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Problem:

In an OFDMA downlink, we want to

• schedule subchannels to users,

• allocate power among users, and

• assign coding schemes to users,

in order to

• maximize a goodput-based utility

subject to

• a total power constraint, and

• uncertainty in the subchannel gains.
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Contributions:

1. (Near) optimal resource allocation algorithms under arbitrary CSI

distributions for two scenarios: with/without subcarrier time-sharing.

2. Faster than state-of-the-art algorithms from
[1] Huang, Subramanian, Agrawal, Berry, “Downlink scheduling and resource allocation for

OFDM systems,” IEEE TWC Jan. 2009.

[2] Wong and Evans “Optimal resource allocation in the OFDMA downlink with imperfect

channel knowledge,” IEEE TCOM Jan. 2009.

3. Tight bounds on the performance of our proposed algorithms.

4. Our general goodput-based utility framework encompasses, e.g.,

optimization with regard to

• capacity,

• throughput of a practical coding scheme, or

• differentiated pricing formulations across applications or users.
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System Model:

partial CSI

outgoing
messages

scheduler
and
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allocator
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Base Station

N : # of OFDM subchannels

K : # of users

M : # of coding schemes
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Our Approach:

Goodput-based utility:

• Goodput g = (1− ǫ)rm is the number of bits-per-channel-use

communicated without error.

• Error rate ǫ = ame
−bmpγ for power p, SNR γ, and constants am, bm

that vary with coding scheme m.

• Utility Uk,m(g) is any concave and strictly-increasing function of g.

Can be user (k) and coding-scheme (m) dependent.

Imperfect CSI:

• We assume an arbitrary distribution on the SNR γ.

Scheduling and resource allocation:

• We maximize expected sum-utility subject to a total-power constraint.
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Problem Formulation:

max
{pn,k,m≥0}

{In,k,m∈I}

E

{

N
∑

n=1

K
∑

k=1

M
∑

m=1

In,k,mUk,m

(

(1− ame
−bmpn,k,mγn,k)rm

)

}

s.t.
∑

k,m

In,k,m ≤ 1 ∀n and
∑

n,k,m

In,k,m pn,k,m ≤ Pcon

where

In,k,m = time-share of nth subchannel by user/code (k,m),

pn,k,m = power allocated to user/code (k,m) on nth subchannel.

γn,k = SNR of user k on nth subchannel.

rm = rate of mth coding scheme.

We consider two problem formulations:

Continuous : subchannel time-sharing is allowed: In,k,m ∈ [0, 1] , I.

Discrete : subchannel time-sharing is not allowed: In,k,m ∈ {0, 1} , I.
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Remarks:

1. As stated, the optimization problem is not convex.

2. In the continuous case, the problem can be convexified by substituting

pn,k,m =
xn,k,m

In,k,m
and optimizing over {xn,k,m} and {In,k,m}.

3. In the discrete case, we have a mixed-integer optimization problem.

Such problems are (in general) NP-hard.

4. If the schedule I = {In,k,m} is fixed, then resource (i.e., power)

allocation is a convex optimization problem.
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Continuous Scheduling and Resource Allocation:

max
{pn,k,m≥0}

{In,k,m∈[0,1]}

E

{

N
∑

n=1

K
∑

k=1

M
∑

m=1

In,k,mFn,k,m(In,k,m, xn,k,m)

}

s.t.
∑

k,m

In,k,m ≤ 1 ∀n and
∑

n,k,m

xn,k,m ≤ Pcon

where

Fn,k,m(In,k,m, xn,k,m) =







−E
{

Uk,m

(

(1− ame
−bm

xn,k,m
In,k,m

γn,k
)rm

)

}

if In,k,m 6= 0

0 otherwise.

Remarks:

1. This is a convex optimization problem with N + 1 constraints.

2. The KKT conditions show that the dual variables corresponding to the

subchannel-resource constraint are redundant.
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Dual Formulation of Continuous Problem:

The Lagrangian is

L(µ, I,x) :=
∑

n,k,m

In,k,m Fn,k,m(In,k,m, xn,k,m) +
(

∑

n,k,m

xn,k,m − Pcon

)

µ

where

Fn,k,m(In,k,m, xn,k,m) =







−E
{

Uk,m

(

(1− ame
−bm

xn,k,m

In,k,m
γn,k

)rm
)

}

if In,k,m 6= 0

0 otherwise.

The corresponding dual problem is:

max
µ≥0

min
I∈I

min
x�0

L(µ, I,x)

One then finds. . .

• x
∗(µ, I) : optimal powers for a given (µ, I),

• I
∗(µ) : optimal schedule for a given µ,

• µ∗ : optimal Lagrange multiplier µ.
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Important Observations:

Lemma 1 The optimal total-power allocation is a monotonically decreasing

function of µ.

µ

µ

Xtotal(µ) =
∑

n,k,m x∗
n,k,m(µ, I

∗(µ))

Pcon

µ∗

L(µ, I∗(µ,x∗(µ, I∗(µ))))

Lemma 2 µ∗ lives in the interval [µmin, µmax], where

µmin = min
n,k,m

ambmrm E
{

U ′
k,m

(

(1− ame
−bmPconγn,k)rm

)

γn,ke
−bmPconγn,k

}

µmax = max
n,k,m

ambmrmU
′
k,m

(

(1− am)rm
)

E{γn,k}
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Bisection-based Algorithm for the Continuous Problem:

Initialize with µupper = µmax and µlower = µmin.

1. Set µ← µupper+µlower

2
.

2. Calculate x∗

n,k,m(µ, I∗(µ)) and I∗n,k,m(µ) for all (n, k,m).

3. Calculate Xtotal(µ) =
∑

n,k,m x∗

n,k,m(µ, I∗(µ)).

4. If Xtotal(µ) < Pcon, set µupper ← µ, otherwise set µlower ← µ.

Repeat Steps 1–4 until µupper − µlower < κ, where κ is a stopping parameter.

Performance Guarantee:

U∗
cont − Ûcont(κ) ≤ Pconκ,

where

• U∗
cont is the optimal sum-utility, and

• Ûcont(κ) is the sum-utility achieved by the above algorithm for a given κ.
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Additional Important Observations:

µ

µ

Ptotal(µ) =
∑

n,k,m x∗
n,k,m(µ, I

∗(µ))

Pcon

µ∗

Discontinuities

L(µ, I∗(µ,x∗(µ, I∗(µ))))

Lemma 3

a. At a discontinuity, there exists some subchannel n at which the optimal

schedule time-shares several user/code combinations (k,m).

b. Otherwise, at most one user/code combination (k,m) is scheduled for

every subchannel n, and the corresponding allocation solves the discrete

problem for the total power constraint Pcon = Ptotal(µ).

c. The number of discontinuities at most countable.
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Bisection-based Algorithm for the Discrete Problem:

1. Run the proposed continuous algorithm for stopping criterion κ, yielding

µ∗ ∈ [µlower, µupper] with µupper − µlower < κ.

2. Solve the power allocation problem for each of the two schedules

{I∗(µlower), I
∗(µupper)} and choose the utility-maximizing one.

Performance Guarantee:

U∗
discrete − lim

κ→0
Ûdiscrete(κ) ≤ (µ∗ − µmin)

(

Pcon −Xmin
total(µ

∗)
)

,

where

• U∗
discrete is the optimal utility for the discrete allocation problem,

• Ûdiscrete(κ) is the utility achieved by the proposed algorithm, and

• Xmin
total(µ

∗) is the min value of Xtotal(µ) at µ in case a discontinuity exists.
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Numerical Experiments:

• N = 64 subchannels

• K = 16 users.

• Uncoded 2m+1-QAM with m ∈ {1, . . . , 15}: M = 15 and rm = m+ 1

and error-rate params am = 1, bm = 1.5/((m+ 1)2 − 1).

• Rayleigh-fading subchannels hn,k ∼ CN (0, 1) with γn,k = |hn,k|
2.

• Uncertain CSI: channel inference from pilots yields a non-central

chi-squared posterior distribution on γn,k.

• Nominally, SNR = 10 dB and SNRpilot = −10 dB.

• Algorithmic stopping criterion: κ = 0.3/Pcon.

• Reference schemes for comparison:

– Global Genie: has perfect knowledge of γn,k realizations.

– Fixed-Power Random-User-Scheduling (FP-RUS): uses prior channel statistics.
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Sum-goodput versus pilot-SNR:

Sum-goodput maximization: Uk,m(g) = g ∀k,m.
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Sum-goodput (and suboptimality bound) versus SNR:

Sum-goodput maximization: Uk,m(g) = g ∀k,m.
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Performance versus [1] and [2]:

Continuous case: maximization of upper bound on capacity [1].

Discrete case: maximization of sum-capacity [2].
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Example of a pricing-based utility:

Uk,m(g) =







1− e−w1g k ∈ K1

1− e−w2g k ∈ K2

; users in K1 prioritized when w1 > w2.
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Conclusions:

• We considered OFDMA scheduling-and-resource-allocation to maximize

goodput-based utilities under generic CSI distributions.

• Our goodput-based utility framework can handle, e.g., optimization w.r.t

sum-capacity, sum-throughput for practical coding schemes, or

differentiated pricing-models.

• Two flavors of the problem were considered: 1) “continuous” sharing of

subchannels, and 2) “discrete” assignment (no sharing).

• Bisection-based algorithms were given for both problems that are

significantly faster than the state-of-the-art.

• Tight bounds on suboptimality were provided.

• Numerical experiments confirmed the excellent behavior of the proposed

algorithms.
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