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Multicarrier System Model:

Modulation:

s(t) =
∞∑

n=−∞

N−1∑

k=0

[sn]k a(t − nTs)e
j2πkFs(t−nTs)

Doubly dispersive channel:

x(t) =

∫ Th

0

h(t, τ)s(t − τ)dτ + z(t)

Demodulation:

[xm]k =

∫
∞

−∞

x(t) b∗(t − mTs)e
−j2πkFs(t−mTs)
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Discrete-time Vector Representation:

symbols
sm

xm
s(t) x(t)

mod demod
LTV

channel

noise z(t)

equalize/
decode

̂symbols
ŝm

+

xm =
∞∑

n=−∞

Hm,nsm−n + zm

“ISI+ICI channel”

sm ∈ CN multi-carrier symbol vector

Hm,n ∈ CN×N sub-carrier coupling matrix at time-m and lag-n

xm ∈ CN multi-carrier observation vector

zm ∈ CN noise vector
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Quasi-Banded Model:

With properly chosen pulse shapes a(t) and b(t), and with a smoothly

varying channel, we can make the approximation

xm =
∞∑

n=−∞

Hm,nsm−n + zm

≈ Hm,0sm + zm

where Hm,0 is quasi-banded with 2D + 1 active diagonals:

≈ +

xm Hm,0 sm zm

In other words, ISI becomes negligible and ICI is effectively limited to a

radius of D subcarriers.
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In fact, with knowledge of the channel statistics, the pulses {a(t), b(t)}

can be designed to make the approximation accurate (without

compromising spectral efficiency). Example max-SINR pulse designs:
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ICI Energy vs. Subcarrier Separation:
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Efficient Symbol Detection:

Prior art:

1. Linear (e.g., MMSE, ZF) [Rugini/Banelli/Leus SPL 05] O(D2N)

2. DFE [Rugini/Banelli/Leus SPAWC 05] O(D2N)

3. Iterative [Schniter TSP 04] O(D2N)

4. ML (e.g., Viterbi) [Matheus/Kammeyer GLOBE 97] O(MDDN)

where M is the constellation size.

Can we get ML-like performance with DFE-like complexity?

Yes, via sequential decoding (i.e., tree search or closest point

lattice search)!
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Sequential Decoding (SqD):

Two-step procedure:

1. Pre-processing (to expose tree structure),
DD + 1 2D + 1 2D

L = 2N

2. Efficient (possibly sub-optimal) tree search.

Both steps should leverage quasi-banded structure of ICI matrix for

complexity reduction.
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SqD Pre-Processing:

1. QR (traditional method): For H = QR with unitary Q and upper

triangular R,

ŝML = arg min
s∈SN

‖x − Hs‖2 = arg min
s∈SN

‖QHx
︸ ︷︷ ︸

x′

−Rs‖2

Problem: R may be ill-conditioned, in which case sub-optimal tree

search tends to be costly. [Murugan/El-Gamal TIT 06]

2. MMSE-GDFE [Damen/El-Gamal CISS 04]: For
(

H

γ−1/2IN

)

=
(

Q1
Q2

)

R with unitary
(

Q1
Q2

)

and upper triangular R,

ŝPP = arg min
s∈SN

‖QH
1 x

︸ ︷︷ ︸

ρ

−Rs‖2 6= ŝML

Note: ŝPP = ŝML under QPSK & BPSK [Hwang/Schniter ALL 05].
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Fast MMSE-GDFE Pre-Processing:

Steps:

1. Compute
(

H

γ−1/2IN

)H (
H

γ−1/2IN

)

O(D2N)

2. Cholesky factorize
(

H

γ−1/2IN

)H (
H

γ−1/2IN

)

= RHR O(D2N)

3. Compute b := HHx = RHρ O(DN)

4. Forward substitute to get ρ from b O(DN)

Note: Similar to fast MMSE-DFE from [Rugini/Banelli/Leus SPAWC

05] but designed for quasi-banded (rather than banded) matrices.
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Additional Pre-Processing?

• Additional pre-processing stages, such as lattice reduction and

column ordering (e.g., V-BLAST), are common in SqD. However,

most of them destroy the quasi-banded structure we need for fast

MMSE-GDFE, and so are not appropriate in our application.

• A simple circular shift in the column order is admissible. We find

that rotating the strongest column into the rightmost position in R

yields a small improvement in the performance/complexity of the

subsequent tree search.
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Tree Search:

Now we focus on solving

ŝPP = arg min
s∈SN

‖ρ − Rs‖2 with “V-shaped” R,

i.e., efficiently searching a tree with MN leaf nodes.

Options:

1. Depth-first search (e.g., Schnorr-Euchner sphere decoder)

2. Best-first search (e.g., Fano alg, stack alg)

3. Breadth-first search (e.g., M-alg, T-alg, Pohst sphere decoder)
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Depth-first Search:

• Proceed down tree by following min-cost branch at each level. Keep

first full path (i.e., DFE estimate) as a reference. Then, back up

one level at a time and re-examine any discarded branches which

have a chance at beating the reference. Reset reference if a better

one is found, and repeat.

• Very efficient at high SNR, because DFE estimate is nearly ML and

few paths need to be re-examined. At low SNR, many paths must

be re-examined, leading to a complexity explosion.

• Additional problem with V-shaped R: Symbol errors are not always

visible in down-stream observations, meaning that back-tracking will

need to go very deep to uncover errors.
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Error masking in V-shaped R:

Recall ρ = Rs + n:

= +

0 2D + 1 2D

N − 2D − 1N − 2D − 1N − 4D − 2

The symbol sN−2D−1 does not affect {ρ0, . . . , ρN−4D−2}!
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Best-First Search:

• Maintain a sorted list of best partial paths (of possibly different

lengths). At each iteration, replace best partial path with it’s

children and re-sort list. Terminate with best partial path is a full

path.

• The Fano alg adds a user-selected bias towards longer paths,

facilitating a performance/complexity trade-off. With a large

enough bias, Fano becomes DFE.

• Fano alg known for excellent performance with fully populated

upper triangular R, but V-shaped R leads to inefficient search, due

in part to the fact that the Fano bias rewards the extension of paths

with early errors, e.g., errors in ŝN−2D−1.
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Breadth-First Search:

• Proceed down the tree level-by-level, extending only the best partial

paths at each level. Terminate when the last level is reached.

• The complexity of breath-first search is relatively insensitive to SNR

and to the structure of R.

• The M-alg investigates a fixed number of branches per level. This

involves a compromise, however, since there is typically no single

number that works well in all situations.

• The T-alg investigates the paths whose metrics are within some

threshold T of the best path’s metric at the current level. Several

methods to choose T have been proposed, e.g., experimentally or

based on SNR.
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Channel-Adaptive T-Algorithm:

• We propose a new variant of the T-alg, where Ti, the threshold at

the ith level, is adjusted based on the channel realization and noise

variance.

• The main idea is to discard the true path with probability at most ǫo

when the true path is not the best partial path. In other words, Ti is

chosen such that

Pr{M(s(i)

T ) > M(s(i)

⋆ ) + Ti

∣
∣ M(s(i)

T ) > M(s(i)

⋆ )} < ǫo

Note: Simply setting Ti so that the true path is discarded with

probability at most ǫo would allow too high a search complexity with

difficult channels.

• The key to efficient search is to know when to give up; difficult

channels are not worth expensive searches!
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Channel-Adaptive T-Algorithm:

• We assume that the event M(s(i)

T ) > M(s(i)
⋆ ) is dominated by the

case that s
(i)

T and s(i)
⋆ differ in a single element at the weakest

column of R(i). We also assume that ρ(i) − R(i)s
(i)

T is Gaussian.

Under these assumptions, the threshold

Ti = 2σz‖r
(i)

weak‖Q
−1

(

ǫoQ

(
‖r(i)

weak‖

2σz

))

− ‖r(i)

weak‖
2

ensures that

Pr{M(s(i)

T ) > M(s(i)

⋆ ) + Ti

∣
∣ M(s(i)

T ) > M(s(i)

⋆ )} = ǫo.
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Numerical Experiments:

We examine:

• Effect of residual-ICI on the performance of ML estimates.

• Relative performance of various SqDs.

• Relative complexity of various SqDs.

• Effect of imperfect channel knowledge on the performance of

various SqDs.
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Simulation Setup:

• Uncoded QPSK.

• N = 64 subcarriers.

• WSSUS Jakes channel with 16 taps and fdTc ∈ {0.001, 0.003}, e.g.,

10 GHz carrier, 12.5µs delay spread, {138,414} km/hr.

• CP-, ZP-, and Strohmer-OFDM use η = 0.8 symbols/sec/Hz, while

our TOMS scheme uses η = 1 symbol/sec/Hz.

• Algorithms employed an ICI radius of D = 3.
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Effect of Residual-ICI/ISI on ML Estimates:

18 20 22 24 26
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR in dB

fr
am

e 
er

ro
r 

ra
te

 

 

CP−OFDM ML full H

S−OFDM ML full H

ZP−OFDM ML full H

18 20 22 24 26
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR in dB

fr
am

e 
er

ro
r 

ra
te

 

 

CP−OFDM ML full H

S−OFDM ML full H

ZP−OFDM ML full H

fdTc = 0.001 fdTc = 0.003

CP-OFDM MFB D=3CP-OFDM MFB D=3

S-OFDM MFB D=3S-OFDM MFB D=3

ZP-OFDM MFB D=3ZP-OFDM MFB D=3

TOMS-MCM ML D=3TOMS-MCM ML D=3
TOMS-MCM ML full HTOMS-MCM ML full H

21



Phil Schniter The Ohio State University'

&

$

%

Frame Error Rate:
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Average Complexity (MACs/frame):
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FER with Imperfect Channel Estimates:
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via pilot-aided reduced-rank MMSE estimation of local-ICI coefficients.
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Conclusions:

• Pulse shaping can be used to make residual ICI/ISI have a negligible

effect on ML performance.

• Pulse shaping can have a degrading effect on MMSE-DFE

performance, probably as a result of increasing the sensitivity to

error propagation.

• Sequential decoding can yield FERs indistinguishable from that of

ML with average complexity on par with MMSE-DFE.

• The banded ICI matrix enables a fast SqD algorithm, but also

causes problems for many traditional tree searches (e.g., best-first

and depth-first varieties).

• The proposed SqD alg works well with pilot-aided channel estimates.
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