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Problem Description:

• Coded block transmission over a doubly selective channel.

• Channel realizations unknown, but channel statistics known.

• Goal: near-optimal decoding with low complexity and few pilots.

Approach:

• Turbo reception (soft noncoherent equalization →

←
soft decoding).

• Soft decoder: off-the-shelf LDPC.

• Soft noncoherent equalizer: a novel design leveraging. . .

– the EM algorithm Ã joint soft channel-estimation/equalization,

– a basis expansion model (BEM) for channel variation,

– a tree search for soft equalization.

2



Phil Schniter The Ohio State University'

&

$

%

Block Transmission/Reception Model:
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The demodulated symbols for the jth block take the form:

y(j) = ΓH
(j)G

︸ ︷︷ ︸

H (j)

s(j) + z(j)
NH= +

where

• single carrier (ZP): G = IN and Γ =
(

INh−1 0 INh−1

0 IN−Nh+1 0

)

.

• multi-carrier (PS): G = D(g)F H
t and Γ = F r D(γ).
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Basis Expansion Model:

We parameterize the dth diagonal h
(j)

d of the matrix H (j) using a BEM:

h
(j)

d ≈ Bη
(j)

d , θ(j)
,






η
(j)

0

...
η

(j)

NH−1




 ∈ C

NHNb .

yielding the system model

y(j) =
[
D0(s

(j))B, . . . ,DNH−1(s
(j))B

]

︸ ︷︷ ︸

A(j)

θ(j) + z(j),

Typical choices:

• Single Carrier : Karhunen-Loève, Polynomial, oversampled CE, DPS

(models variation across time).

• Multi-carrier : complex exponential

(models variation across frequency—a function of the delay profile).
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Noncoherent Turbo Equalization

• Large performance gains are possible through the use of sophisticated

coding schemes (e.g., LDPC).

• For complexity reasons, noncoherent decoding is split into

1. noncoherent equalization, which leverages channel structure,

2. decoding, which leverages the code structure.

• By iterating the two steps (“turbo equalization”), we hope to get

near-optimal noncoherent decoding with practical complexity. ©..⌣

Note: Doing so requires soft equalization (and soft decoding).

soft
noncoherent

equalizer

soft
LDPC

decoder
pilots
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+

+
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Soft Noncoherent Equalization

By “soft noncoherent equalization” we mean

computing coded-bit LLRs in the presence of an unknown channel.

Possible approaches:

1. Joint equalization/chan-est (MAP inspired)

2. Iterative equalization & chan-est (EM inspired)

soft coh eq

soft chan est

soft noncoh eq

soft
LDPC

decoder
pilots

demodulated
signal

recovered
bits

LLRs

LLRs

+

+

3. Iterative equalization & chan-est (ad hoc)

4. Non-iterative equalization (with pilot-aided channel estimation)
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Bayesian EM Algorithm:

Using symbols s as the “missing data,” the ith EM iteration becomes

θ̂[i+1] = arg max
θ̂

E
{

ln p(y, s | θ̂)
∣
∣ y, θ̂[i]

}
+ ln p(θ̂)

With the Ricean fading assumption θ ∼ CN (θ̄, Rθ), we get

θ̂[i+1] = θ̄ +
(
C + σ2R−1

θ

)−1(
Ā

H
y − Cθ̄

)

where

Ā =
[
D0(s̄)B, . . . ,DNH−1(s̄)B

]

C = Ā
H

Ā +






BH D0(c)B
. . .

BH DNH−1(c)B






use symbol means s̄ , E{s |y, θ̂[i]} & variances D(c) , cov{s, s |y, θ̂[i]}

calculated via the previous channel estimate θ̂[i].
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Soft Symbol Estimation:

We can use the (coherent) bit LLRs

L(xk | θ̂[i]) , ln
Pr{xk = 1 |y, θ̂[i]}

Pr{xk = 0 |y, θ̂[i]}

to calculate the symbol means/variances. For QPSK sn ∈ {±1 ± j}, get

s̄n = tanh{1
2
L(x2n | θ̂[i])} + j tanh{1

2
L(x2n+1 | θ̂[i])}

cn = 2 − |s̄n|
2.

The bit LLRs can be written using the metrics {µ(x | θ̂[i])}x∈{0,1}QN :

µ(x | θ̂[i]) = − 1
σ2‖y − Aθ̂[i]‖2 + lT x,

L(xk | θ̂[i]) = ln

∑

x: xk=1 exp µ(x | θ̂[i])
∑

x: xk=0 exp µ(x | θ̂[i])
,

where l , [. . . , La(xk), . . . ]
T are prior LLRs (obtained from the decoder).
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Simplified LLR Evaluation:

To avoid the 2QN -term summations, we use the “max-log” approximation:

L(xk | θ̂[i]) ≈ max
x∈X [i]∩{x:xk=1}

µ(x | θ̂[i]) − max
x∈X [i]∩{x:xk=0}

µ(x | θ̂[i])

X [i] : set containing the M most probable x,

which requires relatively few evaluations of µ(x | θ̂[i]).

The set X [i] can be found efficiently using a (soft coherent) tree search,

e.g., using the M-algorithm. The required complexity is O(M2QNNbNH):

• linear in the block length N ,

• linear in the number of channel coefficients NbNH .

• linear in the constellation size 2Q.
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Simplified Soft Channel Estimation — Multicarrier Case

We would like to avoid an O(N3) matrix inversion in

θ̂[i+1] = θ̄ +
(
C + σ2R−1

θ

)−1(
Ā

H
y − Cθ̄

)
,

where

Ā =
[
D0(s̄)B, . . . ,DNH−1(s̄)B

]

C = Ā
H

Ā +






BH D0(c)B
. . .

BH DNH−1(c)B




 .

In the multicarrier case, we can exploit the facts that Rθ is block diagonal

and that multiplication-by-B can be calculated via an FFT.

Main idea: Use conjugate-gradient algorithm to solve for θ̂[i+1] iteratively.

Complexity: O(N log2 N).
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Simplified Soft Channel Estimation — General Case

Using the approximation c ≈ 0, we get

θ̂[i+1] ≈ θ̄ +
(
Ā

H
A + σ2R−1

θ

)−1
Ā

H(
y − Āθ̄

)
,

which allows us to solve for θ̂[i+1] using a sequential-Bayes recursion:

set {Σ−1
−1, θ̂−1[i+1]} , {σ−2Rθ, θ̄};

for n = 0, 1, 2, . . . , N − 1,
an = [s̄nb

H
n , · · · , s̄n−NH+1b

H
n ]H ;

dn = Σ
−1
n−1an;

αn = (1 + aH
n dn)−1;

Σ
−1
n = Σ

−1
n − αndnd

H
n ;

θ̂n[i+1] = θ̂n−1[i+1] + αn(yn − aH
n θn−1[i+1])dn;

end

Complexity: O(N(NHNb)
2).

11



Phil Schniter The Ohio State University'

&

$

%

Numerical Experiments — Single-carrier:

Channel:

• WSSUS Rayleigh (via Jakes), Nh = 3 taps, fDTs = 0.002.

(e.g., fc =60GHz, BW=1MHz, 36km/hr, τh =3µs)

Transmitter:

• rate-1
2

LDPC, 4096-bit frame, QPSK (Q = 2)

• block length: N = 64

• Np = 6 pilots at start of each block.

Receiver:

• BEM: Karhunen Loève with Nb = 3

• EM iterations: K = 3, tree-search parameter M = 64

• LDPC decoding iterations: ≤ 60

• turbo iterations: ≤ 8
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Description of Curves:

The proposed EM algorithm with K iterations is denoted “(cT+sBE)K”

since it iterates coherent tree-search (cT) with soft BEM estimation (sBE).

The two genie-aided bounds are: coherent tree search with perfect

knowledge of H (cT+pH), and soft BEM estimation using perfect LLR

feedback from the decoder (cT+pLLRBE). Only about 2 dB better!

The conventional technique uses soft 2nd-order Gauss-Markov channel

estimation (sGM). Here we combine this with coherent tree search.

An approximate MAP-optimal approach is our non-coherent tree search

(ncT) from Asilomar-07. Generally, it is more computationally complex.

We also tried the EM algorithm with “exact” soft BEM estimation

(cT+esBE)K to show that it performs only slightly better than (cT+sBE)K .
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Single-carrier Performance
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Numerical Experiments — Multi-carrier:

Channel:

• WSSUS Rayleigh (via Jakes), Nh = 3 taps, fDTs = 0.002.

(e.g., fc =60GHz, BW=1MHz, 36 km/hr, τh =3µs)

Transmitter:

• rate-1
2

LDPC, 4096-bit frame, QPSK

• N = 64 subcarriers

• Np = 9 pilot subcarriers

... ...

data
pilot
guard

time

fr
eq

groups of 4 used for estimationReceiver:

• BEM: CE with Nb = Nh, ICI taps: NH = 3

• EM iterations K = 6, tree-search parameter M = 64

• LDPC decoding iterations ≤ 60

• turbo iterations ≤ 8
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Multi-carrier Performance
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Conclusions:

• We proposed a novel soft noncoherent equalization algorithm based on

the Bayesian EM algorithm.

• The algorithm alternates between two steps: soft MMSE estimation of

BEM coefficients, and computation of (coherent) coded-bit LLRs.

• To calculate the LLRs, we proposed to use a (soft) tree search

implemented via the M-algorithm.

• To calculate soft MMSE estimates, we presented two simplified algs:

– an O
(
N(NHNb)

2
)

algorithm based on sequential Bayes,

– an O
(
N log2 N

)
algorithm based on the conjugate gradient

algorithm and FFT; applicable only in the multi-carrier case.

• The EM-based soft noncoherent equalizer performs only ≈ 2dB away

from genie-aided bounds.
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