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ABSTRACT

The scale-lag Rake receiver is designed for wideband systems em-
ploying direct-sequence spread spectrum with a large bandwidth-
to-center frequency ratio, such that the typical narrowband Doppler
spread assumptions do not apply to mobile channels, and is ca-
pable of exploiting the diversity that results from mobility. We
derive autocorrelation expressions for scale-lag Rake channel co-
efficients and explore the effectiveness of principal components
combining (PCC) to reduce receiver complexity while maintain-
ing performance. Such analysis applies, for example, to ultra-
wideband (UWB) radio frequency channels and underwater wide-
band acoustic channels.

1. INTRODUCTION

Wideband systems are defined by a ratio of single-sided bandwidth
to center frequency in excess of 0.20. It is important to notethat the
combined effects of multipath and mobility on wideband systems
are quite different than those on their narrowband counterparts.
For example, in narrowband systems with a dense ring of scatterers
surrounding the receiver, mobility imparts a spreading of the signal
in the frequency-domain that is commonly referred to as Doppler
spreading [1]. In wideband communication systems employing
low data rate direct sequence spread spectrum (DSSS)—the fo-
cus of this manuscript—the effects of mobility in the multipath
mobile environment are not well described by frequency-domain
spreading, but rather byscale spreading.1 By scale spreading, we
mean that several copies of the transmitted signal combine at the
receiver, each with a different dilation of the time supportof the
original signal. In addition, each copy may be temporally delayed
by a different amount.

In this paper, we investigate the correlation structure forthe
wideband channel, specifically for the fingers of the wideband
scale-lag Rake receiver [2] [3]. While the channel correlation
structure for the time-varying narrowband case has been well stud-
ied (e.g., ring-of-scatters model [1]), relatively littlework has been
done in classifying mobility in wideband channels. We show that
the Rake fingers are approximately stationary and that channel co-
herence is inversely proportional to the temporal-scale spreading
induced by relative velocity between the transmitter, receiver, and
scatterers. Thenormalized scale spread captures, in a single para-
meter, the rate of scale-lag Rake finger fluctuation, just as the nor-
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1Note that scale-spreading is actually a general concept that applies to
both narrowband and wideband systems. For example, changing the time
scale of a sinusoidal signal is equivalent to shifting the signal in frequency.

malized Doppler spread captures the rate of variations in narrow-
band channels. We also investigate incorporating principal com-
ponents combining (PCC) [4] into the scale-lag Rake receiver to
reduce receiver complexity.

2. SYSTEM MODEL

2.1. Transmit Signal

The wideband DSSS signature waveform is

x(t) =
1p
Np

Np−1X
i=0

cip(t − iTo), (1)

where{ci} is the length-Np PN chip sequence,p(t) is the unit-
energy chip waveform, andTo is the chip duration. The symbol
duration isTs = NpTo seconds and the system bandwidth is de-
fined to beW = 1/To. A PN sequence{ci} with chips chosen
from a ternary alphabet{−c, 0, c} may be used to model time-
hopping [5] or episodic signaling [6] without affecting theanaly-
sis. The chip amplitudec is chosen such thatE[c2

i ] = 1. In this
paper, we consider only baseband signaling; thus, all signals and
parameters are real valued.

We linearly modulate the DSSS waveformx(t) with a se-
quence ofNb bits{bj} to obtain the transmitted signals(t).

s(t) =

Nb−1X
j=0

bjx(t − jTs). (2)

2.2. Wideband Channel

Analogous to the spreading function in narrowband channels, the
wideband channel output can be modelled by the linear transfor-
mation [2] defined by:

r(t) =

ZZ
L (a, τ )

1√
a

s

�
t − τ

a

�
da dτ + w(t), (3)

wheres(t) is the input signal,w(t) is additive white Gaussian
noise with two-sided power spectral density ofNo/2, andL (a, τ )
is the wideband channel kernel. Note that the wideband chan-
nel transformation isnot shift-invariant; hence, sinusoids arenot
eigenfunctions. The wideband channel kernelL (a, τ ) quantifies
the scale-lag spreading produced by the channel—the variable a
corresponds to the dilation introduced by the channel, and the vari-
ableτ corresponds to the propagation delay.



2.3. Definitions

In practice, the wideband channel kernelL (a, τ ) has finite sup-
port: {(a, τ ) : amin < a < amax, 0 < τ < τmax}, whereamin

and amax are the minimum and maximum dilation, respectively,
andτmax is the delay spread. By convention, the time delay of the
shortest path is zero. In this paper, we assume that the signal dura-
tion Ts is much larger than the delay spread, i.e.,Ts ≫ τmax. This
is a reasonable assumption for systems with large processing gain.

If we consider a system composed of a mobile receiver, fixed
reflectors, and a fixed transmitter, the minimum dilation andmax-
imum dilation areamin = 1 − vmax/c andamax = 1 + vmax/c,
respectively, wherevmax is the maximum mobile velocity. How-
ever, we note that the wideband kernel can be used to model any
dynamic geometry between the transmitter, scatters, and receiver,
e.g., a turbulent underwater environment with scatterers moving at
different speeds.

An important system parameter is the widebandscale spread:
γmax := amax−amin

2
= vmax/c = amax − 1, which defines the max-

imum deviation from unit temporal dilation applied by the wide-
band channel kernel.
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Fig. 1. (a) Transmitted wideband signal. (b) Signal dilated byao.

The scale-lag resolution properties of a wideband DSSS sig-
nal x(t) are related to the total signal bandwidthW and symbol
durationTs. An often used rule-of-thumb is that the minimum re-
solvable lag of a linear Rake receiver isTo = 1/W [1]. A similar
rule-of-thumb can be suggested for theminimum resolvable dila-
tion, which will be defined next.

Consider the inner product ofx(t) with x(t) dilated bya:�
x(t),

1√
a

x

�
t

a

��
. (4)

Let a = ao result in a dilation by one chip period, (illustrated by
Fig. 1) or in other words, letao satisfy the relation

aoTs − Ts = To ⇔ ao = 1 + 1/Np. (5)

The expected value of the inner product (4) evaluated ata = ao

vanishes if and only if the pulse-shape has zero DC component[3].
Hence, we defineao as theminimum resolvable dilation. Equiva-
lently, γo := ao − 1 is thescale resolution of the wideband DSSS
signalx(t). We haveγo = To/Ts = 1/TsW = 1/Np, i.e., the
scale resolution is the inverse of the time-bandwidth product. To-
gether, the scale-lag resolution properties of the wideband DSSS
signal imply that〈xm,n(t), xm̄,n′(t)〉 ≈ γ̄m−m̄γ̄n−n′ , where

xm,n(t) := 1√
am

o

x
�

t−nToam
o

am
o

�
, and γ̄m is the Kroneker delta

function.
A useful quantity is thenormalized scale spread: γmax

γo
which

can be written in terms of the velocity, speed of signal propagation,

and the time-bandwidth product:γmax

γo
= vmax

c
TsW . Note the simi-

larity to the narrowband normalized Doppler-frequency spread [1]:
fdTs = vmax

c
Tsfc, wherefc is the carrier frequency.

2.4. Scale-Lag Rake Receiver

To demodulate theith bit, the scale-lag Rake receiver projects the
received signalr(t) onto basis{x(i)

m,n(t)}:

r(i)
m,n = 〈x(i)

m,n(t), r(t)〉, (6)

= 〈x(i)
m,n(t),L{s(t)}〉 + w(i)

m,n (7)

wherew
(i)
m,n = 〈x(i)

m,n(t), w(t)〉 are the noise coefficients. The
values ofm andn range over−M ≤ m ≤ M and0 ≤ n ≤
N , whereM and N are chosen so that a significant portion of
the energy is retained after projection. The basis functions for the
scale-lag Rake receiver are shift-dilates of the transmitted signal
in order to match the scale-lag spreading of the channel. Note that
the basis is time-shifted byiTs to despread theith bit.

From the input-output relationship of the wideband kernel (3),
we can write the projection coefficients{r(i)

m,n} as

r(i)
m,n =

NbX
j=0

bj

ZZ
L (a, τ )Z

x
(i)
m,n(t) 1√

a
x
�

t−τ−ajTs

a

�
dt| {z }

≈0, for i6=j, since Ts≫τmax

dadτ + w(i)
m,n, (8)

≈ bi

ZZ
L (a, τ )Z

x
(i)
m,n(t) 1√

a
x
�

t−τ−aiTs

a

�
dtdadτ + w(i)

m,n, (9)

= bi

ZZ
L (a, τ )χ

�
am

o

a
,

nToam
o −τ−i(a−1)Ts

a

�
dadτ| {z }

h
(i)
m,n

+w(i)
m,n, (10)

= bih
(i)
m,n + w(i)

m,n (11)

whereχ(a, τ ) :=
R

x(t) 1√
a
x
�

t−τ
a

�
dt is the ambiguity function

of the waveformx(t) (similar to [7]).
To consolidate the notation, we stack the projection coeffi-

cients{r(i)
m,n} for the ith bit into a (2M + 1)(N + 1) × 1 di-

mensional vectorri, and similarly define the channel vectorhi

and noise vectorwi.
The scale-lag Rake generates the decision statisticb̂i for the

ith bit by linearly combining the projection coefficients

b̂i = f
T
i ri, (12)

ri = bihi + wi. (13)

The choice of combining vectorf i is discussed in Sec. 4.

3. CHANNEL AUTOCORRELATION

In this section, we investigate the channel autocorrelation
Rh(i, i + j) := E[hih

T
i+j ]. Assuming the wideband channel ker-

nel is uncorrelated across scale and lag2, i.e.,

2This simplifying assumption is analogous to the uncorrelated doppler-
lag spreading assumption made in narrowband systems [8].



E[L (a, τ )L(a′, τ ′)] = Ψ(a, τ )δ(a−a′)δ(τ−τ ′), whereΨ(a, τ )
is thewideband scattering function, we obtain the elements of the
expected outer product,

E[h(i)
m,nh

(i+j)

m′,n′ ] =

Z τmax

0

Z 1+γmax

1−γmax

Ψ(a, τ )E

�
χ
�

am
o

a
,

nToam
o −τ−i(a−1)Ts

a

�
χ

�
am′

o

a
,

n′Toam′

o −τ−(i+j)(a−1)Ts

a

��
dadτ.

(14)

After we make the change of variablesγ̄ := (a − 1)/γo andτ̄ :=
τ/To, the analysis in Appendix A allows us to approximate (14)
with

E[h(i)
m,nh

(i+j)
m′ ,n′ ] ≈ γoTo

Z τmax
To

0

Z γmax
γo

− γmax
γo

Ψ(1 − γoγ̄, τ̄To)

χ̄(m−γ̄, n−τ̄−iγ̄)χ̄(m′−γ̄, n′−τ̄−(i+j)γ̄)dγ̄dτ̄ , (15)

where we define the function̄χ(γ̄, τ̄) as

χ̄(γ̄, τ̄) := E[c2
i ]

Z 1

0

χp(1, (τ̄ + xγ̄)To)dx, (16)

with χp(a, τ ) :=
R

p(t) 1√
a
p
�

t−τ
a

�
dt as the pulse ambiguity func-

tion. The variablēγ is the scale deviation normalized to the min-
imum resolvable scale deviation, andτ̄ is delay normalized to the
minimum delay resolution. The function̄χ(γ̄, τ̄ ) approximates the

expected ambiguity function:E[χ(a, τ )] ≈χ̄
�

a−1
γo

, τ
To

�
. Note

that the correlation approximation (15) depends only on thenor-
malized scale spreadγmax

γo
and the normalized delay spreadτmax

To
.

For the unit-energy second-derivative Gaussian pulse3,

p(t) =

√
fo

4
√

32π√
3

�
1 − 2(πfo(t − To/2))

2
�

exp
�
−(πfo(t − To/2))

2� , (17)

it is shown in Appendix B that for largeNp and withfo := 2/To,

χ̄(γ̄, τ̄) =
1

12

4X
k=0

vk

Z 1

0

xke−2π2(γ̄x+τ̄)2dx, (18)

(19)

wherev0 = 12−96π2τ̄ 2+64π4τ̄ 4, v1 = 256π4τ̄ 3γ̄−192π2τ̄ γ̄,
v2 = 24

�
16π4τ̄ 2γ̄2 − 4π2γ̄2

�
, v3 = 256π4 τ̄ γ̄3, v4 = 64π4γ̄4.

To gain insight into the time-variation of the channel, we nu-
merically evaluate the autocorrelation sequenceE[h

(0)
m,nh

(j)
m′,n′ ] for

m = m′ = 0, andn = n′ = 0 and indicate the results for differ-
ent values of normalized scale spreadγmax

γo
as solid lines in Fig. 2.

We assume a ring-of-scatterers model such that the scattering func-
tionΨ(a, τ ) is flat across lagτ and has a “bathtub” shape in scalea
[9]. The dashed lines in Fig. 2 correspond to damped zeroth-order

Bessel functions of the first kindJ0

�
4π γmax

γo
j
�

e
−γmax

γo
j , which

closely approximate the autocorrelation sequence of a wideband
channel with normalized scale spread ofγmax

γo
. The first zero cross-

ing of a Bessel functionJ0(x) occurs at approximatelyx = 3π/4;
it follows that the coherence time of the wideband channel isap-
proximately 3

16
1

γmax
γo

Ts seconds. Note that the channel coherence

3We wish to point out that other zero-DC component signals maybe
used, such as the modified duobinary pulse [1].
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The normalized delay spread isτmax

To
= 1.

is inversely proportional to the normalized scale spreadγmax

γo
=

vmax

c
TsW ; as velocity increases, scale spreading causes greater

channel variation. This is reminiscent of the role the normalized
Doppler spread plays for narrowband systems.

For reference, a normalized scale spread of 0.001 would be
found in an RF system with mobile velocity of 10 km/hr, data
rate of 10 kbps, and bandwidth of 1 GHz, or in an RF system
with velocity of 100 km/hr, data rate of 1 Mbps, and bandwidthof
10 GHz. Larger scale spreading results from increasing velocity
or bandwidth and/or decreasing data rate.

3.1. Autoregressive Model for Scale-Lag Channel Coefficients

The correlation expression (15) reveals that the channel coeffi-
cients are approximately wide-sense stationary. Thus, we define
the stationary correlationRh(j) := Rh(0, j) for generating time
series realizations of the channel.

We have observed thatRh(j) can be approximately diago-
nalized by a common set of eigenvectors:Rh(j) ≈ UΛ(j)U T .
Suppose that none of the correlation matrices in{Rh(j)}∞j=0 has
more thanKmax non-zero eigenvalues:{λk(j)}Kmax

k=1 . If we as-
sume that the channel coefficients are zero-mean jointly-Gaussian
processes, then channel coefficient realizations can be generated
by filtering a set ofKmax uncorrelated white noise processes. The
kth noise process is filtered by an autoregressive (AR) model that
is fit to thekth eigenvalue sequence{λk(j)}∞j=0. For example, let
{ak(l)}Nk

l=1 be the AR-Nk model parameters computed from the
Yule-Walker equation. Definezk(i) = qk(i)−PNk

l=1 ak(l)zk(i−
l), whereqk(i) is white gaussian noise of suitable variance. Now
define the vectorzi := [z1(i), z2(i), . . . , zKmax(i)]

T such that the
channel realization is

hi = UKmaxzi, (20)

whereUKmax collects theKmax principal eigenvectors fromU .



4. PRINCIPAL COMPONENTS COMBINING

In [3], we showed that the channel correlation matrixRh(0) pro-
duces a relatively small number of non-negligible eigenvalues com-
pared to the number of scale-lag channel coefficients. For exam-
ple, Fig. 3 shows the eigenvalue spread of the system in Fig. 2.
From (20), the channel dynamics are focused in a low-dimensional
subspace spanned by the principal eigenvectors, which motivates
the use of principal components combining (PCC) [4] to reduce
receiver complexity. The PCC vectorf i is the SNR maximiz-
ing (BER minimizing) vector constrained to lie in the subspace
spanned by theKpcc principal eigenvectors ofRh(0): [4]

f i = UKpccΘ| {z }
Ũ Kpcc

Θ
T
U

T
Kpcc

hi| {z }
z̄i

, (21)

whereUKpcc collects theKpcc principal eigenvectors ofRh(0),
andΘ is anyKpcc × Kpcc orthogonal matrix. The valueKpcc is a
design choice that trades-off complexity and performance.
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Fig. 3. Eigenvalues of channel autocorrelation matrixRh(0) nor-
malized to unit energy.

For operational convenience, the PCC vector can be applied
in two stages: first, the scale-lag Rake received vectorri is pro-

jected onto the principal eigenvector subspace:r̃i = Ũ
T

Kpcc
ri;

second, the projection is maximal ratio combined:b̂i = z̃T
i r̃i.

The projection matrix̃UKpcc describes the channel statistics (scale
spread, delay spread), which change slowly and thus can be easily
learned by the receiver (e.g., [10]). The parametersz̃i represent
the channel realization, which changes quickly, and hence must be
tracked using, e.g., decision-directed LMS or RLS. We will per-
form a study of adaptive solutions in future work.

In Fig. 4, we show the bit error rate (BER) performance of
the PCC with perfect channel knowledge for increasing values of
Kpcc—the number of principal components used in the receiver.
The BER expression can be found in [9]. Recall from Fig. 3 that
Rh(0) gives four non-negligible eigenvalues; hence, the scale-lag
Rake exploits full channel diversity for̄K ≥ 4, as evidenced in
Fig. 4.

5. CONCLUSION

In this paper, we studied the correlation structure of the fingers of
the scale-lag Rake receiver and showed that the time-variability
of the channel is captured in thenormalized scale spread parame-
ter γmax

γo
. We also suggested incorporating PCC into the scale-lag

Rake as a means of reducing complexity while maintaining per-
formance. The analysis applies to radio-frequency UWB systems
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Fig. 4. BER performance of scale-lag Rake receiver using PCC
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To
= 1.

and wideband acoustic systems, where narrowband assumptions
are invalid.

A. AVERAGE AMBIGUITY FUNCTION PRODUCT
APPROXIMATION

The approximation of (14) is based on the approximation of the
expected ambiguity function productE[χ(a, τ )χ(a′, τ ′)]. The use
of a random spreading code simplifies the computation

E[χ(a, τ )χ(a′, τ ′)] =
1

N2
p

X
i,j,k,l

E[cicjckcl]

χp(a, τ + (ai − j)To)χp(a
′, τ ′ + (a′k − l)To), (22)

whereχp(a, τ ) =
R

p(t) 1√
a
p
�

t−τ
a

�
dt is the ambiguity function

of the pulse shape. The number of summation terms in (22) can be
reduced by noting that

E[cicjckcl] =

8>>>>><>>>>>:E[c4
i ] i = j = k = l,

E[c2
i ]

2 i = j, k = l, i 6= k,

E[c2
i ]

2 i = k, j = l, i 6= j,

E[c2
i ]

2 i = l, j = k, i 6= j,

0 else.

(23)

Hence, we need only compute the non-zero terms outlined in (23).
We will find that only the second case will produce a non-negligible
contribution. In the following, we make the change of variables
a = 1 + γ̄

Np
to facilitate the approximation.

The absolute value of the sum of the terms in (22) for the case
i = j = k = l is upper bounded by

Np−1X
i=0

E[c4
i ]

N2
p

���χp

�
1+ γ̄

Np
, τ + γ̄iTo

Np

�
χp

�
1+ γ̄′

Np
, τ ′+ γ̄′iTo

Np

����
≈ E[c4

i ]

Np

Z 1

0

��χp(1, τ + xγ̄To)χp(1, τ ′ + xγ̄′To)
�� dx (24)

≤ E[c4
i ]

Np

(25)



The approximation in (24) is tight whena anda′ are near unity
and the number of chipsNp is large. The inequality in (25) follows
from the pulse having bounded energy, i.e.,χp(a, τ ) ≤ 1, ∀ a, τ .
Hence, for a large numberNp of chips, the sum of the terms in the
first case of (23) is negligible.

For the second case,i = j, k = l, i 6= k, we haveX
i,k 6=i

E[c2
i ]

2

N2
p

χp

�
1+ γ̄

Np
, τ+ γ̄iTo

Np

�
χp

�
1+ γ̄′

Np
, τ ′+ γ̄′kTo

Np

�
≈ E[c2

i ]
2

Z 1

0

χp(1, τ + xγ̄To)dx

Z 1

0

χp(1, τ ′ + xγ̄′To)dx

≈ E[χ(a, τ )]E[χ(a′, τ ′)] (26)

For the third case,i = k, j = l, i 6= j, we haveX
i,j 6=i

E[c2
i ]

2

N2
p

����χp

�
1+ γ̄

Np
, τ +( γ̄i

Np
+ i − j)To

�
χp

�
1+ γ̄′

Np
, τ ′+( γ̄′i

Np
+ i − j)To

�����
≈
X
i,j

E[c2
i ]

2

N2
p

����χp

�
1, τ+( γ̄i

Np
+ i − j)To

�
χp

�
1, τ ′+( γ̄′i

Np
+ i − j)To

����� (27)

≤
Np−1X
i=0

2E[c2
i ]

2

N2
p

=
2E[c2

i ]
2

Np

(28)

As before, the approximation in (27) is tight whena anda′ are
close to unity. Since the pulse is time-limited toTo seconds, the
function χp(1, x) is non-zero only when|x| < To. Therefore,
given γ̄ andτ , for eachi ∈ 1, 2, . . . , Np − 1, there is at most two
values ofj such that| τ

To
+ γ̄i

Np
+ i − j| < 1. This observation,

combined with the fact that|χp(a, τ )| < 1, ∀ a, τ , leads to the
inequality in (28). Thus, for a large numberNp of chips, the sum
of the terms in the third case is negligible. Similarly, the sum of
the terms in the fourth casei = l, j = k, i 6= j can be shown to
be negligible.

In summary, we have that the ambiguity function is approxi-
mately uncorrelated across scale and lag when the number of chips
Np is large,

E[χ(a, τ )χ(a′, τ ′)] ≈ E[χ(a, τ )] E[χ(a′, τ ′)],

≈ E[c2
i ]

2

Z 1

0

χp(1, τ + xγ̄To)dx

Z 1

0

χp(1, τ ′ + xγ̄′To)dx,

= χ̄

�
a − 1

γo

,
τ

To

�
χ̄

�
a′ − 1

γo

,
τ ′

To

�
. (29)

whereχ̄ (γ̄, τ̄) is defined in (16), and wherēγ := (a − 1)Np =
(a − 1)/γo andγ̄′ := (a′ − 1)Np = (a′ − 1)/γo.

The approximation (29) is tight since we assume thata and
a′ are near unity and the number of chipsNp is large. Hence,

after making the approximations4 am
o

a
≈ 1 + mγo − (a − 1) and

nToam
o −τ−i(a−1)Ts

a
≈ nTo − τ − i(a − 1)Ts, we have that the

correlation (14) can be approximated by (15)

4Note thatam
o ≈ 1 + mγo, and1/a ≈ 1 − (a − 1).

B. AMBIGUITY FUNCTION FOR SECOND-DERIVATIVE
GAUSSIAN CHIP PULSE

The closed-form ambiguity function expression for the unitenergy
2nd-derivative Gaussian pulse is quickly derived by using Parse-
val’s theorem to perform the inner product calculation in the fre-
quency domain:

χp(a, τ ) =

Z ∞

−∞

1√
a

p

�
t − τ

a

�
p(t)dt, (30)

=

Z ∞

−∞

√
a exp(−j2πτ )P (af)P ∗(f)df, (31)

where the Fourier transformP (f) of the pulsep(t) is

P (f) =

√
fo

4
√

32π√
3

2p
πf2

o

�
f

fo

�2

e
− f2

f2
o
−jπfTo

. (32)

We complete the square of the argument of the exponential in (31)
and make use of the expression of the fourth Gaussian moment to
write the solution as

χp(a, τ ) = f(a)

�
4π4g4(a, τ ) − 12π2g2(a, τ )(1 + a2)

+3(1 + a2)2
�

exp

�
−π2g2(a, τ )

1 + a2

�
, (33)

wheref(a) = 4
3

q
2a5

(1+a2)9
and g(a, τ ) = foτ + (a− 1)foTo/2.

The expression for̄χ(γ̄, τ̄ ) = E[c2
i ]
R 1

0
χp(1, (τ̄ +xγ̄)To)dx,

using the2nd-derivative Gaussian pulse follows from the closed-
form expression of the pulse ambiguity function (33).
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