Recent Advances in Approximate Message Passing

Phil Schniter

THE OHIO STATE UNIVERSITY Duke *ii*

Collaborators: Sundeep Rangan (NYU), Alyson Fletcher (UCLA), Mark Borgerding (OSU)

Supported in part by NSF grants IIP-1539960 and CCF-1527162.

SPARS — June 8. 2017

Overview

Linear Regression, AMP, and Vector AMP (VAMP)

- VAMP, ADMM, and Convergence in the Convex Setting
- VAMP Convergence in the Non-Convex Setting
- VAMP for Inference
- 5 EM-VAMP and Adaptive VAMP
- 6 Plug-and-play VAMP & Whitening
- VAMP as a Deep Neural Network
- **(3)** VAMP for the Generalized Linear Model

Outline

Linear Regression, AMP, and Vector AMP (VAMP)

- 2 VAMP, ADMM, and Convergence in the Convex Setting
- 3 VAMP Convergence in the Non-Convex Setting
- 4 VAMP for Inference
- 5 EM-VAMP and Adaptive VAMP
- 6 Plug-and-play VAMP & Whitening
- VAMP as a Deep Neural Network
- **3** VAMP for the Generalized Linear Model

The Linear Regression Problem

Consider the following linear regression problem:

$$\begin{array}{l} \text{Recover } \boldsymbol{x}_o \text{ from} \\ \boldsymbol{y} = \boldsymbol{A} \boldsymbol{x}_o + \boldsymbol{w} \quad \text{with} \quad \left\{ \begin{array}{l} \boldsymbol{x}_o \in \mathbb{R}^N & \text{unknown signal} \\ \boldsymbol{A} \in \mathbb{R}^{M \times N} & \text{known linear operator} \\ \boldsymbol{w} \in \mathbb{R}^M & \text{white Gaussian noise.} \end{array} \right.$$

Typical methodologies:

I Regularized loss minimization (or MAP estimation):

$$\widehat{\boldsymbol{x}} = \operatorname*{arg\,min}_{\boldsymbol{x}} \ \ \frac{ heta_2}{2} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|_2^2 + R(\boldsymbol{x}; \boldsymbol{ heta}_1)$$

2 Approximate MMSE:

$$\widehat{m{x}} pprox \mathrm{E}\{m{x}|m{y}\}$$
 for $m{x} \sim p(m{x};m{ heta}_1)$, $m{y} \sim \mathcal{N}(m{A}m{x},m{I}/m{ heta}_2)$

- 3 Plug-and-play: iteratively apply a denoising algorithm like BM3D
- **4** Train a deep network to recover x_o from y.

The AMP Methodology

- All of the aforementioned methodologies can be addressed using the Approximate Message Passing (AMP) framework.¹
- AMP tackles these difficult global optimization/inference problems through a sequence of simpler local optimization/inference problems.
- It does this by appropriate definition of a denoiser $g_1(\cdot; \gamma, \theta_1) : \mathbb{R}^N \to \mathbb{R}^N$:
 - Optimization: $\boldsymbol{g}_1(\boldsymbol{r};\gamma,\boldsymbol{\theta}_1) = \arg\min_{\boldsymbol{x}} R(\boldsymbol{x};\boldsymbol{\theta}_1) + \frac{\gamma}{2} \|\boldsymbol{x} \boldsymbol{r}\|_2^2 \triangleq \operatorname{"prox}_{R/\gamma}(\boldsymbol{r})$ "
 - MMSE: $\boldsymbol{g}_1(\boldsymbol{r};\gamma,\boldsymbol{\theta}_1) = \mathrm{E}\left\{\boldsymbol{x} \, \middle| \, \boldsymbol{r} = \boldsymbol{x} + \mathcal{N}(\boldsymbol{0},\boldsymbol{I}/\gamma) \right\}$
 - Plug-and-play:² $\boldsymbol{g}_1(\boldsymbol{r};\gamma,\boldsymbol{\theta}_1) = \mathsf{BM3D}(\boldsymbol{r},1/\gamma)$
 - Deep network: $\boldsymbol{g}_1(\boldsymbol{r};\gamma,\boldsymbol{\theta}_1)$ is learned.

¹Donoho, Maleki, Montanari'09, ²Metzler, Maleki, Baraniuk'14

AMP: the good, the bad, and the ugly

The good:

- With large i.i.d. sub-Gaussian A, AMP performs provably³ well, in that it can be rigorously characterized by a scalar state-evolution (SE). When this SE has a unique fixed point, AMP converges to the Bayes optimal solution.
- **Empirically**, AMP behaves well with many other "sufficiently random" A (e.g., randomly sub-sampled Fourier A & i.i.d. sparse x).

The bad:

■ With general *A*, AMP gives no guarantees.

The ugly:

With some A, AMP may fail to converge!
 (e.g., ill-conditioned or non-zero-mean A)

³Bayati,Montanari'15, Bayati,Lelarge,Montanari'15

The Vector AMP (VAMP) Algorithm 🤓

Take SVD $\boldsymbol{A} = \boldsymbol{U}\operatorname{Diag}(\boldsymbol{s})\boldsymbol{V}^{\mathsf{T}}$, choose $\zeta \in (0, 1]$ and Lipschitz $\boldsymbol{g}_1(\cdot; \gamma_1, \boldsymbol{\theta}_1) : \mathbb{R}^N \to \mathbb{R}^N$.

Outline

Linear Regression, AMP, and Vector AMP (VAMP)

VAMP, ADMM, and Convergence in the Convex Setting

3 VAMP Convergence in the Non-Convex Setting

- VAMP for Inference
- 5 EM-VAMP and Adaptive VAMP
- 6 Plug-and-play VAMP & Whitening
- VAMP as a Deep Neural Network
- 3 VAMP for the Generalized Linear Model

PRS-ADMM

Consider the optimization problem

$$\underset{\boldsymbol{x}}{\operatorname{arg\,min}} f_1(\boldsymbol{x}) + f_2(\boldsymbol{x}) \text{ with, e.g., } \begin{cases} f_1(\boldsymbol{x}) = -\log p(\boldsymbol{x}; \boldsymbol{\theta}_1) \\ f_2(\boldsymbol{x}) = \frac{\theta_2}{2} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|^2 \end{cases}$$

and define the augmented Lagrangian

$$L_{\gamma}(\boldsymbol{x}_1, \boldsymbol{x}_2, \boldsymbol{s}) = f_1(\boldsymbol{x}_1) + f_2(\boldsymbol{x}_2) + \boldsymbol{s}^{\mathsf{T}}(\boldsymbol{x}_1 - \boldsymbol{x}_2) + \frac{\gamma}{2} \|\boldsymbol{x}_1 - \boldsymbol{x}_2\|^2.$$

An ADMM variant (via Peaceman-Rachford splitting on the dual) is

$$\begin{aligned} \widehat{\boldsymbol{x}}_1 \leftarrow & \arg\min_{\boldsymbol{x}_1} L_{\gamma}(\boldsymbol{x}_1, \widehat{\boldsymbol{x}}_2, \boldsymbol{s}) \\ \boldsymbol{s} \leftarrow \boldsymbol{s} + \gamma(\widehat{\boldsymbol{x}}_1 - \widehat{\boldsymbol{x}}_2) \\ \widehat{\boldsymbol{x}}_2 \leftarrow & \arg\min_{\boldsymbol{x}_2} L_{\gamma}(\widehat{\boldsymbol{x}}_1, \boldsymbol{x}_2, \boldsymbol{s}) \\ \boldsymbol{s} \leftarrow \boldsymbol{s} + \gamma(\widehat{\boldsymbol{x}}_1 - \widehat{\boldsymbol{x}}_2) \end{aligned}$$

 PRS-ADMM has weaker convergence guarantees than standard ADMM, but is supposedly faster.

VAMP Connections to PRS-ADMM

• Now consider VAMP applied to the same optimization problem, but with $\gamma_1 = \gamma_2 \triangleq \gamma$ enforced at each iteration. Also, define

$$\boldsymbol{s}_i \triangleq \gamma(\widehat{\boldsymbol{x}}_i - \boldsymbol{r}_i) \text{ for } i = 1, 2.$$

• This γ -forced VAMP manifests as

$$\begin{aligned} \widehat{\boldsymbol{x}}_1 \leftarrow \arg\min_{\boldsymbol{x}_1} L_{\gamma}(\boldsymbol{x}_1, \widehat{\boldsymbol{x}}_2, \boldsymbol{s}_1) \\ \boldsymbol{s}_2 \leftarrow \boldsymbol{s}_1 + \gamma(\widehat{\boldsymbol{x}}_1 - \widehat{\boldsymbol{x}}_2) \\ \widehat{\boldsymbol{x}}_2 \leftarrow \arg\min_{\boldsymbol{x}_2} L_{\gamma}(\widehat{\boldsymbol{x}}_1, \boldsymbol{x}_2, \boldsymbol{s}_2) \\ \boldsymbol{s}_1 \leftarrow \boldsymbol{s}_2 + \gamma(\widehat{\boldsymbol{x}}_1 - \widehat{\boldsymbol{x}}_2) \end{aligned}$$

which is identical to Peaceman-Rachford ADMM.

• The full VAMP algorithm adapts γ_1 and γ_2 on-the-fly according to the local curvature of the cost function.

Example of VAMP applied to the LASSO Problem

Solving LASSO to reconstruct 40-sparse $x \in \mathbb{R}^{1000}$ from noisy $y \in \mathbb{R}^{400}$.

$$\widehat{\boldsymbol{x}} = \operatorname*{arg\,min}_{\boldsymbol{x}} \| \boldsymbol{y} - \boldsymbol{A} \boldsymbol{x} \|_{2}^{2} + \lambda \| \boldsymbol{x} \|_{1}$$

VAMP Convergence in the Convex Setting

Consider arbitrary A.

A double-loop version of VAMP globally converges to a unique minimum when the Jacobian of the denoiser g₁ is bounded as:

$$\exists c_1, c_2 > 0 \text{ s.t. } \frac{\gamma}{\gamma + c_1} I \leq \frac{\partial \boldsymbol{g}_1(\boldsymbol{r}, \gamma)}{\partial \boldsymbol{r}} \leq \frac{\gamma}{\gamma + c_2} I,$$

as occurs in optimization-VAMP under strictly convex regularization $R(\cdot; \boldsymbol{\theta}_1)$.

 \blacksquare For convergence, it suffices to choose the damping parameter $\zeta \in (0,1]$ as

$$\zeta \leq \frac{2\min\{\gamma_1,\gamma_2\}}{\gamma_1+\gamma_2}.$$

Thus

- the damping parameter ζ can be adapted using γ_1, γ_2 , and
- damping is not needed (i.e., $\zeta = 1$ suffices) if $\gamma_1 = \gamma_2$.

Outline

- Linear Regression, AMP, and Vector AMP (VAMP)
- 2 VAMP, ADMM, and Convergence in the Convex Setting

OVAMP Convergence in the Non-Convex Setting

- 4 VAMP for Inference
- 5 EM-VAMP and Adaptive VAMP
- 6 Plug-and-play VAMP & Whitening
- VAMP as a Deep Neural Network
- **3** VAMP for the Generalized Linear Model

VAMP State Evolution

- Suppose the denoiser $g_1(\cdot)$ has identical scalar components $g_1(\cdot),$ where g_1 and g_1' are Lipschitz.
- Suppose that A is right-rotationally invariant, in that its SVD

 $A = USV^{\mathsf{T}}$

has Haar V (i.e., uniformly distributed over the set of orthogonal matrices). Since U and S are arbitrary, this includes iid Gaussian A as a special case.

- In the large-system limit, one can prove⁴ that VAMP is rigorously characterized by a scalar state-evolution (using techniques inspired by Bayati-Montanari'10).
- This state-evolution establishes
 - 1 the convergence of VAMP in the non-convex setting,
 - 2 the correctness of the denoising model $r_1 = x_o + \mathcal{N}(\mathbf{0}, I/\gamma_1)$.

⁴Rangan,Schniter,Fletcher'16

VAMP state evolution

Assuming empirical convergence of $\{s_j\} \rightarrow S$ and $\{(r_{1,j}^0, x_{o,j})\} \rightarrow (R_1^0, X_o)$ and Lipschitz continuity of g and g', the VAMP state-evolution under $\hat{\tau}_w = \tau_w$ is as follows:

$$\begin{aligned} & \text{for } t = 0, 1, 2, \dots \\ & \mathcal{E}_1^t = \mathrm{E}\left\{\left[g\big(X_o + \mathcal{N}(0, \tau_1^t); \overline{\gamma}_1^t\big) - X_o\right]^2\right\} & \text{MSE} \\ & \overline{\alpha}_1^t = \mathrm{E}\left\{g'(X_o + \mathcal{N}(0, \tau_1^t); \overline{\gamma}_1^t)\right\} & \text{divergence} \\ & \overline{\gamma}_2^t = \overline{\gamma}_1^t \frac{1 - \overline{\alpha}_1^t}{\overline{\alpha}_1^t}, \quad \tau_2^t = \frac{1}{(1 - \overline{\alpha}_1^t)^2} \left[\mathcal{E}_1^t - \left(\overline{\alpha}_1^t\right)^2 \tau_1^t\right] \\ & \mathcal{E}_2^t = \mathrm{E}\left\{\left[S^2/\tau_w + \overline{\gamma}_2^t\right]^{-1}\right\} & \text{MSE} \\ & \overline{\alpha}_2^t = \overline{\gamma}_2^t \mathrm{E}\left\{\left[S^2/\tau_w + \overline{\gamma}_2^t\right]^{-1}\right\} & \text{divergence} \\ & \overline{\gamma}_1^{t+1} = \overline{\gamma}_2^t \frac{1 - \overline{\alpha}_2^t}{\overline{\alpha}_2^t}, \quad \tau_1^{t+1} = \frac{1}{(1 - \overline{\alpha}_2^t)^2} \left[\mathcal{E}_2^t - \left(\overline{\alpha}_2^t\right)^2 \tau_2^t\right] \end{aligned}$$

More complicated expressions for \mathcal{E}_2^t and $\overline{\alpha}_2^t$ exist for the case when $\widehat{\tau}_w \neq \tau_w$.

Outline

- Linear Regression, AMP, and Vector AMP (VAMP)
- 2 VAMP, ADMM, and Convergence in the Convex Setting
- 3 VAMP Convergence in the Non-Convex Setting

VAMP for Inference

- 5 EM-VAMP and Adaptive VAMP
- 6 Plug-and-play VAMP & Whitening
- VAMP as a Deep Neural Network
- 3 VAMP for the Generalized Linear Model

VAMP for Inference

Now consider VAMP applied to the "inference" or "MMSE" problem.

- **a** assume a prior $p(\boldsymbol{x}; \boldsymbol{\theta}_1)$,
- choose the denoiser as $\boldsymbol{g}_1(\boldsymbol{r}_1;\gamma_1,\boldsymbol{\theta}_1) = \mathrm{E}\{\boldsymbol{x} \,|\, \boldsymbol{r}_1 = \boldsymbol{x} + \mathcal{N}(0,\boldsymbol{I}/\gamma_1)\}.$
- What is the corresponding cost function in this case?
- What can we say about convergence and performance?

• Can we tune the hyperparameters $\boldsymbol{\theta} = [\boldsymbol{\theta}_1, \boldsymbol{\theta}_2]$ if they are unknown?

Variational Inference

Ideally, we would like to compute the exact posterior density

$$p(\boldsymbol{x}|\boldsymbol{y}) = \frac{p(\boldsymbol{x};\boldsymbol{\theta}_1)\ell(\boldsymbol{x};\boldsymbol{\theta}_2)}{Z(\boldsymbol{\theta})} \text{ for } Z(\boldsymbol{\theta}) \triangleq \int p(\boldsymbol{x};\boldsymbol{\theta}_1)\ell(\boldsymbol{x};\boldsymbol{\theta}_2) \, \mathrm{d}\boldsymbol{x},$$

but the high-dimensional integral in $Z(\theta)$ is difficult to compute.

• We can avoid computing $Z(\boldsymbol{\theta})$ through variational optimization:

$$p(\boldsymbol{x}|\boldsymbol{y}) = \underset{b}{\operatorname{arg\,min}} D(b(\boldsymbol{x}) \| p(\boldsymbol{x}|\boldsymbol{y})) \text{ where } D(\cdot \| \cdot) \text{ is KL divergence}$$

$$= \underset{b}{\operatorname{arg\,min}} \underbrace{D(b(\boldsymbol{x}) \| p(\boldsymbol{x}; \boldsymbol{\theta}_1)) + D(b(\boldsymbol{x}) \| \ell(\boldsymbol{x}; \boldsymbol{\theta}_2)) + H(b(\boldsymbol{x}))}_{\text{Gibbs free energy}}$$

$$= \underset{b_{1,b_2,q}}{\operatorname{arg\,min}} \underbrace{D(b_1(\boldsymbol{x}) \| p(\boldsymbol{x}; \boldsymbol{\theta}_1)) + D(b_2(\boldsymbol{x}) \| \ell(\boldsymbol{x}; \boldsymbol{\theta}_2)) + H(q(\boldsymbol{x}))}_{\text{s.t.} b_1 = b_2 = q} \stackrel{\triangleq}{\to} J_{\text{Gibbs}}(b_1, b_2, q; \boldsymbol{\theta})$$

but the density constraint keeps the problem difficult.

Expectation Consistent Approximation

In expectation-consistent approximation (EC)⁵, the density constraint is relaxed to moment-matching constraints:

$$p(\boldsymbol{x}|\boldsymbol{y}) \approx \underset{b_{1},b_{2},q}{\arg\min} J_{\mathsf{Gibbs}}(b_{1},b_{2},q;\boldsymbol{\theta})$$

s.t.
$$\begin{cases} \mathrm{E}\{\boldsymbol{x}|b_{1}\} = \mathrm{E}\{\boldsymbol{x}|b_{2}\} = \mathrm{E}\{\boldsymbol{x}|q\} \\ \mathrm{tr}(\mathrm{Cov}\{\boldsymbol{x}|b_{1}\}) = \mathrm{tr}(\mathrm{Cov}\{\boldsymbol{x}|b_{2}\}) = \mathrm{tr}(\mathrm{Cov}\{\boldsymbol{x}|q\}). \end{cases}$$

The stationary points of EC are the densities

 $\begin{array}{l} b_1(\boldsymbol{x}) \propto p(\boldsymbol{x}; \boldsymbol{\theta}_1) \mathcal{N}(\boldsymbol{x}; \boldsymbol{r}_1, \boldsymbol{I}/\gamma_1) \\ b_2(\boldsymbol{x}) \propto \ell(\boldsymbol{x}; \boldsymbol{\theta}_2) \mathcal{N}(\boldsymbol{x}; \boldsymbol{r}_2, \boldsymbol{I}/\gamma_2) \\ q(\boldsymbol{x}) = \mathcal{N}(\boldsymbol{x}; \hat{\boldsymbol{x}}, \boldsymbol{I}/\eta) \end{array} \text{ s.t. } \begin{cases} \mathrm{E}\{\boldsymbol{x}|b_1\} = \mathrm{E}\{\boldsymbol{x}|b_2\} = \hat{\boldsymbol{x}} \\ \mathrm{tr}(\mathrm{Cov}\{\boldsymbol{x}|b_1\}) = \mathrm{tr}(\mathrm{Cov}\{\boldsymbol{x}|b_2\}) = N/\eta, \end{cases}$

where VAMP iteratively solves for the quantities $r_1, \gamma_1, r_2, \gamma_2, \widehat{x}, \eta$.

For large right-rotationally invariant A, the these stationary points are "good" in that MSE(x) matches the MMSE predicted by the replica method.⁶⁷

⁵Opper, Winther'04, ⁶Kabashima, Vehkaperä'14, ⁷Fletcher, Sahraee, Rangan, Schniter'16 Phil Schniter (Ohio State & Duke iiD) SPARS – June'17

19 / 48

The VAMP Algorithm for Inference

When applied to inference, the VAMP algorithm manifests as

and yields $\widehat{x}_1 = \widehat{x}_2 = \widehat{x}$ and $\eta_1 = \eta_2 = \eta$ at a fixed point.

Experiment with Matched Priors

Comparison of several algorithms⁸ with priors matched to data.

VAMP follows replica prediction⁹ over a wide range of condition numbers.

⁸S-AMP: Cakmak, Fleury, Winther'14, AD-GAMP: Vila, Schniter, Rangan, Krzakala, Zdeborová'15
⁹Tulino, Caire, Verdú, Shamai'13

Experiment with Matched Priors

Comparison of several algorithms with priors matched to data.

$$\begin{split} N &= 1024 \\ M/N &= 0.5 \end{split}$$

 $X_o \sim \text{Bernoulli-Gaussian}$ $\Pr\{X_0 \neq 0\} = 0.1$

SNR = 40 dB

VAMP is fast even when A is ill-conditioned.

Outline

- Linear Regression, AMP, and Vector AMP (VAMP)
- 2 VAMP, ADMM, and Convergence in the Convex Setting
- 3 VAMP Convergence in the Non-Convex Setting
- 4 VAMP for Inference
- 5 EM-VAMP and Adaptive VAMP
- 6 Plug-and-play VAMP & Whitening
- VAMP as a Deep Neural Network
- **③** VAMP for the Generalized Linear Model

Expectation Maximization

- What if the hyperparameters θ of the prior & likelihood are unknown?.
- The EM algorithm¹⁰ is majorization-minimization approach to ML estimation that iteratively minimizes a tight upper bound on $-\ln p(y|\theta)$:

$$\widehat{\boldsymbol{\theta}}^{k+1} = \underset{\boldsymbol{\theta}}{\operatorname{arg\,min}} \left\{ -\ln p(\boldsymbol{y}|\boldsymbol{\theta}) + \underbrace{D\left(b^{k}(\boldsymbol{x}) \| p(\boldsymbol{x}|\boldsymbol{y};\boldsymbol{\theta})\right)}_{\text{with } b^{k}(\boldsymbol{x}) = p(\boldsymbol{x}|\boldsymbol{y};\widehat{\boldsymbol{\theta}}^{k})} \underbrace{\geq 0}_{\geq 0} \right\}$$

• We can also write EM in terms of the Gibbs free energy:¹¹

$$\widehat{\boldsymbol{\theta}}^{k+1} = \operatorname*{arg\,min}_{\boldsymbol{\theta}} \underbrace{D\big(b^k(\boldsymbol{x}) \big\| p(\boldsymbol{x}; \boldsymbol{\theta}_1)\big) + D\big(b^k(\boldsymbol{x}) \big\| \ell(\boldsymbol{x}; \boldsymbol{\theta}_2)\big) + H\big(b^k(\boldsymbol{x})\big)}_{J_{\mathsf{Gibbs}}(b^k, b^k, b^k; \boldsymbol{\theta})}$$

Thus, we can interleave EM and VAMP to solve

$$\min_{\boldsymbol{\theta}} \min_{b_1, b_2, q} J_{\mathsf{Gibbs}}(b_1, b_2, q; \boldsymbol{\theta}) \text{ s.t. } \begin{cases} \mathrm{E}\{\boldsymbol{x}|b_1\} = \mathrm{E}\{\boldsymbol{x}|b_2\} = \mathrm{E}\{\boldsymbol{x}|q\} \\ \mathrm{tr}[\mathrm{Cov}\{\boldsymbol{x}|b_1\}] = \mathrm{tr}[\mathrm{Cov}\{\boldsymbol{x}|b_2\}] = \mathrm{tr}[\mathrm{Cov}\{\boldsymbol{x}|q\}]. \end{cases}$$

¹⁰Dempster, Laird, Rubin'77, ¹¹Neal, Hinton'98

The EM-VAMP Algorithm

Input conditional-mean
$$g_1(\cdot)$$
 and $g_2(\cdot)$, and initialize $r_1, \gamma_1, \hat{\theta}_1, \hat{\theta}_2$.
For $k = 1, 2, 3, ...$
 $\hat{x}_1 \leftarrow g_1(r_1; \gamma_1, \hat{\theta}_1)$ MMSE estimation
 $\eta_1 \leftarrow \gamma_1 N/ \operatorname{tr} \left[\partial g_1(r_1; \gamma_1, \hat{\theta}_1) / \partial r_1 \right]$
 $r_2 \leftarrow (\eta_1 \hat{x}_1 - \gamma_1 r_1) / (\eta_1 - \gamma_1)$
 $\gamma_2 \leftarrow \eta_1 - \gamma_1$
 $\hat{\theta}_2 \leftarrow \operatorname{arg\,max}_{\theta_2} \operatorname{E} \{ \ln \ell(x; \theta_2) \mid r_2; \gamma_2, \hat{\theta}_2 \}$ EM update
 $\hat{x}_2 \leftarrow g_2(r_2; \gamma_2, \hat{\theta}_2)$ LMMSE estimation
 $\eta_2 \leftarrow \gamma_2 N/ \operatorname{tr} \left[\partial g_2(r_2; \gamma_2, \hat{\theta}_2) / \partial r_2 \right]$
 $r_1 \leftarrow \zeta(\eta_2 \hat{x}_2 - \gamma_2 r_2) / (\eta_2 - \gamma_2) + (1 - \zeta) r_1$
 $\gamma_1 \leftarrow \zeta(\eta_2 - \gamma_2) + (1 - \zeta) \gamma_1$
 $\hat{\theta}_1 \leftarrow \operatorname{arg\,max}_{\theta_1} \operatorname{E} \{ \ln p(x; \theta_1) \mid r_1; \gamma_1, \hat{\theta}_1 \}$ EM update

Experiments suggest it helps to update $\hat{\theta}_2$ several times per VAMP iteration.

State Evolution and Consistency

- EM-VAMP has a rigorous state-evolution when the prior is i.i.d. and A is large and right-rotationally invariant.¹²
- Furthermore, a variant known as "adaptive VAMP" can be shown to yield consistent parameter estimates with an i.i.d. prior in the exponential-family or with finite-cardinality θ₁.¹²
- Essentially, adaptive VAMP replaces the EM update

$$\widehat{\boldsymbol{\theta}}_1 \leftarrow \operatorname{arg\,max}_{\boldsymbol{\theta}_1} \mathrm{E}\{\ln p(\boldsymbol{x}; \boldsymbol{\theta}_1) \,|\, \boldsymbol{r}_1, \gamma_1, \widehat{\boldsymbol{\theta}}_1\}$$

with

$$(\widehat{\boldsymbol{\theta}}_1, \widehat{\gamma}_1) \leftarrow \arg \max_{(\boldsymbol{\theta}_1, \gamma_1)} \mathbb{E}\{\ln p(\boldsymbol{x}; \boldsymbol{\theta}_1) | \boldsymbol{r}_1, \gamma_1, \widehat{\boldsymbol{\theta}}_1\},\$$

which also re-estimates the precision γ_1 . (And similar for θ_2, γ_2 .)

¹²Fletcher, Rangan, Schniter'17

Experiment with Unknown Hyperparameters heta

Learning both noise precision θ_2 and BG mean/variance/sparsity θ_1 :

EM-VAMP achieves oracle performance at all condition numbers!¹³

 $^{13}\mathsf{EM}\text{-}\mathsf{AMP} \text{ proposed in Vila}, \mathsf{Schniter'11} \text{ and } \mathsf{Krzakala}, \mathsf{M\'ezard}, \mathsf{Sausset}, \mathsf{Sun}, \mathsf{Zdeborov}\acute{a}'12$

Experiment with Unknown Hyperparameters heta

Learning both noise precision θ_2 and BG mean/variance/sparsity θ_1 :

EM-VAMP nearly as fast as VAMP and much faster than damped EM-GAMP.

Outline

- Linear Regression, AMP, and Vector AMP (VAMP)
- 2 VAMP, ADMM, and Convergence in the Convex Setting
- 3 VAMP Convergence in the Non-Convex Setting
- 4 VAMP for Inference
- 5 EM-VAMP and Adaptive VAMP
- 6 Plug-and-play VAMP & Whitening
- VAMP as a Deep Neural Network
- **③** VAMP for the Generalized Linear Model

Plug-and-play VAMP

Recall that the nonlinear estimation step in VAMP (or AMP)

$$\widehat{m{x}}_1 \leftarrow m{g}_1(m{r}_1;\gamma_1) \;\;$$
 where $m{r}_1 = m{x}_o + \mathcal{N}(m{0},m{I}/\gamma_1)$

can be interpreted as "denoising" the pseudo-measurement r_1 .

- For certain signal classes, very sophisticated non-scalar denoising procedures have been developed (e.g., BM3D for images).
- Such denoising procedures can be "plugged into" signal recovery algorithms like ADMM¹⁴, AMP¹⁵, or VAMP¹⁶.

• For AMP and VAMP, the divergence can be approximated using Monte-Carlo:

$$\frac{1}{N} \operatorname{tr} \left[\frac{\partial \boldsymbol{g}_1}{\partial \boldsymbol{r}_1} \right] \approx \frac{1}{K} \sum_{k=1}^{K} \frac{\boldsymbol{p}_k^{\mathsf{T}} \left[\boldsymbol{g}_1(\boldsymbol{r} + \epsilon \boldsymbol{p}_k, \gamma_1) - \boldsymbol{g}_1(\boldsymbol{r}, \gamma_1) \right]}{N \epsilon}$$

with random vectors $\boldsymbol{p}_k \in \{\pm 1\}^N$ and small $\epsilon > 0$. Often, K = 1 suffices.

¹⁴Bouman et al'13, ¹⁵Metzler, Maleki, Baraniuk'14, ¹⁶Schniter, Rangan, Fletcher'16

Experiment: Image Recovery with Random Matrices

Plug-and-play versions of VAMP and AMP work similarly when A is i.i.d., but VAMP can handle a larger class of random matrices A.

Results above are averaged over 128×128 versions of

lena, barbara, boat, fingerprint, house, peppers

and 10 random realizations of A, w.

Plug-and-play with Non-Random Matrices

- Many imaging applications (e.g., MRI) use low-frequency Fourier measurements, in which case $A = USV^{T} = I [I \ 0] F$.
- This causes problems for VAMP because the signal correlation structure interacts with V^T in a way that VAMP is not designed to handle.
- Why? Say x is a natural image, and consider $q = V^{\mathsf{T}}x$.
 - If V is large and Haar, then q will be iid Gaussian.
 - If $V^{\mathsf{T}} = F$, the low-freq entries of q will be much stronger than the others.

PnP VAMP treats $V^{\mathsf{T}}x$ as iid Gaussian and thus diverges when $V^{\mathsf{T}} = F!$

Whitened VAMP 👰 for Image REcovery (VAMPire)

To apply VAMP with non-random Fourier measurements, we propose to operate on the whitened signal:

$$m{y} = \underbrace{[I \ 0] F R_x^{1/2}}_{m{A}} m{s} + m{w}$$
 for $\begin{cases} m{R}_x = \mathrm{E} \{ m{x} m{x}^{\mathsf{T}} \} \\ m{s} = \mathsf{whitened signal coefficients} \end{cases}$

and perform plug-and-play denoising from the whitened-coefficient space:

$$\widehat{\boldsymbol{s}}_1 = \boldsymbol{g}_1(\boldsymbol{r}_1,\gamma_1) = \boldsymbol{R}_x^{-1/2} \text{denoise}(\boldsymbol{R}_x^{1/2} \boldsymbol{r}_1;\gamma_1 N/\operatorname{tr}(\boldsymbol{R}_x)).$$

In practice, we approximate $\mathbf{R}_x \approx \mathbf{W}^{\mathsf{T}} \operatorname{Diag}(\boldsymbol{\tau})^2 \mathbf{W}$, where \mathbf{W} is a wavelet transform and τ_i^2 specifies the energy of the *i*th wavelet coefficient (which is easy to predict for natural images).

Whitened VAMP 💮 for Image REcovery (VAMPire)

- The resulting matrix $A = [I \ 0]FW \operatorname{Diag}(\tau)$ does not yield a right singular vector matrix V with a fast multiplication.
- But since A has a fast implementation, the LMMSE stage can be computed via (preconditioned) LSQR:

$$\boldsymbol{g}_{2}(\boldsymbol{r}_{2};\gamma_{2}) = (\gamma_{w}\boldsymbol{A}^{\mathsf{T}}\boldsymbol{A} + \gamma_{2}\boldsymbol{I})^{-1}(\gamma_{w}\boldsymbol{A}^{\mathsf{T}}\boldsymbol{y} + \gamma_{2}\boldsymbol{r}_{2}) = \begin{bmatrix}\sqrt{\gamma_{w}}\boldsymbol{A}\\\sqrt{\gamma_{2}}\boldsymbol{I}\end{bmatrix}^{+}\begin{bmatrix}\sqrt{\gamma_{w}}\boldsymbol{y}\\\sqrt{\gamma_{2}}\boldsymbol{r}_{2}\end{bmatrix}$$

 \blacksquare The divergence $\langle g_2'(r_2;\gamma_2) \rangle$ can be approximated using Monte-Carlo:

$$\langle \boldsymbol{g}_2' \rangle = \frac{\gamma_2}{N} \operatorname{tr} \left[\left(\gamma_w \boldsymbol{A}^{\mathsf{H}} \boldsymbol{A} + \gamma_2 \boldsymbol{I} \right)^{-1} \right] \approx \frac{1}{NK} \sum_{k=1}^{K} \boldsymbol{p}_k \begin{bmatrix} \sqrt{\gamma_w} \boldsymbol{A} \\ \sqrt{\gamma_2} \boldsymbol{I} \end{bmatrix}^+ \begin{bmatrix} \boldsymbol{0} \\ \sqrt{\gamma_2} \boldsymbol{p}_k \end{bmatrix},$$

where $E\{p_k p_k^H\} = I$. Here again, (preconditioned) LSQR can be used. In practice, K = 1 suffices.

Image Recovery Experiments

- Fourier measurements sampled at M lowest frequencies
- SNR=40dB
- 128×128 images {lena, barbara, boat, fingerprint, house, peppers}
- db1 wavelet decomposition, D = 2 levels

Outline

- Linear Regression, AMP, and Vector AMP (VAMP)
- 2 VAMP, ADMM, and Convergence in the Convex Setting
- 3 VAMP Convergence in the Non-Convex Setting
- 4 VAMP for Inference
- 5 EM-VAMP and Adaptive VAMP
- 6 Plug-and-play VAMP & Whitening
- VAMP as a Deep Neural Network
- **3** VAMP for the Generalized Linear Model

Deep learning for sparse reconstruction

• Until now we've focused on designing algorithms to recover ${m x}_o \sim p({m x})$ from measurements ${m y} = {m A} {m x}_o + {m w}.$

$$y \rightarrow$$
algorithm $\rightarrow \hat{x}$ model $p(x), A$ _____

What about training deep networks to predict x_o from y? Can we increase accuracy and/or decrease computation?

$$\begin{array}{c|c} & & & & & & \\ y \twoheadrightarrow & & & & \\ & & & & \\ & & & & \\ \text{training data } \{(x_d,y_d)\}_{d=1}^D & & & \\ \end{array} \xrightarrow{/} & & \\ \end{array}$$

Are there connections between these approaches?

Unfolding Algorithms into Networks

Consider, e.g., the classical sparse-reconstruction algorithm, ISTA.¹⁷

$$\begin{array}{c} \boldsymbol{v}^{t} = \boldsymbol{y} - \boldsymbol{A} \widehat{\boldsymbol{x}}^{t} \\ \widehat{\boldsymbol{x}}^{t+1} = \boldsymbol{g} (\widehat{\boldsymbol{x}}^{t} + \boldsymbol{A}^{\mathsf{T}} \boldsymbol{v}^{t}) \end{array} \qquad \Leftrightarrow \qquad \boxed{ \widehat{\boldsymbol{x}}^{t+1} = \boldsymbol{g} (\boldsymbol{S} \widehat{\boldsymbol{x}}^{t} + \boldsymbol{B} \boldsymbol{y}) \text{ with } \begin{array}{c} \boldsymbol{S} \triangleq \boldsymbol{I} - \boldsymbol{A}^{\mathsf{T}} \boldsymbol{A} \\ \boldsymbol{B} \triangleq \boldsymbol{A}^{\mathsf{T}} \end{array}$$

Gregor & LeCun¹⁸ proposed to "unfold" it into a deep net and "learn" improved parameters using training data, yielding "learned ISTA" (LISTA):

$$y \rightarrow B$$

The same "unfolding & learning" idea can be used to improve AMP, yielding "learned AMP" (LAMP).¹⁹

 $^{17} {\sf Daubechies, Defrise, DeMol'04.} \qquad ^{18} {\sf Gregor, LeCun'10.} \qquad ^{19} {\sf Borgerding, Schniter'16.}$

Phil Schniter (Ohio State & Duke iiD)

SPARS — June'17 38 / 48

Onsager-Corrected Deep Networks

tth LISTA layer:

to exploit low-rank $B^t A^t$ in linear stage $S^t = I - B^t A^t$.

Onsager correction now aims to decouple errors across layers.

LAMP performance with soft-threshold denoising

LISTA beats AMP,FISTA,ISTA LAMP beats LISTA

in convergence speed and asymptotic MSE.

LAMP beyond soft-thresholding

So far, we used soft-thresholding to isolate the effects of Onsager correction.

What happens with more sophisticated (learned) denoisers?

Here we learned the parameters of these denoiser families:

- scaled soft-thresholding
- conditional mean under BG
- Exponential kernel²⁰
- Piecewise Linear²⁰
- Spline²¹

Big improvement!

²⁰Guo, Davies'15. ²¹Kamilov, Mansour'16.

How does our best Learned AMP compare to (unlearned) VAMP?

So what about "learned VAMP"?

Suppose we unfold VAMP and learn (via backprop) the parameters $\{S^t, g^t\}_{t=1}^T$ that minimize the training MSE.

Remarkably, backpropagation does not improve matched VAMP! VAMP is locally optimal

■ Onsager correction decouples the design of $\{S^t, g^t(\cdot)\}_{t=1}^T$: Layer-wise optimal $S^t, g^t(\cdot) \Rightarrow$ Network optimal $\{S^t, g^t(\cdot)\}_{t=1}^T$

Outline

- Linear Regression, AMP, and Vector AMP (VAMP)
- 2 VAMP, ADMM, and Convergence in the Convex Setting
- 3 VAMP Convergence in the Non-Convex Setting
- 4 VAMP for Inference
- 5 EM-VAMP and Adaptive VAMP
- 6 Plug-and-play VAMP & Whitening
- VAMP as a Deep Neural Network
- 8 VAMP for the Generalized Linear Model

Generalized linear models

- Until now we have considered linear regression: $y = Ax_o + w$.
- VAMP can also be applied to the generalized linear model (GLM)²³

 $oldsymbol{y} \sim p(oldsymbol{y} | oldsymbol{z})$ with hidden $oldsymbol{z} = oldsymbol{A} oldsymbol{x}_o$

which supports, e.g.,

- $y_i = z_i + w_i$: additive, possibly non-Gaussian noise
- $y_i = \operatorname{sgn}(z_i + w_i)$: binary classification / one-bit quantization
- $y_i = |z_i + w_i|$: phase retrieval in noise
- Poisson y_i : photon-limited imaging
- How? A simple trick turns the GLM into a linear regression problem:

$$egin{array}{rcl} egin{array}{ccc} egin{array}{cccc} egin{array}{ccc} egin{array}{ccc} egin{arr$$

²³Schniter, Rangan, Fletcher'16

One-bit compressed sensing / Probit regression

Learning both θ_2 and θ_1 :

VAMP and EM-VAMP robust to ill-conditioned A.

One-bit compressed sensing / Probit regression

Learning both θ_2 and θ_1 :

 $\begin{array}{l} N=512\\ M/N=4 \end{array}$

 $A = U \operatorname{Diag}(s) V^{\mathsf{T}}$ U, V drawn uniform $s_n/s_{n-1} = \phi \ \forall n$ $\phi \text{ determines } \kappa(A)$

 $X_o \sim \text{Bernoulli-Gaussian}$ $\Pr\{X_0 \neq 0\} = 1/32$

 $\mathsf{SNR} = 40 \mathsf{dB}$

EM-VAMP mildly slower than VAMP but much faster than damped AMP.

- VAMP is an efficient algorithm for linear and generalized-linear regression.
- For convex optimization problems, VAMP is provably convergent and related to Peaceman-Rachford ADMM.
- For inference under right rotationally-invariant *A*, VAMP has a rigorous state evolution and fixed-points that agree with the replica MMSE prediction.
- VAMP can be combined with EM to handle priors/likelihood with unknown parameters, again with a rigorous state evolution.
- Can unfold VAMP into an interpretable deep network.
- In non-convex settings (e.g., plug-and-play) with deterministic matrices, more work is needed to understand the performance and convergence of VAMP.
- Still lots to do! (multilayer generative models, bilinear problems ...)