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Introduction to RED

Inverse Problems in Imaging

Inverse problems in imaging:

Recover x0 from measurements y = corrupted(Ax0)

where A is a known linear operator.

In this talk, we’ll focus on additive white Gaussian noise (AWGN):

Recover x0 from measurements y = Ax0 + e with e ∼ N (0, σ2I).

Other corruptions include loss of phase, quantization, Poisson arrivals. . .
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Introduction to RED

The Variational Approach and MAP Estimation

The variational approach to recovering x solves an optimization problem:

x̂ = argmin
x

{
ℓ(x;y) + λρ(x)

}
with





ℓ(x;y) : loss function
ρ(x) : regularization
λ > 0 : tuning parameter

Can be interpreted as Bayesian MAP estimation:

x̂map = argmin
x

{
− ln p(y|x)− ln p(x)

}
with

{
p(y|x) : likelihood
p(x) : prior

AWGN likelihood implies quadratic loss ℓ(x;y) = 1
2σ2 ‖Ax− y‖2.

But how should we choose the regularization ρ(·)?
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Introduction to RED

Regularization by Denoising (RED)

Recently, Romano, Elad and Milanfar1 proposed the RED regularization

ρred(x) ,
1

2
x⊤

(
x− f(x)

)
,

where f : RN → RN is an image denoising function (e.g., BM3D).

RED leads to a family of “plug-and-play” (PnP) algorithms, similar to those
proposed by Bouman et al.2 and Metzler et al.3, but with some advantages.

1
Romano,Elad,Milanfar’17, 2Venkatakrishnan,Bouman,Wolhberg’13, 3Metzler,Maleki,Baraniuk’15
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Introduction to RED

RED versus PnP

Experiments in the RED paper1 show advantages of RED algs over PnP:

Above represents super-resolution recovery averaged over 10 test images.
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Introduction to RED

Claims about RED

The RED paper1 claims . . .

1 If f(·) is locally homogeneous (LH), i.e.,

f
(
(1 + ǫ)x

)
= (1 + ǫ)f(x) for small ǫ ,

and differentiable, then gradient of ρred(x) ,
1
2x

⊤(x− f(x)) obeys

∇ρred(x) = x− f(x) .

2 If the Jacobian Jf(x) is strongly passive, i.e.,

‖Jf(x)‖2 ≤ 1,

then the RED regularization ρred(x) is convex.
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Introduction to RED

Implications of RED Claims

The convexity claim on ρred(·) implies that minimization of

Cred(x) ,
1

2σ2
‖Ax− y‖2 + λρred(x)

can be easily tackled by many algs (e.g., SD, ADMM, etc.).

The gradient claim ∇ρred(x) = x− f(x) implies the minimizers obey

RED fixed-point condition:
1

σ2
A⊤(Ax̂− y) + λ

(
x̂− f(x̂)

)
= 0

The RED algorithms find exactly these x̂.
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Introduction to RED

Mysterious Behavior

Surprisingly, the RED algorithms do not always behave as expected!

We expect SD
to decrease the
(convex) RED
cost, but it is
increasing it!
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RED-SD: xk+1 = xk − µ∇Cred(xk)
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Clarifications on RED

Clarifications on RED Gradient

It can be shown that. . .

differentiability in f(·) implies

∇ρred(x)
D
= x−

1

2
f(x)−

1

2
[Jf(x)]⊤x.

adding local-homogeneity (LH) gives

∇ρred(x)
D,LH
= x−

1

2
[Jf(x)]x−

1

2
[Jf(x)]⊤x.

adding Jacobian symmetry (JS) finally leads to

∇ρred(x)
D,LH,JS
= x− f(x) . . .which yields the RED algorithms.

So both LH and JS are needed to link RED cost to RED algs.
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Clarifications on RED

Which Denoisers Yield Jacobian Symmetry?

Clear that these yield JS:

Linear denoisers f(x) =Wx with W =W⊤.

Transform-domain-thresholding (TDT) denoisers f(x) =W⊤g(Wx).

MAP or MMSE denoisers under any assumed prior x ∼ p̂x.

Not clear that these yield JS:

Pseudo-linear denoisers f(x) =W (x)x with non-linear W (·).

Approximately MAP or MMSE denoisers.

Most state-of-the-art denoisers fall into the 2nd category.
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Clarifications on RED

Jacobian Symmetry Experiments

Avg JS error on suite of 16× 16 images:

TDT MF NLM BM3D TNRD DnCNN

‖Ĵf(x)−[Ĵf(x)]⊤‖2
F

‖Ĵf(x)‖2
F

4.11e-21 1.35 0.118 0.186 0.0151 0.194

Avg gradient error on suite of 16× 16 images:

‖∇ρred(x)−∇̂ρred(x)‖
2

‖∇̂ρred(x)‖2
TDT MF NLM BM3D TNRD DnCNN

∇ρred(x) with D 3.39e-19 2.65e-15 6.17e-21 2.14e-13 5.42e-17 1.02e-12

∇ρred(x) with D,LH,JS 0.565 0.966 0.913 1.00 0.957 0.852

Key points:

1 Large JS error for all but TDT.

2 Large gradient error under JS & LH assumptions for all denoisers!

3 Even TDT has large gradient error! Is LH the problem?
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Clarifications on RED

Local Homogeneity Experiments

Avg LH error on suite of 16× 16 images:

TDT MF NLM BM3D TNRD DnCNN

‖f((1+ǫ)x)−(1+ǫ)f(x)‖2

‖(1+ǫ)f(x)‖2 7.99e-10 0 5.60e-9 1.52e-13 5.09e-10 2.06e-9

‖[Ĵf(x)]x−f(x)‖2

‖f(x)‖2 4.10e-4 2.14e-15 5.63e-3 0.214 2.60e-4 8.02e-3

Avg gradient error on suite of 16× 16 images:

‖∇ρred(x)−∇̂ρred(x)‖
2

‖∇̂ρred(x)‖2
TDT MF NLM BM3D TNRD DnCNN

∇ρred(x) with D 3.39e-19 2.65e-15 6.17e-21 2.14e-13 5.42e-17 1.02e-12

∇ρred(x) with D,LH 0.565 6.09e-15 0.0699 0.344 0.139 1.20

Key points:

It is important how LH is quantified.

The RED gradient is very sensitive to small imperfections in LH.
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Clarifications on RED

Implications of our Findings

We found:

The RED algorithms solve a fixed-point equation corresponding to
∇ρ(x) = x− f(x).

x− f(x) is very different from ∇ρred(x) under practical f(·), such as
TDT, MF, NLM, BM3D, TNRD, and DnCNN.

Implication:

ρred(·) does not explain the RED algorithms under practical f(·).

A bigger problem:

For non-JS f(·), can show that there exists no explicit regularizer ρ(·)
for which ∇ρ(x) = x− f(x), i.e., explaining the RED algorithms!
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New Interpretation of RED

How to Explain the RED Algorithms?

The RED algorithms assume ∇ρ(x) = x− f(x) and work very well.

Can we justify this ∇ρ(x)?
Even when f(·) is not LH and/or JS?

Yes! Using score matching. We explain this in 3 steps:

1 regularization by log-likelihood (RLL),

2 RLL as kernel density estimation (KDE),

3 score matching.
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New Interpretation of RED

Regularization by Log-Likelihood (RLL)

Consider noisy pseudo-measurements

r = x0 +N (0, νI).

Suppose we adopt the prior pdf p̂x. Then the likelihood of r is

p̂r(r; ν) =

∫

RN

N (r;x, νI) p̂x(x) dx. “Gaussian blurred prior”

Define the RLL regularization as

ρLL(r; ν) , −ν ln p̂r(r; ν)

Then it can be shown using Tweedie’s formula4 that

∇ρLL(r; ν) = r − f̂mmse,ν(r),

which is consistent with the RED algorithms!

4Robbins’56
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New Interpretation of RED

RLL as Kernel Density Estimation

Given training data {xt}
T
t=1, consider the empirical prior

p̂x(x) =
1

T

T∑

t=1

δ(x− xt).

A better match to the true px is obtained via KDE or Parzen windowing:

p̃x(x; ν) =
1

T

T∑

t=1

N (x;xt, νI). “blurred empirical prior”

Using this p̃x for MAP/variational optimization yields

x̂ = argminx
1

2σ2 ‖Ax− y‖2 − ln p̃x(x; ν)

= argminx
1

2σ2 ‖Ax− y‖2 + λρLL(x; ν) for λ = 1
ν
.

So RLL arises naturally in non-parametric estimation via KDE!
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New Interpretation of RED

Score-Matching by Denoising

The above RLL/KDE framework encompasses only JS denoisers f(·).
We now generalize.

First note that, for large # of examples T , gradient is very expensive:

∇ ln p̃x(x; ν) =
f̂mmse,ν(x)−x

ν
with f̂mmse,ν(x) =

∑T
t=1

(xt−x)N (x;xt,νI)∑T
t=1

N (x;xt,νI)
.

Practical idea:5 use best match to “score” ∇ ln p̃x(x) among
computationally friendly functions ψ(x;θ):

θ̂ = argmin
θ

Ep̃x

{∥∥ψ(x; θ̂)−∇ ln p̃x(x; ν)
∥∥2}.

Vincent6 connected to denoising: if ψ(x;θ) = [f(x;θ)− x]/ν, then

θ̂ = argmin
θ

1
T

∑T
t=1 E

{∥∥fθ

(
xt +N (0, νI)

)
− xt

∥∥2},

where f
θ̂
(·) is MMSE optimal fθ ∈ F , where F , {fθ : θ ∈ Θ}.

5Hyvärinen’05, 6Vincent’11
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New Interpretation of RED

Score-Matching by Denoising (SMD)

Key points:

1 SMD interpretation yields ∇ρ(x) = x−f(x), thus explaining RED algs.

2 SMD interpretation holds for any p̂x, any denoiser class F (i.e., fθ may
be non-JS and/or non-LH), and any θ (maybe not MMSE).

3 SMD arises naturally via non-parametric estimation and KDE. Matches
construction of learned denoisers liked TNRD and DnCNN.

Related work:
Alain and Bengio7 recently showed that learned auto-encoders can be
explained by score-matching and not by minimization of an energy function.

7Alain/Bengio’14
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Fast RED Algorithms

Fast RED Algorithms

Until now we focused on how to explain the RED algorithms, which solve

RED fixed-point condition:
1

σ2
A⊤(Ax̂− y) + λ

(
x̂− f(x̂)

)
= 0

We now focus on interpretation/design of fast RED algorithms.

In the RED paper, three algorithms were described:

1 Steepest-Descent

2 ADMM with I inner iters (to solve argmin
x
{λρ(x) + β

2
‖x− rk‖

2})

3 A “fixed-point” method (we show equivalence to proximal gradient alg8)

We propose a couple more. . .

8Combettes/Pesquet’11
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Fast RED Algorithms

Algorithm Comparison: Image Deblurring

New algorithms:

DPG: “Dynamic”
proximal gradient,
which schedules
the stepsize.

APG: Accelerated
proximal gradient,
similar to FISTA.9
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In this experiment, APG is about 3× faster than the Fixed-Point method.9

9Beck/Teboulle’09
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Fast RED Algorithms

Conclusions

The RED algorithms work very well in practice.

But they do not minimize Cred(x) = ℓ(x;y)+λρred(x) for many f(·).

Why? Practical denoisers f(·) are not sufficiently LH and JS.

Can construct examples of RED-SD increasing Cred(x) over the iterations.

We explained RED algorithms as “score-matching by denoising”.

We proposed new RED algorithms with faster convergence.

http://arxiv.org/abs/1806.02296
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