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VSB modulation still has wide applications in analog communication, but not much

any more for data communication. —Gitlin, Hayes, and Weinstein, 1992.

1 Introduction

The ATSC’s recent adoption of the VSB modulation method for digital cable television trans-
mission [2] motivates the importance of a good VSB-transmission model. An understanding of
the model should provide answers to the following questions:

• What is meant by the equivalence between SQAM and VSB?

• Does there exist a valid system model with transmitted sequence of the form
{Re, Im,Re, Im, · · · }?

2 What is VSB?

Vestigial sideband modulation (VSB) is a modulation method which attempts to eliminate
the spectral redundancy of pulse amplitude modulated (PAM) signals. It is well known that
modulating a real data sequence by a cosine carrier results in a symmetric double-sided passband
spectrum. The symmetry implies that one of the sidebands is redundant, and thus removing one
sideband with an ideal brickwall filter should preserve the ability for perfect demodulation. As
brickwall filters with zero transition bands cannot be physically realized, the filtering actually
implemented in attempting such a scheme leaves a vestige of the redundant sideband, hence the
name “VSB”.

In understanding VSB, consider the use of a Nyquist filter, i.e., a filter which satisfies the
Nyquist criterion. Such filters satisfy the time and frequency domain properties

g(t) :

{

g(t) = 1 t = 0,

g(t) = 0 t = nT, n ∈ Z\0
(1)

1 =

∞
∑

n=−∞

G

(

j
(

ω −
2π

T
n
)

)

. (2)

The raised-cosine filters, a common family of Nyquist filters, have real positive frequency re-
sponses locally symmetric about ω = π

T and are easy to visualize.
For PAM using data sequence {an}, the following use of the pulse shape: s(t) =

∑

n ang(t−
nT ), guarantees no inter-symbol interference when sampling the transmitted sequence s(t) at

1



the proper instants: s(nT ) = an. Here T denotes the baud interval. In the frequency do-
main, implementing the Nyquist filtering with a raised cosine filter results in a double-sideband
spectrum with lowpass cutoff at |ω| = π

T .
Next we describe how the raised cosine filter can be to used to create a VSB-modulated

signal. Here we have to be careful in defining the baud interval T . Consider the real-valued
data sequence {ak} for which we desire to transmit one symbol every Tr seconds. We just
determined that a PAM modulation of {ak} would have two sidebands, each of width π

Tr

. With
VSB modulation, we intend to transmit only one sideband and thus expect a total passband of
width π

Tr

. Considering the baseband data spectrum, the lower VSB sideband may be isolated by
modulating its center up to DC and then lowpass filtering the result. (If desired, the remaining
sideband may be moved back to its original position. For our discussion, however, we do not
consider this as important.) The raised cosine filter which meets our spectral requirements has
cutoff at |ω| = π

2Tr

and thus has the time domain property g(n2Tr) = 0 for n 6= 0. The process
we have just described results in the (complex-baseband) signal

sbb(t) =
∑

k

ake
jkπ/2g(t − kTr). (3)

Note that a real-valued pulse-shape results in frequency-symmetric lowpass filtering.
Though other VSB modulation procedures exist, they differ only in small details. One such

procedure is the subject of the next section.

3 A Frequency Domain Understanding of the SQAM-VSB Re-

lationship

Staggered QAM (SQAM) [1] is a method of modulating a real-valued data sequence {ak} in which
the even and odd subsequences, {a2k} and {a2k+1}, are quadrature modulated using differently
delayed versions of a real-valued pulse shaping filter g(t). Formally, the SQAM-modulated signal
of baud interval Tc is defined by:

s(t) =
∑

k

a2kg(t − kTc)cos(ωct) +
∑

k

a2k+1g(t − kTc − τo)sin(ωct) (4)

= Re

{

e−jωct

(

∑

k

a2kg(t − kTc) + j
∑

k

a2k+1g(t − kTc − τo)

)}

Note that both a2k and a2k+1 are transmitted in the kth baud interval. Comparing to the
previous section, Tc = 2Tr.

It has been claimed that when the “staggering” delay τo is chosen as τo = Tc/2, SQAM
results in a form of VSB. We confirm this by looking at the spectrum of the transmitted signal.
For convenience, we focus our attention on the complex baseband representation:

sbb(t) =
∑

k

a2kg(t − kTc) + j
∑

k

a2k+1g(t − kTc − Tc/2) (5)
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Computing the Fourier transform,

Sbb(jω) =

∫

∞

−∞

sbb(t)e
−jωtdt

=

∫

∞

−∞

(

∑

k

a2kg(t − kTc) + j
∑

k

a2k+1g(t − kTc − Tc/2)

)

e−jωtdt

=
∑

k

a2k

∫

∞

−∞

g(t − kTc)e
−jωtdt + j

∑

k

a2k+1

∫

∞

−∞

g(t − kTc − Tc/2)e
−jωtdt

=
∑

k

a2ke
−jωkTc

∫

∞

−∞

g(τ)e−jωτdτ + je−jωTc/2
∑

k

a2k+1e
−jωkTc

∫

∞

−∞

g(τ)e−jωτdτ,

where we have used the substitution τ = t − kTc. Using the facts that

1 + ejπm

2
=

{

1 m even

0 m odd
,

1 − ejπm

2
=

{

0 m even

1 m odd
,

and the notation

G(jω) =

∫

∞

−∞

g(τ)e−jωτ dτ,

we can rewrite the summations to yield

Sbb(jω) = G(jω)

(

∑

m

am

(

1 + ejπm

2

)

e−jωmTc/2 + je−jωTc/2
∑

m

am

(

1 − ejπm

2

)

e−jω(m−1)Tc/2

)

= G(jω)
∑

m

am

(

1 + ejπm

2
+ j

1 − ejπm

2

)

e−jωmTc/2

= G(jω)
∑

m

am

(

cos(mπ/2) + sin(mπ/2)
)

e−j(ω−π/Tc)mTc/2.

Noting that cos(mπ/2) + sin(mπ/2) = {1, 1,−1,−1, 1, 1,−1,−1, . . . }, it is convenient to define
the sign-altered data sequence

âm = am

(

cos(mπ/2) + sin(mπ/2)
)

⇔

{

â2m = a2m(−1)m

â2m+1 = a2m+1(−1)m
.

Then, using the DTFT notation

Â(ω) =
∑

m

âme−jωm,

we obtain a simplified form for the SQAM spectrum:

Sbb(jω) = G(jω)Â

(

Tc

2

(

ω −
π

Tc

)

)

. (6)

Equation (6) indicates that the lower sideband of the symmetric spectrum Â(ω Tc

2 ) is mod-
ulated up to DC and then filtered by G(jω). So far we have not imposed any constraints on
the pulse shape g(t). Consider now the case when G(jω) is a lowpass filter with cutoff ω = π

2Tr

.
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Then, recalling Tc = 2Tr, Sbb(jω) is equivalent to a (DC-centered) VSB-modulated spectrum
of data sequence {âm} with identical lower- and upper-sideband filtering. It follows that s(t)
can written directly in terms of âm:

sbb(t) =
∑

m

âmejmπ/2g(t − mTr), (7)

which can be compared to (3).

4 The Structure of the VSB Data Sequence

The previous section established that a T/2-staggered SQAM modulation of a given data se-
quence is equivalent to (spectrally-centered) VSB modulation of a sign-altered version of the
data sequence. In other words, these two approaches are closely related. In this section, we seek
to dispell the rumor that the VSB (or SQAM) source sequence is structured in such a way that
alternating elements are strictly real, strictly imaginary.

In both (3) and (7), we notice that the modulated data sequence âmejmπ/2 has the form
{Re, Im,Re, Im, . . . }, since am and âm are strictly real and ejmπ/2 = {1, j,−1,−j, . . . }. The
properties of the pulse-shaping filter, however, prevent sm = sbb(mTc) from having this property.
Recall from 2 that a G(jω) with cutoff at |ω| = π

2Tr

= π
Tc

has the property

g(t) :

{

g(t) = 1 t = 0,

g(t) = 0 t = m2Tr,m ∈ Z\0

though, in general, g(mTr) 6= 0. Even with a rectangular pulse shape, g(mTr) 6= 0 for m = ±1.
To summarize, the lowpass filtering required to restrict VSB to bandwidth π

Tr

= 2π
Tc

prevents
the transmitted data sequence from having an alternating real/imaginary structure (even with
rectangular pulse shaping). It makes sense that transmission of real data in half the bandwidth
requires full (nontrivial) use of the diversity provided by the real and quadrature “channels”.

When elements of the real sequence {am} are independent, we expect the VSB symbol
sequence {sk} = {sbb(kTc)} to have independent real and imaginary elements, thus satisfying
the circular symmetry property required of globally convergent CMA [3, 4, 5]: E{s2

k} = 0.
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