Optimal Resource Allocation in OFDMA Downlink Systems with Imperfect CSI

Rohit Aggarwal, Mohamad Assaad, C. Emre Koksal, and Phil Schniter

SPAWC 2011

Problem:

In an OFDMA downlink, we want to

- schedule subchannels to users,
- allocate power among users, and
- assign coding schemes to users,

in order to

- maximize a goodput-based utility subject to
 - a total power constraint, and
 - uncertainty in the subchannel gains.

Contributions:

- 1. (Near) optimal resource allocation algorithms under arbitrary CSI distributions for two scenarios: with/without subcarrier time-sharing.
- 2. Faster than state-of-the-art algorithms from

[1] Huang, Subramanian, Agrawal, Berry, "Downlink scheduling and resource allocation for OFDM systems," IEEE TWC Jan. 2009.

[2] Wong and Evans "Optimal resource allocation in the OFDMA downlink with imperfect channel knowledge," IEEE TCOM Jan. 2009.

- 3. Tight bounds on the performance of our proposed algorithms.
- 4. Our general goodput-based utility framework encompasses, e.g., optimization with regard to
 - capacity,
 - throughput of a practical coding scheme, or
 - differentiated pricing formulations across applications or users.

Our Approach:

Goodput-based utility:

- Goodput $g = (1 \epsilon)r_m$ is the number of bits-per-channel-use communicated *without error*.
- Error rate $\epsilon = a_m e^{-b_m p\gamma}$ for power p, SNR γ , and constants a_m, b_m that vary with coding scheme m.
- Utility U_{k,m}(g) is any concave and strictly-increasing function of g.
 Can be user (k) and coding-scheme (m) dependent.

Imperfect CSI:

• We assume an arbitrary *distribution* on the SNR γ .

Scheduling and resource allocation:

• We maximize *expected* sum-utility subject to a total-power constraint.

Problem Formulation:

$$\max_{\substack{\{p_{n,k,m} \ge 0\}\\\{I_{n,k,m} \in \mathcal{I}\}}} \mathbb{E}\left\{\sum_{n=1}^{N} \sum_{k=1}^{K} \sum_{m=1}^{M} I_{n,k,m} U_{k,m} \left((1 - a_m e^{-b_m p_{n,k,m} \gamma_{n,k}}) r_m \right) \right\}$$

s.t. $\sum_{k,m} I_{n,k,m} \le 1 \ \forall n \text{ and } \sum_{n,k,m} I_{n,k,m} p_{n,k,m} \le P_{\text{con}}$

where

 $I_{n,k,m} = \text{time-share of } n^{th} \text{ subchannel by user/code } (k, m),$ $p_{n,k,m} = \text{power allocated to user/code } (k, m) \text{ on } n^{th} \text{ subchannel.}$ $\gamma_{n,k} = \text{SNR of user } k \text{ on } n^{th} \text{ subchannel.}$ $r_m = \text{rate of } m^{th} \text{ coding scheme.}$

We consider two problem formulations:

Continuous : subchannel time-sharing is allowed: $I_{n,k,m} \in [0,1] \triangleq \mathcal{I}$.

Discrete : subchannel time-sharing is not allowed: $I_{n,k,m} \in \{0,1\} \triangleq \mathcal{I}$.

Remarks:

- 1. As stated, the optimization problem is not convex.
- 2. In the continuous case, the problem can be convexified by substituting $p_{n,k,m} = \frac{x_{n,k,m}}{I_{n,k,m}}$ and optimizing over $\{x_{n,k,m}\}$ and $\{I_{n,k,m}\}$.
- 3. In the discrete case, we have a mixed-integer optimization problem. Such problems are (in general) NP-hard.
- 4. If the schedule $I = \{I_{n,k,m}\}$ is fixed, then resource (i.e., power) allocation is a convex optimization problem.

Continuous Scheduling and Resource Allocation:

$$\max_{\substack{\{p_{n,k,m} \ge 0\}\\\{I_{n,k,m} \in [0,1]\}}} \mathbb{E}\left\{\sum_{n=1}^{N} \sum_{k=1}^{K} \sum_{m=1}^{M} I_{n,k,m} F_{n,k,m}(I_{n,k,m}, x_{n,k,m})\right\}$$

s.t. $\sum_{k,m} I_{n,k,m} \le 1 \ \forall n \text{ and } \sum_{n,k,m} x_{n,k,m} \le P_{\mathsf{con}}$

where

$$F_{n,k,m}(I_{n,k,m},x_{n,k,m}) = \begin{cases} -\operatorname{E}\left\{U_{k,m}\left((1-a_m e^{-b_m \frac{x_{n,k,m}}{I_{n,k,m}}\gamma_{n,k}})r_m\right)\right\} & \text{if } I_{n,k,m} \neq 0\\ 0 & \text{otherwise.} \end{cases}$$

Remarks:

- 1. This is a convex optimization problem with N + 1 constraints.
- 2. The KKT conditions show that the dual variables corresponding to the subchannel-resource constraint are redundant.

Dual Formulation of Continuous Problem:

The Lagrangian is

$$L(\mu, \mathbf{I}, \mathbf{x}) := \sum_{n,k,m} I_{n,k,m} F_{n,k,m}(I_{n,k,m}, x_{n,k,m}) + \Big(\sum_{n,k,m} x_{n,k,m} - P_{\mathsf{con}}\Big)\mu$$

where

$$F_{n,k,m}(I_{n,k,m}, x_{n,k,m}) = \begin{cases} -\operatorname{E}\left\{U_{k,m}\left((1 - a_m e^{-b_m \frac{x_{n,k,m}}{I_{n,k,m}}\gamma_{n,k}})r_m\right)\right\} & \text{if } I_{n,k,m} \neq 0\\ 0 & \text{otherwise.} \end{cases}$$

The corresponding dual problem is:

 $\max_{\mu \ge 0} \min_{\boldsymbol{I} \in \boldsymbol{\mathcal{I}}} \min_{\boldsymbol{x} \succeq 0} L(\mu, \boldsymbol{I}, \boldsymbol{x})$

One then finds...

- $oldsymbol{x}^*(\mu, oldsymbol{I})$: optimal powers for a given $(\mu, oldsymbol{I})$,
- $I^*(\mu)$: optimal schedule for a given μ ,
- μ^* : optimal Lagrange multiplier μ .

Important Observations:

Lemma 1 The optimal total-power allocation is a monotonically decreasing function of μ .

Lemma 2 μ^* lives in the interval $[\mu_{\min}, \mu_{\max}]$, where

$$\mu_{\min} = \min_{n,k,m} a_m b_m r_m \operatorname{E} \left\{ U'_{k,m} \left((1 - a_m e^{-b_m P_{\operatorname{con}} \gamma_{n,k}}) r_m \right) \gamma_{n,k} e^{-b_m P_{\operatorname{con}} \gamma_{n,k}} \right\}$$
$$\mu_{\max} = \max_{n,k,m} a_m b_m r_m U'_{k,m} \left((1 - a_m) r_m \right) \operatorname{E} \{ \gamma_{n,k} \}$$

Bisection-based Algorithm for the Continuous Problem:

Initialize with $\mu_{upper} = \mu_{max}$ and $\mu_{lower} = \mu_{min}$.

1. Set
$$\mu \leftarrow \frac{\mu_{\text{upper}} + \mu_{\text{lower}}}{2}$$
.

- 2. Calculate $x_{n,k,m}^*(\mu, I^*(\mu))$ and $I_{n,k,m}^*(\mu)$ for all (n, k, m).
- 3. Calculate $X_{\text{total}}(\mu) = \sum_{n,k,m} x_{n,k,m}^*(\mu, I^*(\mu)).$
- 4. If $X_{\text{total}}(\mu) < P_{\text{con}}$, set $\mu_{\text{upper}} \leftarrow \mu$, otherwise set $\mu_{\text{lower}} \leftarrow \mu$.

Repeat Steps 1–4 until $\mu_{upper} - \mu_{lower} < \kappa$, where κ is a stopping parameter.

Performance Guarantee:

$$U_{\rm cont}^* - \hat{U}_{\rm cont}(\kappa) \le P_{\rm con}\kappa,$$

where

- $U^{\ast}_{\rm cont}$ is the optimal sum-utility, and
- $\hat{U}_{cont}(\kappa)$ is the sum-utility achieved by the above algorithm for a given κ .

Lemma 3

- a. At a discontinuity, there exists some subchannel n at which the optimal schedule time-shares several user/code combinations (k, m).
- b. Otherwise, at most one user/code combination (k, m) is scheduled for every subchannel n, and the corresponding allocation solves the discrete problem for the total power constraint $P_{con} = P_{total}(\mu)$.
- c. The number of discontinuities at most countable.

whe

Bisection-based Algorithm for the Discrete Problem:

- 1. Run the proposed continuous algorithm for stopping criterion κ , yielding $\mu^* \in [\mu_{\text{lower}}, \mu_{\text{upper}}]$ with $\mu_{\text{upper}} \mu_{\text{lower}} < \kappa$.
- 2. Solve the power allocation problem for each of the two schedules $\{I^*(\mu_{\text{lower}}), I^*(\mu_{\text{upper}})\}$ and choose the utility-maximizing one.

Performance Guarantee:

$$U^*_{\text{discrete}} - \lim_{\kappa \to 0} \hat{U}_{\text{discrete}}(\kappa) \leq (\mu^* - \mu_{\min}) \left(P_{\text{con}} - X^{\min}_{\text{total}}(\mu^*) \right),$$

re

- U^*_{discrete} is the optimal utility for the discrete allocation problem,
- $\hat{U}_{\text{discrete}}(\kappa)$ is the utility achieved by the proposed algorithm, and
- $X_{\text{total}}^{\min}(\mu^*)$ is the min value of $X_{\text{total}}(\mu)$ at μ in case a discontinuity exists.

Numerical Experiments:

- N = 64 subchannels
- K = 16 users.
- Uncoded 2^{m+1} -QAM with $m \in \{1, ..., 15\}$: M = 15 and $r_m = m + 1$ and error-rate params $a_m = 1$, $b_m = 1.5/((m + 1)^2 - 1)$.
- Rayleigh-fading subchannels $h_{n,k} \sim C\mathcal{N}(0,1)$ with $\gamma_{n,k} = |h_{n,k}|^2$.
- Uncertain CSI: channel inference from pilots yields a non-central chi-squared posterior distribution on $\gamma_{n,k}$.
- Nominally, SNR = 10 dB and $SNR_{pilot} = -10 \text{ dB}$.
- Algorithmic stopping criterion: $\kappa = 0.3/P_{\rm con}.$
- Reference schemes for comparison:
 - Global Genie: has perfect knowledge of $\gamma_{n,k}$ realizations.
 - Fixed-Power Random-User-Scheduling (FP-RUS): uses prior channel statistics.

Sum-goodput versus pilot-SNR:

Sum-goodput maximization: $U_{k,m}(g) = g \quad \forall k, m$.

Sum-goodput (and suboptimality bound) versus SNR:

Sum-goodput maximization: $U_{k,m}(g) = g \quad \forall k, m.$

Performance versus [1] and [2]:

Continuous case: maximization of upper bound on capacity [1]. Discrete case: maximization of sum-capacity [2].

Example of a pricing-based utility:

$$U_{k,m}(g) = \begin{cases} 1 - e^{-w_1 g} & k \in \mathcal{K}_1 \\ 1 - e^{-w_2 g} & k \in \mathcal{K}_2 \end{cases}; \text{ users in } \mathcal{K}_1 \text{ prioritized when } w_1 > w_2. \end{cases}$$

Conclusions:

- We considered OFDMA scheduling-and-resource-allocation to maximize goodput-based utilities under generic CSI distributions.
- Our goodput-based utility framework can handle, e.g., optimization w.r.t sum-capacity, sum-throughput for practical coding schemes, or differentiated pricing-models.
- Two flavors of the problem were considered: 1) "continuous" sharing of subchannels, and 2) "discrete" assignment (no sharing).
- Bisection-based algorithms were given for both problems that are significantly faster than the state-of-the-art.
- Tight bounds on suboptimality were provided.
- Numerical experiments confirmed the excellent behavior of the proposed algorithms.