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Subspace Leaky LMS
Brian D. Rigling, Member, IEEE, and Philip Schniter, Member, IEEE

Abstract—The least mean squared (LMS) adaptive filtering
algorithm may experience uncontrolled parameter drift when
its input signal is not persistently exciting, leading to serious
consequences when implemented with finite word-length. Though
so-called “tap-leakage” modifications of LMS have been proposed
to mitigate this drift, they inevitably introduce parameter bias
which degrades mean-squared error performance. In this letter,
we propose a novel algorithm which leaks only in the unexcited
modes, thus introducing insignificant bias, while still retaining the
low computational complexity of LMS.

Index Terms—Adaptive filtering, leakage, leaky least mean
squares, least mean squares (LMS), subspace tracking.

I. INTRODUCTION

THE LEAST mean squared (LMS) algorithm [1]–[3] is a
method of linear adaptive filtering belonging to the family

of stochastic gradient algorithms. LMS can be described by the
two-step filter-parameter update procedure

(1)

(2)

where denotes the reference signal, the error signal,
the vector-valued input signal at time the filter

parameters, and a small positive step-size. Essentially, LMS
attempts to adjust the filter parameters so that the mean-
squared error (MSE) is minimized. Note from (2)
that the update of is restricted to the space of vectors
spanned by the previous inputs , implying that
it is impossible for LMS to adjust any components of that
are not active in the input signal.

Motivated by [4], we consider the following partition of
the input signal space. Components of that consistently
contain energy are said to belong to the persistently excited
(PE) subspace, while components of that consistently
contain no energy are said to belong to the unexcited (UE) sub-
space. If LMS is implemented on a finite-precision processor,
quantization noise can cause uncontrolled parameter drift in the
UE subspace. If the processor has finite word length, parameter
drift may cause numerical overflow that can lead to system
instability.

The leaky LMS (L-LMS) algorithm [3], [5] has been widely
used to prevent filter tap drift and maintain stability with inputs
that are not PE in all modes. L-LMS is a modification of stan-
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dard LMS (1)–(2) in which (2) is replaced by the leaky update
. Through proper

choice of positive leakage parameter , excess parameter drift
can be avoided. Though L-LMS has very low implementation
complexity, it applies filter tap leakage indiscriminately, thus
biasing and increasing MSE.

Circular leaky LMS (CL-LMS) [7] “leaks” filter taps only
when tap drift is in danger of causing numerical overflow.
CL-LMS examines one parameter per iteration and attenuates
that parameter only if it exceeds a specified threshold. The
computational complexity of CL-LMS is only slightly greater
than that of standard LMS. The application of leakage, however,
still introduces parameter bias and therefore increases MSE.

In this letter, we propose a subspace leaky LMS (SL-LMS)
algorithm that periodically applies leakage that is significant
in the UE subspace, while insignificant in the PE subspace.
Selective application of leakage is accomplished by tracking
the UE subspace. While the computational cost of SL-LMS is
greater than that of the previously mentioned algorithms, the
complexity is still linear in the number of filter parameters.

The following notation is used. Column vectors are denoted
by underlined lowercase letters, matrices are denoted by up-
percase letters. Vector elements are denoted using subscripts
(e.g., ), while time is indexed in parentheses (e.g., ).
The conjugate transpose of a vector or matrix is denoted by the
superscript and complex conjugation is denoted by .
Finally, denotes the identity matrix, the Kronecker delta,
and the modulo- operation.

II. BACKGROUND

The signals and are assumed to be wide-sense sta-
tionary (WSS) and possibly nonzero mean. Eigendecomposition
of leads to

(3)

where the columns of span the PE subspace, , and
correspond to the nonzero eigenvalues in the diagonal matrix

. The columns of correspond to zero-valued eigenvalues
and span the UE subspace .

A. LMS

The LMS algorithm [1]–[3] adapts in an at-
tempt to minimize the MSE cost . Gra-
dient-descent minimization of yields

, and LMS approximates this recursion using
(2). Under LMS, converges in mean to the MSE-mini-
mizing Wiener solution, i.e., [3]. If
is not full rank, the Wiener solution is not unique.
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In a departure from the typical LMS analysis, we assume a
noisy parameter update of the form

(4)

where a (possibly nonzero mean) disturbance , perhaps due
to finite-precision effects, is added at each iteration.

Using (3), we can break the noisy LMS update (4) into two
decoupled equations, the first corresponding to the PE subspace
and the second to the UE subspace

(5)

(6)

The components of that lie in the PE subspace
increase MSE; the components of that lie in the UE
subspace do not increase MSE, but cause to undergo a
parameter drift within . Our goal is to simultaneously
minimize MSE and drift of within .
Thus, we desire that equals the minimum-norm version
of the (MSE-minimizing, possibly nonunique) Wiener solution,
i.e., .

B. Leaky LMS

The L-LMS algorithm attempts to control the drift of
by adding a term to the adaptation cost function that penalizes
the size of

l (7)

This leads to the (noisy) L-LMS stochastic gradient update

(8)

where the positive parameter determines the degree of penalty
placed on parameter drift. A larger reduces parameter drift
within the UE subspace but increases parameter bias (leading
to increased MSE). These and other properties of L-LMS are
described in [3], [6], and [8].

C. Circular Leaky LMS

In contrast to L-LMS, the CL-LMS algorithm [7] discrimi-
nately applies leakage to a single coefficient of per itera-
tion. The cost function for CL-LMS may be written as

c (9)

where
if

if

if

otherwise
(10)

Appropriate choices for the CL-LMS parameters
are described in [7]. This CL-LMS cost

function leads to the (noisy) update equation

(11)

where is a column vector consisting of zeros except for a
one in the th position. As with L-LMS, CL-LMS reduces drift

through tap-leakage. However, because leakage is applied dis-
criminately, bias and MSE are decreased relative to L-LMS. In
[7] it is noted that, when all modes of the system are PE, the
CL-LMS algorithm yields unbiased parameter estimates. In this
latter case, however, tap-leakage is not necessary and standard
LMS is preferable due to its low complexity.

III. SUBSPACE LEAKY LMS

As with CL-LMS, the SL-LMS algorithm seeks to discrimi-
nately apply leakage. Unlike CL-LMS, though, SL-LMS tracks
the UE subspace of the input signal and applies leakage only
within that subspace.

A. Algorithm

The SL-LMS algorithm consists of two parts: 1) tracking the
UE subspace; and 2) updating . To track the UE subspace,
we seek that minimizes the cost

ss (12)

The following lemma states the desirable properties of ss .
Lemma 1: If is nonzero, then minimizes ss

if and only if lies within the null space of .
Proof: Clearly, we have ss . Thus,

for nonzero ss if and only if .
The gradient descent minimization of ss can be approx-

imated by the (noisy) stochastic gradient update

(13)

where is a time-varying step-size and models fi-
nite-precision effects in the tracking vector update. It is im-
portant to note that, with mild assumptions on and ,
tracking vector will converge to zero if initialized within
the PE subspace. Setting in the fashion
of normalized-LMS [3] accelerates convergence and gives

(14)

(15)

In SL-LMS we initialize the tracking vector to the first
member of , an orthonormal basis for

. After iterations, is reinitialized to the next element
in , and adaptation of the tracking vector begins again. After

iterations, all elements of have been used as reinitializa-
tions, and the process is repeated from the start.

Using the previously described method of subspace tracking,
we update the parameters according to stochastic gradient
descent of the SL-LMS cost

sl (16)

Thus, a penalty, determined by the degree to which the filter
parameters have drifted in the direction, is added to the
cost function, but only after has adapted for a specified
number of iterations . The number should be large enough
to allow sufficient convergence of the tracking vector but small
enough to prevent significant drift from occurring in and

. This cost function leads to the following (noisy) SL-LMS
update:
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s(0) = s ; w(0) = 0,

for n = 0; 1; 2; 3 . . .

c(n) = (u (n)s(n))=(u (n)u(n))

if hni = N � 1

s(n + 1) = s(n)� c(n)u(n) + q (n)

w(n+ 1) = (I � s(n)s (n))w(n) + �u(n)e (n) + q(n)

s(n + 1) = s

else

s(n + 1) = s(n)� c(n)u(n) + q (n)

w(n + 1) = w(n) + �u(n)e (n) + q(n).

Recall that and model the effects of finite preci-
sion; there is no need to explicitly implement these noises!

B. Mean Convergence of Tracking Vectors

The mean behavior of the subspace tracking vectors lends
insight into the mean behavior of SL-LMS. To proceed further
it is convenient to transform and into

(17)

(18)

so that and . If we define
and , then will

track the PE subspace, while will track the UE subspace.
For simplicity, we assume (e.g., as in [3] and [9])
(A1) (e.g., from large ).
(A2) and independent (e.g., from small step-size).

Using (A1) one may express (15) as

(19)

yielding the following transform of (14):

(20)

Taking the expectation of (20) and invoking (A2)

(21)

Using tr and induction, we find that the mean (trans-
formed) tracking components can be expressed as

tr

(22)

(23)

If is negligible, then , assuming
is large enough to permit convergence (since

tr ). In this case, the UE components of the most
recent reinitialization are unaffected, while the PE
components attenuate at a rate proportional to the relative input
signal power in that mode. Since the most recent reinitial-
izations were taken from the orthonormal basis , the most
recent converged tracking vectors will span the UE sub-
space. Thus the drift of within the UE subspace may be
eliminated by leaks of in the directions of these con-
verged tracking vectors.

Fig. 1. Parameter identification task.

Fig. 2. Spectrogram of the input signal u(n).

If is not negligible, then will drift and we
cannot claim that its UE components remain fixed, while its PE
components decay to zero. But, since only updates occur be-
tween reinitializations, drift in will be limited. Thus,
should be chosen as a tradeoff between convergence of
and drift of and . Simulations in Section IV verify
that choices of exist which lead to good behavior.

IV. SIMULATION RESULTS

The L-LMS, CL-LMS, and SL-LMS algorithms were
compared in the parameter identification setting illustrated by
Fig. 1, where the objective was to track the ten-tap time-varying
response . The signals , and were generated
using zero-mean, circular, mutually uncorrelated Gaussian
processes constructed such that
and . The real and imagi-
nary parts of (nonzero mean) and were mutually
uncorrelated Rayleigh such that

. The input signal ,
chosen to test each algorithm’s ability to cope with varying
degrees of excitation, consisted of a sum of equal-amplitude
complex sinusoids whose frequencies changed suddenly every
800 samples (see Fig. 2). To model finite word-length effects,
the real and imaginary parts of each filter coefficient were
rolled-over when their amplitudes exceeded 9.5. All experi-
ments were conducted with step-size .

Fig. 3 compares the performance of the standard LMS
algorithm with and without numerical overflow. MSE drasti-
cally increased whenever unmitigated parameter drift induced
numerical roll-over. Brief MSE spikes also occurred just after
the input signal experienced a sudden change and before
the adaptive filter had a chance to reconverge. In Fig. 4, we
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Fig. 3. Standard LMS with and without overflow effects.

Fig. 4. MSE trajectory of L-LMS.

Fig. 5. MSE trajectory of CL-LMS.

implemented L-LMS with . While L-LMS suc-
cessfully avoids roll-over, the leakage-induced bias clearly
increases MSE. Fig. 5. shows CL-LMS implemented using

. At first, CL-LMS intro-
duces less bias than L-LMS. When the parameters drift near the

Fig. 6. MSE trajectory of SL-LMS.

bounds set by CL-LMS, however, leakage is frequently applied
to prevent further drift and hence MSE increases. Finally, Fig. 6
shows SL-LMS applied to the same system using interleak
interval and DFT reinitialization set . Here we see
that the SL-LMS algorithm outperforms the other algorithms
by yielding essentially the same MSE behavior as standard
LMS without numerical overflow.

V. CONCLUSION

This letter presented SL-LMS, a new adaptive filtering
algorithm designed to mitigate the problem of parameter drift
induced by coefficient update noise in the presence of nonper-
sistently exciting input signals. While tracking the unexcited
subspace of the input signal, SL-LMS attempts to leak the
adapted filter taps only within that subspace. This approach can
yield a low-drift adaptive filtering system with low parameter
bias. While the computational cost of SL-LMS is greater
than that of CL-LMS or L-LMS, it is still linear in the filter
parameters. Simulations have suggested that SL-LMS offers
MSE performance superior to that of previously proposed
leakage algorithms.
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