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ABSTRACT

Doubly-selective wireless communication channels, i.e., those
with significant selectivity in both time and frequency domains,
arise in applications operating over wide bandwidths, at high car-
rier frequencies, and under high mobility conditions. Many sys-
tems designed to communicate over such channels are OFDM-
based and employ large block lengths to combat capacity loss re-
sulting from the use of a redundant prefix. The use of large block
length renders channel estimation schemes whose complexities
scale in proportion with the square or cube of the block length
impractical. In this paper, we present two channel estimation sch-
emes which leverage FFTs and a careful choice of pilots to achieve
low estimation error with low complexity.

1. INTRODUCTION

The study of doubly-selective wireless communication channels,
i.e., channels with significant selectivity in both time and frequency
domains, has garnered recent interest. Such channels are expected
to arise in applications operating over wide bandwidths, at high
carrier frequencies, and under high mobility conditions.

Several multi-carrier schemes have been recently proposed for
communication over doubly-selective channels [1–5]. Most are
based on orthogonal frequency division multiplexing (OFDM) sys-
tems [6] that are modified to handle Doppler- as well as delay-
spread. When a cyclic prefix (CP) is used, OFDM systems gain
computational advantages at the cost of capacity reduction. Be-
cause CP duration is proportional to channel delay spread, capacity
can be recovered through the use of a large OFDM block length.
Consequently, block lengths of 4096 [7] and 8192 [8] are common.

The use of large block lengths is feasible with OFDM sys-
tems that leverage FFTs to achieve O(N log N) per-block pro-
cessing complexity, where N denotes block length. The recently
proposed doubly-selective OFDM modifications [1–4] however,
exhibit O(N2) or O(N3) per-block complexities, making them
impractical when block length is large.

In [5], the authors proposed an O(N log N) symbol detection
scheme for the doubly-selective case. In this paper, we present
some preliminary work on doubly-selective channel estimation.
As in [5], our goals include low computational complexity in ad-
dition to high performance. While we acknowledge the existence
of more sophisticated methods of time-varying channel estimation
(e.g., [9]), we stress the importance of low computational com-
plexity to our target applications. Such low complexity might be
achieved through, e.g., the use of FFTs in place of large matrix
multiplies or large matrix inverses.

Perhaps the simplest and most well-known means of estimat-
ing a doubly-selective impulse response is to embed Kronecker-
delta pilot sequences, yielding sampled estimates of the time-varying

impulse response, and then to linearly interpolate between these
samples (e.g., [1, 10]). One such Kronecker-delta (KD) scheme
will be compared to the two estimation schemes proposed in this
paper via numerical simulation. The specifics of the KD scheme
used for comparison will be given in a later section.

The structure of this paper is as follows. In Sec. 2, we describe
a compact channel representation which forms the basis for our
estimation strategies and in Sec. 3 we describe the received signal
model. In Secs. 4 and 5 we derive two low-complexity channel
estimation schemes and in Sec. 6 we present numerical evaluations
of these schemes. Section 7 concludes the paper.

2. A COMPACT CHANNEL MODEL

Consider first the time/lag representation htl(n, δ), defined as the
response at time n to an impulse applied at time n − δ. Assuming
wide-sense stationary uncorrelated scattering (WSSUS) [11],

E
˘
htl(n, d)h∗

tl (n − p, d − m)
¯

= rtl(p, d)δ(m). (1)

where δ(·) is the Kronecker delta. With finite delay-spread Nh,

rtl(p, d) = 0 for d /∈ {0 . . . Nh − 1}. (2)

Adding the “Rayleigh fading” assumption [11],

rtl(p, d) = σ2
dJ0(2πfdp)

Stl(φ, d) :=
∞X

p=−∞
rtl(p, d)e−jφp

=

8

<

:

σ2
d√

(2πfd)
2−φ2

|φ| ≤ 2πfd

0 else
, (3)

where J0 denotes the 0th-order Bessel function of the first kind.
Note that the “Doppler spectrum” Stl(φ, ·) is strictly bandlimited
to the normalized Doppler frequency fd.

Next consider the sampled-Doppler/lag representation
h(i)

dl (k, d), defined over the block with time indices i, . . . , i+N−1:

h(i)

dl (k, d) :=
1√
N

N−1X

n=0

htl(n + i, d)e−j 2π
N

k(n+i).

Note that

E{|h(i)

dl (k, d)|2} =
1

N

N−1X

n=0

N−1X

m=0

rtl(n − m, d)e−j 2π
N

k(n−m)

=
N−1X

p=−N+1

N−|p|
N

rtl(p, d)e−j 2π
N

kp

=
h

Stl(φ, d) ∗ N
`

sin(φN/2)
N sin(φ/2)

´2
i ˛

˛
˛
˛
φ= 2πk

N

, (4)



where ∗ denotes convolution. Eqn. (4) suggests that, for large N ,

E{|h(i)

dl (k, d)|2} ≈ Stl(
2πk
N

, d), (5)

in which case (2), (3), and (5) imply that the coefficients h(i)

dl (k, d)
will be small for either

k : 〈|k|〉N > fdN or

d : d /∈ {0 . . . Nh − 1}.

Thus, h(i)

dl gives a compact representation of the channel. Specifi-
cally, we expect h(i)

dl to have only 2fdNNh “big” coefficients.

3. THE RECEIVED SIGNAL MODEL

Using {tn} to denote the transmitted signal and {wn} additive
channel noise, the receiver observes the sequence {xn}, where

xn = wn +

Nh−1
X

d=0

htl(n, d)tn−d.

Since htl(n, d) = 1√
N

PN−1
k=0 h(i)

dl (k, d)ej 2π
N

kn for n ∈ Ni :=

{i, . . . , i + N − 1}, we can write

xn = wn +
1√
N

NhX

d=0

N−1X

k=0

h(i)

dl (k, d)ej 2π
N

kntn−d

= wn + f
H
n H

(i)

dl tn,

where

f
H
n :=

1√
N

h

ej 2π
N

n·0 · · · ej 2π
N

n(N−1)
i

H
(i)

dl :=

2

4

h(i)

dl (0, 0) . . . h(i)

dl (0, Nh−1)
...

...
h(i)

dl (N−1, 0) . . . h(i)

dl (N−1, Nh−1)

3

5

tn :=
ˆ
tn . . . tn−Nh+1

˜t
.

Note fn is the nth column of an N -point unitary DFT matrix FN .
We now rearrange the rows of H(i)

dl to place the 2D “big” rows
on top. From Sec. 2, we expect D ≈ dfdNe for large N . Thus,
for n ∈ Ni,

xn = wn + f
H
b,nH

(i)

dl,btn + f
H
s,nH

(i)

dl,stn

= wn + (tt
n ⊗ f

H
b,n)h(i)

dl,b + (tt
n ⊗ f

H
s,n)h(i)

dl,s,

where h
(i)

dl,b = vec(H(i)

dl,b), h(i)

dl,s = vec(H(i)

dl,s), and

f
H
b,n =

1√
N

h

ej 2π
N

n(−D) · · · ej 2π
N

n(D−1)
i

f
H
s,n =

1√
N

h

ej 2π
N

nD · · · ej 2π
N

n(N−D−1)
i

H
(i)

dl,b :=

2

4

h(i)

dl (−D, 0) . . . h(i)

dl (−D, Nh−1)
...

...
h(i)

dl (D−1, 0) . . . h(i)

dl (D−1, Nh−1)

3

5

H
(i)

dl,s :=

2

4

h(i)

dl (D, 0) . . . h(i)

dl (D, Nh−1)
...

...
h(i)

dl (N−D−1, 0). . . h(i)

dl (N−D−1, Nh−1)

3

5 .

4. ZERO-FORCING CHANNEL ESTIMATION

Collecting an L-element subset of {xn : n ∈ Ni} into the vector
x

(i), we have

x
(i) = T

(i)

b h
(i)

dl,b + T
(i)
s h

(i)

dl,s + w
(i), (6)

where w
(i) is the corresponding vector of noise samples and

T
(i)

b :=

2

6
4

...
t

t
n ⊗ f

H
b,n...

3

7
5 , T

(i)
s :=

2

6
4

...
t

t
n ⊗ f

H
s,n...

3

7
5 .

If the measurement x(i) is constructed with samples spaced by
at least Nh time indices, different symbols will appear in every row
of T

(i)

b , giving freedom to pilot design. Say, for example, that the
measurement vector is constructed with regular spacing K ≥ Nh:

x
(iK) =

ˆ
xiK x(i+1)K x(i+2)K · · · x(i+L−1)K

˜t
, (7)

so that [x(iK)]l = x(i+l)K . If we choose the pilots according to

tiK = ej 2π
N

DKi
h

ej 2π
N

2DKi·0 · · · ej 2π
N

2DKi·(Nh−1)
it

, (8)

then

t
t
(i+l)K ⊗ f

H
b,(i+l)K

= 1√
N

h

ej 2π
N

K(i+l)·0 · · · ej 2π
N

K(i+l)(2DNh−1)
i

.

For the particular choices L = 2DNh and K = N
2DNh

, we see

that t
t
(i+l)K ⊗ f

H
b,(i+l)K becomes the (i + l)th row of an L-point

IDFT matrix, in which case

T
(iK)

b =

2

6
6
4

t
t
iK ⊗ f

H
b,iK

t
t
(i+1)K ⊗ f

H
b,(i+1)K

...
t

t
(i+L−1)K ⊗ f

H
b,(i+L−1)K

3

7
7
5

=
1√
K

F
H
L diag

“h

ej 2π
L

i·0 · · · ej 2π
L

i(L−1)
i”

.

In summary, these choices for {tn}, L, and K yield a system
whose unknown parameters h

(iK)

dl,b are related to the measurement
x

(iK) via point-wise multiplication and an IFFT. This implies that
a “zero-forcing” (ZF) estimation of h(iK)

dl,b could be efficiently com-
puted using O(U log U) samples, where U = 2DNh denotes the
number of unknowns. Specifically, the ZF estimate is

̂
h

(iK)

dl,b =
`
T

(iK)

b

´−1
x

(iK)

=
√

K diag
`
[e−j 2π

L
i·0 · · · e−j 2π

L
i(L−1)]

´
FLx

(iK).

Though low-complexity, the ZF estimator has two potential
drawbacks. First, it does not satisfy any well-established crite-
rion of optimality. Second, there are limitations on the allowable
Doppler frequency fd and delay spread Nh. Using the large-N
approximation D ≈ fdN from Sec. 2, the constraints K = N

2DNh

and K ≥ Nh imply a maximum tolerable Doppler frequency of

fd
˛
˛
max

≈ D

N
=

1

2KNh
≤ 1

2N2
h

, (9)

where equality in (9) corresponds to the case K = Nh, i.e., a
persistent stream of pilot symbols.

The performance of the ZF estimator will be evaluated numer-
ically in Sec. 6.



5. MMSE CHANNEL ESTIMATION

The existence of a low-complexity ZF channel estimation scheme
motivates us to investigate the possibility of a low-complexity
MMSE approach.

The linear MMSE estimate of h
(iK)

dl,b from x
(iK) takes the well

known form [12]

̂
h

(iK)

dl,b = C
(iK)H

x
(iK)

C
(iK) = E

˘
x

(iK)
x

(iK)H¯−1
E

˘
x

(iK)
h

(iK)H
dl,b

¯
(10)

and achieves the performance

Ems,b := E
˘
‖̂
h

(iK)

dl,b − h
(iK)

dl,b ‖2
2

¯
(11)

= E
˘
‖h(iK)

dl,b ‖2
2

¯
−tr

“

C
(iK)H E

˘
x

(iK)
x

(iK)H¯
C

(iK)
”

.

Below we derive the MMSE linear estimator C
(iK) assuming the

WSSUS Rayleigh fading channel from Sec. 2, the measurement
construction (7), the pilots (8), and uncorrelated zero-mean noise
samples {wn} with variance σ2

w .
First we analyze E{x(iK)

x
(iK)H}. The entries of this matrix

take the form

E{x(i+p)Kx∗
iK} = E

n“

w∗
iK +

Nh−1
X

d=0

h∗
tl (iK, d) t∗iK−d

”

·
“

w(i+p)K +

Nh−1
X

c=0

htl(iK + pK, c)tiK+pK−c

”o

=

Nh−1
X

c=0

Nh−1
X

d=0

E
˘
htl(iK + pK, c)h∗

tl (iK, d)
¯

· t(i+p)K−c t∗iK−d + σ2
wδ(p)

=

Nh−1
X

c=0

Nh−1
X

d=0

rtl(pK, d)δ(c − d)t(i+p)K−c t∗iK−d + σ2
wδ(p)

=

Nh−1
X

d=0

rtl(pK, d)t(i+p)K−d t∗iK−d + σ2
wδ(p).

Since t(i+p)K−d t∗iK−d = ej 2π
N

KDp(2d+1), we find

E{x(i+p)Kx∗
iK}

=

Nh−1
X

d=0

rtl(pK, d)ej 2π
N

KDp(2d+1) + σ2
wδ(p)

= ej 2π
N

KDp
Nh−1
X

d=0

rtl(pK, d)ej 4π
N

KDpd + σ2
wδ(p).

Assuming a WSSUS Rayleigh-fading channel,

E{x(i+p)Kx∗
iK} = ej 2π

N
KDpJ0(2πfdpK)

·
Nh−1
X

d=0

σ2
dej 4π

N
KDpd + σ2

wδ(p),

and under the additional assumption of a uniform power decay pro-
file, i.e., σ2

d = 1
Nh

∀d ∈ {0, . . . , Nh − 1},

E{x(i+p)Kx∗
iK}

= ej 2π
N

KDpJ0(2πfdpK) δ
`
〈p〉 N

2KD

´
+ σ2

wδ(p).

The previous expression implies that the L × L matrix
E{x(iK)

x
(iK)H} will be Toeplitz with active sub-diagonal indices˘

0,± N
2KD

,±2 N
2KD

, . . .
¯

, where 0 denotes the index of the main
diagonal. In fact, we can write

E{x(iK)
x

(iK)H} = Rx ⊗ I N
2KD

, (12)

where Rx is a 2KDL
N

× 2KDL
N

symmetric Toeplitz matrix:

[Rx]i+q,i = σ2
wδ(q) + (−1)qJ0

`
πfdND−1q

´
.

This is convenient because

E{x(iK)
x

(iK)H}−1 = R
−1
x ⊗ I N

2KD
,

which permits matrix multiplication using only 2KDL2

N
multiplies.

More specifically,

E{x(iK)
x

(iK)H}−1
x

(iK) = vec
`
mat(x(iK))R−1

x

´
,

where mat(x(iK)) is a N
2KD

× 2KDL
N

matrix composed column-
wise from x

(iK).
Next we analyze E{x(iK)

h
(iK)H
dl,b }. The entries of this matrix

take the form

E{x(i+p)Kh(iK)∗
dl (l, d)}

= E
n“

w(i+p)K +

Nh−1
X

c=0

htl(iK + pK, c)t(i+p)K−c

”

·
“ 1√

N

N−1X

n=0

h∗
tl (n + iK, d)ej 2π

N
l(n+iK)

”o

= 1√
N

Nh−1
X

c=0

N−1X

n=0

E
˘
htl(iK + pK, c)h∗

tl (n + iK, d)
¯

· t(i+p)K−c ej 2π
N

l(n+iK)

= 1√
N

Nh−1
X

c=0

N−1X

n=0

rtl(pK − n, d)δ(c − d)t(i+p)K−c ej 2π
N

l(n+iK)

= 1√
N

N−1X

n=0

rtl(pK − n, d)t(i+p)K−d ej 2π
N

l(n+iK)

= 1√
N

ej 2π
N

K[D(i+p)(2d+1)+li]
N−1X

n=0

rtl(pK−n, d)ej 2π
N

ln.

The matrix E{x(iK)
h

(iK)H
dl,b } is structured so that

ˆ
E{x(iK)

h
(iK)H
dl,b }

˜

p,q

= E{x(i+p)Kh(iK)∗
dl (l, d)} for

(

d =
¨

q
2D

˝

l = 〈q〉2D−D

= 1√
N

ej 2π
N

K[D(i+p)(2b q
2D c+1)+(〈q〉2D−D)i]

·
N−1X

n=0

rtl(pK − n,
¨

q
2D

˝
)ej 2π

N
(〈q〉2D−D)n

= 1√
N

ej 2π
N

K[i(2Db q
2D c+〈q〉2D)+p(2Db q

2D c+D)]

·
N−1X

n=0

rtl(pK − n,
¨

q
2D

˝
)ej 2π

N
(〈q〉2D−D)n.



Leveraging the fact that q = 2D
¨

q
2D

˝
+ 〈q〉2D , we find

ˆ
E{x(iK)

h
(iK)H
dl,b }

˜

p,q
= 1√

N
ej 2π

N
K[iq+p(q−〈q〉2D+D)]

·
N−1X

n=0

rtl(pK − n,
¨

q
2D

˝
)ej 2π

N
(〈q〉2D−D)n

= 1√
N

ej 2π
N

K[iq+pq]

·
N−1X

n=0

rtl(pK − n,
¨

q
2D

˝
)e−j 2π

N
(〈q〉2D−D)(pK−n)

= 1√
K

ej 2π
N

Kiq ·
q

K
N

ej 2π
N

Kpq

·
pKX

m=pK−N+1

rtl(m,
¨

q
2D

˝
)e−j 2π

N
(〈q〉2D−D)m

| {z }

:= [A]p,q

.

[A]p,q can be recognized as a rectangular-windowed version of
Stl

`
2π
N

(〈q〉2D−D),
¨

q
2D

˝´
. A uniform power decay profile implies

[A]p,q =
1

Nh

pKX

m=pK−N+1

J0(2πfdm)e−j 2π
N

(〈q〉2D−D)m,

where we note that the first 2D columns of A repeat Nh times. If
we choose K = N

2DNh
and L = P · 2DNh for some P ∈ Z+

(where typically P = 1),

E{x(iK)
h

(iK)H
dl,b } =

1√
K

“

(1P ⊗ F
H
2DNh

) � A

”

D
(iK), (13)

where � denotes the Hadamard (i.e., element-wise) product, 1P

denotes a P × 1 vector of ones, and

D
(iK) = diag

“h

ej 2π
N

iK·0 · · · ej 2π
N

iK(2DNh−1)
i”

.

Multiplication by the matrix E{x(iK)
h

(iK)H
dl,b } can be reduced to

the computation of 2DP FFTs of size 2DNh . The factor 2D per-
tains to the case where we window the FFT input vector with each
of the 2D unique columns of A, calculate an FFT for each win-
dow, and keep only one out of every 2D FFT outputs. More ef-
ficient implementations which do not “throw away” DFT outputs
are, of course, possible.

It follows from (10), (12), and (13) that we can write the
MMSE linear estimator C(iK)H that assumes L–dimensional mea-
surements (L = 2PDNh) constructed according to (7), K–spaced
pilot sequences (K = N

2DNh
) chosen as in (8), and a Rayleigh-

fading WSSUS channel with uniform power decay profile as

C
(iK)H = 1√

K
D

(iK)H`
A

H � (1t
P ⊗ F2DNh

)
´

·
`
R

−1
x ⊗ INh

´
. (14)

Equation (14) shows a cascade of three matrix operations: the left-
most (diagonal) matrix multiply requires 2DNh multiplies, the
middle (FFT-based) one requires no more than
O(2PD · 2DNh log 2DNh) multiplies, and the rightmost one re-

quires 2KDL2

N
= 4P 2D2Nh multiplies. Note that multiplication

by an unstructured C
(iK)H would require 4PD2N2

h multiplies.

As with the ZF technique, the MMSE technique returns reli-
able estimates over a limited range of fd and Nh. Our choices for
K and L imply that

fd
˛
˛
max

≈ D

N
=

1

2KNh
≤ 1

2N2
h

, (15)

where equality in (15) corresponds to the case K = Nh, i.e., a
persistent stream of pilot symbols.

6. NUMERICAL RESULTS

We now compare the Kronecker-delta (KD) scheme described in
Sec. 1 with the ZF and MMSE schemes derived in Secs. 4 and 5
using block-normalized mean-squared estimation error:

E :=
1

N
E{‖H(iK)

tl − ̂
H

(iK)

tl ‖2
F } =

1

N
E{‖H(iK)

dl − ̂
H

(iK)

dl ‖2
F }.

With the ZF and MMSE schemes we estimate only the “big” H
(iK)

dl,b
coefficients, and so in these cases E includes errors caused by the
“compact channel representation” of Sec. 2:

E =
1

N
E{‖H(iK)

dl,b − ̂
H

(iK)

dl,b ‖2
F } +

1

N
E{‖H(iK)

dl,s ‖2
F }.

For the MMSE scheme, E{‖H(iK)

dl ‖2
F } = N and (11) imply

Ems =
1

N
Ems,b +

1

N
E{‖H(iK)

dl,s ‖2
F }

= 1 − 1

N
tr

“

C
(iK)H E

˘
x

(iK)
x

(iK)H
¯
C

(iK)
”

.

The KD scheme we adopted for the simulations was
constructed to give a fair comparison with the ZF and MMSE
schemes. In our KD, length-2Nh pilot sequences of the form
tiK−Nh−d = δ(d − Nh), for 0 ≤ d < 2Nh and i ∈ Z, were
spaced K ≥ 2Nh samples apart. These pilots gave estimates of
the time-varying impulse response at K-spaced intervals:

2

6
6
6
4

ĥtl(iK, 0)

ĥtl(iK, 1)
...

ĥtl(iK, Nh−1)

3

7
7
7
5

:=

2

6
6
6
4

xiK

xiK+1

...
xiK+Nh−1

3

7
7
7
5

=

2

6
6
6
4

htl(iK, 0)
htl(iK + 1, 1)

...
htl(iK+Nh−1, Nh−1)

3

7
7
7
5

+

2

6
6
6
4

wiK

wiK+1

...
wiK+Nh−1

3

7
7
7
5

.

Linear interpolation was then used to construct estimates of the
time-varying impulse response at points in-between. For N = K,
this corresponds to a linear fit, and for N > K where N

K
∈ Z, a

piecewise linear fit. In all schemes (i.e., KD, ZF, and MMSE), we
chose a unit-modulus pilot sequence in accordance with a peak-
power constraint that is standard in practical implementations.

Figures 1 and 2 show the results of numerical simulations with
channels generated using Jakes’ method [11]. In both figures we
assume N = 256, K = 16, Nh = 4, D = 2, and P = 1. Figure 1
shows the estimation error E versus normalized Doppler frequency
fd for two different SNRs, while Figure 2 shows E versus SNR for
two different Dopplers. Here we observe that the KD scheme is
predominantly noise-limited; it is relatively insensitive to fd (for
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Fig. 1. MSE vs. fd for (a) SNR = 10dB, (b) SNR = 15dB.

the parameters chosen in our simulations). The ZF and MMSE
schemes, while more sensitive to increases in fd, are more tolerant
of noise. Hence, the ZF and MMSE approaches outperform the KD
approach in the low-SNR and low-fd operating region. Finally, we
observe that the MMSE approach outperforms the ZF approach at
the cost of a greater implementation complexity.

7. CONCLUSIONS

We have derived two low-complexity schemes for the estimation
of doubly-selective channel responses, one based on a ZF criterion
and one based on a MMSE criterion. Both estimate a reduced set
of channel parameters in the Doppler/lag domain by leveraging the
usual assumptions of finite delay-spread and finite Doppler-spread.
Pilot sequences were chosen so that the implementation of the ZF
estimation scheme reduces to a U -point FFT at the receiver, where
U = 2DNh represents the number of unknown parameters. With
the same pilots, the MMSE estimation scheme can be implemented
using 2D of these U -point FFTs. In fact, it was recognized that
more efficient MMSE implementations are possible, though the
details are beyond the scope of this paper.

The zero-forcing and MMSE schemes were compared to a
well-known technique whereby Kronecker-delta pilot sequences
are embedded to provide samples of the time-varying impulse re-
sponse and piecewise linear interpolation is used to construct the
response between these samples. Numerical simulations suggest
that the ZF and MMSE schemes proposed herein outperform the
Kronecker-delta scheme in the low-SNR and low-Doppler region.
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