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Given a dataset X , [x1, . . . ,xT ] ∈ R
N×T comprising T

samples of dimension N , the standard clustering problem is

to find K centroids C , [c1, . . . , cK ] ∈ R
N×K that minimize

the sum of squared errors (SSE)

SSE(X,C) ,
1

T

T∑

t=1

min
k

‖xt − ck‖
2

2
. (1)

Finding the optimal C is NP-hard. Thus, many heuristics

have been proposed, like k-means++ [1]. The computational

complexity of k-means++ scales as O(TKNI), with I the

number of iterations, which is impractical for large T .

In sketched clustering [2]–[4], the dataset X is first sketched

down to a vector y with M = O(KN) components, from

which the centroids C are subsequently extracted. In the

typical case that K ≪ T , the sketch consumes much less

memory than the original dataset. Also, if the sketch can be

performed efficiently, then—since the complexity of centroid-

extraction is invariant to T—sketched clustering may be more

efficient than direct clustering methods when T is large.

In this work, we focus on sketches of the type proposed by

Keriven et al. in [2,3], which use y = [y1, . . . , yM ]T with

ym =
1

T

T∑

t=1

exp(jwT
m
xt) (2)

and randomly generated W , [w1, . . . ,wM ]T ∈ R
M×N .

Note that ym in (2) can be interpreted as a sample of the

empirical characteristic function, i.e.,

φ(wm) =

∫

RN

p(x) exp(jwT
m
x) dx (3)

under the empirical distribution p(x) = 1

T

∑
T

t=1
δ(x − xt),

with Dirac δ(·). Here, each wm can be interpreted as a

multidimensional frequency sample. The process of sketching

X down to y via (2) costs O(TMN) operations, but it can be

performed efficiently in an online and/or distributed manner.

To recover the centroids C from y, the state-of-the-art

algorithm is compressed learning via orthogonal matching

pursuit with replacement (CL-OMPR) [2,3]. It aims to solve

argmin
C

min
α:1Tα=1

M∑

m=1

∣∣∣∣ym −
K∑

k=1

αk exp(jw
T
m
ck)

∣∣∣∣
2

(4)

using a greedy heuristic inspired by the OMP algorithm pop-

ular in compressed sensing. With sketch length M ≥ 10KN ,

CL-OMPR typically recovers centroids of similar or better

quality to those attained with k-means++. One may wonder,

however, whether it is possible to recover accurate centroids

with sketch lengths closer to the counting bound M =
KN . Also, since CL-OMPR’s computational complexity is

O(MNK2), one may wonder whether it is possible to recover

accurate centroids with computational complexity O(MNK).

In answer to these questions, we propose the compressive

learning via approximate message passing (CL-AMP) algo-

rithm [5], which has computational complexity O(MNK).
Numerical experiments show that CL-AMP accurately re-

covers centroids from sketches of length M = 2KN , an

improvement over CL-OMPR. Also, experiments show that

CL-AMP recovers centroids faster and more accurately than

k-means++ for large T .

CL-AMP treats centroid recovery as a high-dimensional

inference problem, based on the Gaussian mixture model

xt ∼
K∑

k=1

αkN (ck,Φk), (5)

where αk and covariances Φk are treated as deterministic

unknown parameters. In particular, CL-AMP computes an

approximation to the MMSE estimate Ĉ = E{C |y}, where

the expectation is taken over the posterior density p(C|y) ∝
p(y|C)p(C). The form of the sketch in (2) implies that

p(y|C) =
∏

M

m=1
py|z(ym|wT

m
C), which can be recognized

as a generalized linear model (GLM) on the random linear

transform outputs wT
m
C. As such, sketched clustering is ripe

for the application of the simplified hybrid generalized AMP

(SHyGAMP) algorithm from [6], which is a generalization of

the GAMP algorithm [7]. As described in [5], the likelihood

depends on Φk through wT
m
Φkwm, which concentrates to

an m-invariant value “τk” in the high dimensional limit. The

EM-GAMP algorithm can then be used to estimate {αk, τk}.

The full details of CL-AMP are given in [5]. Here we show

just a few numerical results with synthetic clusters ck. All

results represent the median over 10 trials, and runtime is not

shown whenever SSE is > 1.5× that of k-means++. Figures 1a

and 1b show SSE (1) and runtime vs. sketch length M . We

see that CL-AMP allows shorter sketch-length M than CL-

OMPR, and yields better SSE and runtime than k-means++

when M ∈ [2, 5]. Figures 2a, 2b, and 2c show SSE, runtime

with sketching, and runtime without sketching, respectively,

vs. sample size T . We see that CL-AMP yields better SSE

than CL-OMPR and k-means++ for all tested T , and that CL-

AMP runs faster than CL-OMPR and k-means++ for large T .
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(a) SSE vs. M
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(b) Runtime (including sketching) vs. M

Fig. 1: Performance vs. sketch length M for K = 10 clusters,

dimension N = 100, and T = 107 training samples.
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(b) Runtime (including sketching) vs. T
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(c) Runtime (without sketching) vs. T

Fig. 2: Performance vs. training size T for K = 10 classes,

dimension N = 50, and sketch size M ∈ {2, 5, 10} ×KN .
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