum of corresponds to and
, i.e.,

.
(76)

If , then the problem of finding reduces
to the first case (i.e., ). Specifically, is
given by (66), with , , , and substituting

, , , and . Thus,

where (77)

Note that (67) still holds. Derivation of fol-
lows from (64)

with (78)
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From (72), (77), and (78), we conclude that

(79)

where

(80)

As can be seen from (80), is a linear, and there-
fore monotonic, function of . Thus, its infimum corresponds to
either or . Now if the infimum indeed corre-
sponds to , by plugging in into (80), we derive
a lower bound on it. That is,

or

for (81)

Choosing , on the other hand, gives

which has an infimum value, corresponding to and
or , identical to the right-hand side of (81). This means
that

for (82)

Now, from (82), (79), and (76), we conclude that

(83)

The third case (i.e., ), is trivial

(84)

From (71), (83), and (84) we conclude that (15) provides a lower
bound on the diversity gain achieved by the protocol. On the
other hand, is also an upper bound on the diversity since:
1) for , is the genie-aided diversity, 2) for

, it can be shown that the realization, where
, , , and

corresponds to a channel outage for any , and 3) for
, realization , , and

also corresponds to a channel outage for any . Thus, (15)
is the diversity achieved by the relay DDF protocol and
the proof is complete.

F. Proof of Theorem 7

To characterize the diversity–multiplexing tradeoff achieved
by the CB-DDF protocol, we first label the destinations ac-
cording to the order in which they start transmission. That is,
the first destination that starts transmission is denoted as desti-
nation 1, the next destination as destination 2, and so on. Note
that the error probability of destination can be written as

(85)

where denotes the event that destination decodes the mes-
sage and starts retransmission before the end of the codeword
and is its complement. Now, since both and are less
than one, (85) gives

(86)

In order to characterize , we need to characterize
, i.e., destination ’s ML error probability, aver-

aged over the ensemble of Gaussian codebooks and conditioned
on a certain channel realization, under the assumption that it
started transmission before the end of the codeword. Toward
this end and through using Bayes’ rule, one can upper-bound

to get

(87)

Now, let us examine , i.e., the probability that
destination , makes an error in decoding the source
message, conditioned on (which ensures that destination

has indeed started retransmission) and assuming error-free
decoding at all of the active destinations. It follows from
Lemma 1, that if the mutual information between the signals
transmitted by the source and active destinations and the signal
received by destination exceeds (which is implied by ),
then can be made arbitrarily small, provided

that the code length is sufficiently large. This means that for
any and for sufficiently large code lengths

(88)

Using (88), (87) can be written as

Taking the average over the ensemble of channel realizations
gives

This together with (86), yields

(89)

This means that the exponential order of provides a
lower bound on the diversity gain achieved by the protocol.
Now, examining , it is easy to realize that the event in
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which the th destination (out of destinations), spends the
entire codeword listening, i.e., , is identical to the DDF relay
protocol with the rest of the destinations taking the role of the

relays. Thus, from (89), we see that communication to
the th destination achieves the same diversity order as does
the DDF relay protocol with relays, namely, (18). This
completes the proof.

G. Proof of Theorem 8

Realizing that (22) also corresponds to the optimal diversity–
multiplexing tradeoff for a MIMO point-to-point communica-
tion system with transmit antennas and a single receive an-
tenna (i.e., the case of “genie-aided” cooperation between
sources), we only need to show that the CMA-NAF protocol
achieves this tradeoff. To achieve this goal, we assume that each
of the sources uses a Gaussian random code with codeword
length and data rate , where is chosen as in (20) and grows
with according to (21). We then characterize the joint ML de-
coder’s error probability . Note that the error probability
of the joint ML decoder upper-bounds the error probabilities
of the source-specific ML decoders and thus provides a lower
bound on the achievable overall diversity gain (as a function of
). In characterizing , we follow the approach of Tse et

al. [19] by partitioning the error event into the set of partial
error events , i.e.,

where denotes any nonempty subset of and
(referred to as a “type- error”) is the event that the joint ML
decoder incorrectly decodes the messages from sources whose
indices belong to while correctly decoding all other messages.
Because the partial error events are mutually exclusive

(90)

Using Bayes’ rule, one can upper-bound as

where, as before, and denote the outage event and its
complement, respectively. The outage event is defined such that

dominates for all

(91)

Thus,

which, together with (90), results in

(92)

This means that , as defined by (91), provides an upper
bound to the joint ML decoder’s error probability and there-
fore a lower bound to the achievable diversity gain . The
derivation of , however, requires the characterization of

(i.e., the joint ML decoder’s type- PEP, condi-
tioned on a particular channel realization and averaged over the
ensemble of Gaussian random codes). Here, we upper-bound

, for each , by the PEP of a suboptimal joint ML
decoder that uses only a subset of the destination’s observations
(referred to as the type- decoder)

(93)

In (93), and represent the covariance matrices
corresponding to the signal and noise components, respectively,
of the partial observation vector used by the type- decoder,
provided that the symbols of the sources that are not in set are
set to zero. The size will be characterized in the sequel.

Before going into more detail on the type- decoder, we note
that, since and are both positive-definite matrices, the
right-hand side of (93) can be upper-bounded as

(94)

The discussion is simplified if we define and as the ex-
ponential orders of and , respectively. Note that
the exponential orders of do not appear in the fol-
lowing expressions for the reasons outlined in the proof of The-
orem 3. We also note that the exponential orders of the broadcast
gains are zero. Furthermore, recalling (5), the pdfs
of negative and are effectively zero for large values of ,
allowing us to concern ourselves only with their nonnegative re-
alizations. With this ideas in mind, we return to (94) and claim
that

(95)

To understand (95), recall that the noise component of the des-
tination observation is a linear combination of the noise origi-
nating at the sources (i.e., ) and the noise originating
at the destination (i.e., ). Furthermore, the coefficients of this
linear combination are the products of some channel, broadcast,
and repetition gains. Then, because these noise variances and
magnitude-squared gains can be written as nonpositive powers
of , (95) must hold. Combining (95) and (94) yields

for (96)

As mentioned earlier, represents the covariance matrix
of the signal component of the partial observation used by the
type- decoder, provided that the symbols of the sources that are
not in are set to zero. To fully characterize , though, we
must know which observations are used by the type- decoder
and which are discarded. The type- decoder picks one obser-
vation for every source in set , for a total of obser-
vations per frame (where denotes the size of and therefore

). Provided that frame is not the last frame in its
super-frame and assuming that during this super-frame, source
is helping source , the destination observation component
corresponding to source will be either the that corresponds
to source ’s broadcast of or the that corresponds to
helper ’s rebroadcast of (where ). As an ex-
ample, consider the case when and assume that during
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(99)

(100)

a certain super-frame, source 3 is helping source (i.e.,
, ). In this case, the type- decoder picks either

or in correspondence to . However, if instead of
source 3, source 1 is helping source 2 (i.e., , ), then
the type- decoder has to choose between or . Back
to our description of the type- decoder, if , then the de-
coder always picks over . On the other hand, if ,
then the decoder chooses when or when

(i.e., the observation received through the better
channel). The preceding discussion focused on the case where
frame is not the last frame of the super-frame. If frame is
indeed last, then the decoder always chooses over .

We define , where , as the vector (of dimension
) of contributions of symbol to the destination ob-

servations picked by the type- decoder. Clearly

Taking into account the independence of the transmitted sym-
bols (i.e., ), we have

(97)

In order to illuminate some of the properties of , assume that
we sort the chosen observations in chronological order. From
the description given, it is apparent that, associated with each
chosen observation (i.e., or ) there is one symbol
(with ) which has contributions only from this observation
forward. This means that if we define as

where and are chosen such that the
first nonzero elements of , are sorted in
chronological order, then will be lower-triangular and, con-
sequently, will be upper-triangular. Furthermore, based
on the choice between or (corresponding to ), the
first nonzero element of (i.e., the th diagonal element
of ) will be or , respectively. Next, we
define as the signature of , i.e.,

and as

It follows then, that is also lower-triangular with the th
diagonal element being equal to or . Using these
definitions, (97) can be written as

(98)

The significance of can now be seen from the fact that (98)
can be written as

Now, as the determinant of triangular matrices is simply the
product of their diagonal elements, from (96) we get the first
equation at the top of the page. It is obvious that for large ’s,
the previous inequality can be rewritten as (99) at the top of the
page. At rate and codeword length , and when the
symbols of the sources that are not in are set to zero, there are
a total of unique codewords. Thus, we have (100),
also at the top of the page. This conditional type- error prob-
ability leads to

where

(101)

Examining (101), we realize that for (91) to be met, should
be defined as the set of all real -tuples with nonnegative
elements that satisfy the following condition for at least one
nonempty :

(102)
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This way, by choosing large enough , can be made ar-
bitrary large and thus (91) is always met. From (102), it follows
that

(103)

Substituting in this expression by
gives

(104)

On the other hand, replacing in
(103) by results in

(105)

Under the constraints given by (104) and (105), it is easy to see
that

(106)

Now, from (106) and (61), it follows that

Again, according to (92), provides a lower bound on
the diversity gain achieved by the protocol. Thus, the protocol
achieves the diversity gain given by (22) and the proof is
complete.
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