Regularization by Denoising: Clarifications and New Interpretations

Phil Schniter and Ted Reehorst

With support from: NSF CCF-1527162 and NSF CCF-1716388

SIAM Conference on Imaging Science (Bologna, Italy) — June 7, 2018

- Introduction to RED
- Clarifications on RED
- New Interpretation of RED
- Fast RED Algorithms

Inverse Problems in Imaging

Inverse problems in imaging:

Recover $m{x}^0$ from measurements $m{y} = \mathsf{corrupted}(m{A}m{x}^0)$ where $m{A}$ is a known linear operator.

In this talk, we'll focus on additive white Gaussian noise (AWGN):

Recover x^0 from measurements $y = Ax^0 + e$ with $e \sim \mathcal{N}(0, \sigma^2 I)$. Other corruptions include loss of phase, quantization, Poisson arrivals...

The Variational Approach and MAP Estimation

The variational approach to recovering x solves an optimization problem:

$$\widehat{\boldsymbol{x}} = \arg\min_{\boldsymbol{x}} \left\{ \ell(\boldsymbol{x}; \boldsymbol{y}) + \lambda \rho(\boldsymbol{x}) \right\} \text{ with } \begin{cases} \ell(\boldsymbol{x}; \boldsymbol{y}) \colon \text{ loss function} \\ \rho(\boldsymbol{x}) \colon \text{ regularization} \\ \lambda > 0 \colon \text{ tuning parameter} \end{cases}$$

Can be interpreted as Bayesian MAP estimation:

$$\widehat{m{x}}_{\mathsf{map}} = rg\min_{m{x}} ig\{ -\ln p(m{y}|m{x}) - \ln p(m{x}) ig\}$$
 with $ig\{ egin{array}{c} p(m{y}|m{x}) \colon & \mathsf{likelihood} \\ p(m{x}) \colon & \mathsf{prior} \end{array}$

AWGN likelihood implies quadratic loss $\ell(x; y) = \frac{1}{2\sigma^2} ||Ax - y||^2$. But how should we choose the regularization $\rho(\cdot)$?

Regularization by Denoising (RED)

Recently, Romano, Elad and Milanfar¹ proposed the RED regularization

$$ho_{\mathrm{red}}({\boldsymbol{x}}) riangleq rac{1}{2} {\boldsymbol{x}}^{ op} ig({\boldsymbol{x}} - {\boldsymbol{f}}({\boldsymbol{x}})ig) \,,$$

where $\boldsymbol{f}: \mathbb{R}^N \to \mathbb{R}^N$ is an image denoising function (e.g., BM3D).

RED leads to a family of "plug-and-play" (PnP) algorithms, similar to those proposed by Bouman et al.² and Metzler et al.³, but with some advantages.

¹Romano,Elad,Milanfar'17, ²Venkatakrishnan,Bouman,Wolhberg'13, ³Metzler,Maleki,Baraniuk'15

RED versus PnP

Experiments in the RED paper¹ show advantages of RED algs over PnP:

Above represents super-resolution recovery averaged over 10 test images.

Claims about RED

The RED paper 1 claims \dots

1 If $f(\cdot)$ is locally homogeneous (LH), i.e.,

$$oldsymbol{f}ig((1+\epsilon)oldsymbol{x}ig)=(1+\epsilon)oldsymbol{f}(oldsymbol{x})\;\;$$
 for small ϵ ,

and differentiable, then gradient of $\rho_{\mathsf{red}}({\bm{x}}) \triangleq \frac{1}{2} {\bm{x}}^\top ({\bm{x}} - {\bm{f}}({\bm{x}}))$ obeys

$$abla
ho_{\mathsf{red}}(oldsymbol{x}) = oldsymbol{x} - oldsymbol{f}(oldsymbol{x})$$
 .

2 If the Jacobian $J \boldsymbol{f}(\boldsymbol{x})$ is strongly passive, i.e., $\| J \boldsymbol{f}(\boldsymbol{x}) \|_2 \leq 1,$

then the RED regularization $\rho_{\rm red}(\pmb{x})$ is convex.

Implications of RED Claims

 \blacksquare The convexity claim on $\rho_{\rm red}(\cdot)$ implies that minimization of

$$C_{\mathsf{red}}(\boldsymbol{x}) \triangleq rac{1}{2\sigma^2} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|^2 + \lambda
ho_{\mathsf{red}}(\boldsymbol{x})$$

can be easily tackled by many algs (e.g., SD, ADMM, etc.).

 \blacksquare The gradient claim $\nabla \rho_{\mathsf{red}}({\bm{x}}) = {\bm{x}} - {\bm{f}}({\bm{x}})$ implies the minimizers obey

 $\mathsf{RED fixed-point condition:} \ \ \frac{1}{\sigma^2} \boldsymbol{A}^\top (\boldsymbol{A} \widehat{\boldsymbol{x}} - \boldsymbol{y}) + \lambda \big(\widehat{\boldsymbol{x}} - \boldsymbol{f}(\widehat{\boldsymbol{x}}) \big) = \boldsymbol{0}$

The RED algorithms find exactly these \widehat{x} .

Mysterious Behavior

Surprisingly, the RED algorithms do not always behave as expected!

RED-SD: $\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - \mu \nabla C_{\mathsf{red}}(\boldsymbol{x}_k)$

Clarifications on RED Gradient

It can be shown that...

• differentiability in $f(\cdot)$ implies

$$abla
ho_{\mathsf{red}}({\boldsymbol{x}}) \stackrel{\mathtt{D}}{=} {\boldsymbol{x}} - rac{1}{2} {\boldsymbol{f}}({\boldsymbol{x}}) - rac{1}{2} [J {\boldsymbol{f}}({\boldsymbol{x}})]^{\top} {\boldsymbol{x}}.$$

adding local-homogeneity (LH) gives

$$\nabla \rho_{\mathrm{red}}(\boldsymbol{x}) \stackrel{\mathrm{d},\mathrm{LH}}{=} \boldsymbol{x} - \frac{1}{2} [J\boldsymbol{f}(\boldsymbol{x})] \boldsymbol{x} - \frac{1}{2} [J\boldsymbol{f}(\boldsymbol{x})]^\top \boldsymbol{x}.$$

adding Jacobian symmetry (JS) finally leads to

 $abla
ho_{\mathsf{red}}({m{x}}) \stackrel{ extsf{D,LH,JS}}{=} {m{x}} - {m{f}}({m{x}}) \quad \dots$ which yields the RED algorithms.

So both LH and JS are needed to link RED cost to RED algs.

Which Denoisers Yield Jacobian Symmetry?

Clear that these yield JS:

- Linear denoisers f(x) = Wx with $W = W^{\top}$.
- Transform-domain-thresholding (TDT) denoisers $f(x) = W^{\top}g(Wx)$.
- MAP or MMSE denoisers under any assumed prior $x \sim \widehat{p_{\mathsf{x}}}$.

Not clear that these yield JS:

- Pseudo-linear denoisers f(x) = W(x)x with non-linear $W(\cdot)$.
- Approximately MAP or MMSE denoisers.

Most state-of-the-art denoisers fall into the 2nd category.

Jacobian Symmetry Experiments

Avg JS error on suite of 16×16 images:

	TDT	MF	NLM	BM3D	TNRD	DnCNN
$\frac{\ \widehat{J}\widehat{\boldsymbol{f}}(\boldsymbol{x}){-}[\widehat{J}\widehat{\boldsymbol{f}}(\boldsymbol{x})]^{\top}\ _{F}^{2}}{\ \widehat{J}\widehat{\boldsymbol{f}}(\boldsymbol{x})\ _{F}^{2}}$	4.11e-21	1.35	0.118	0.186	0.0151	0.194

Avg gradient error on suite of 16×16 images:

$\frac{\ \nabla\rho_{red}(\boldsymbol{x}) - \widehat{\nabla\rho_{red}}(\boldsymbol{x})\ ^2}{\ \widehat{\nabla\rho_{red}}(\boldsymbol{x})\ ^2}$	TDT	MF	NLM	BM3D	TNRD	DnCNN
$ abla ho_{red}(oldsymbol{x})$ with D	3.39e-19	2.65e-15	6.17e-21	2.14e-13	5.42e-17	1.02e-12
$ abla ho_{red}(oldsymbol{x})$ with D,LH,JS	0.565	0.966	0.913	1.00	0.957	0.852

Key points:

- **1** Large JS error for all but TDT.
- 2 Large gradient error under JS & LH assumptions for all denoisers!
- **3** Even TDT has large gradient error! Is LH the problem?

Local Homogeneity Experiments

Avg LH error on suite of 16×16 images:

	TDT	MF	NLM	BM3D	TNRD	DnCNN
$\frac{\ \boldsymbol{f}((1+\epsilon)\boldsymbol{x}) - (1+\epsilon)\boldsymbol{f}(\boldsymbol{x})\ ^2}{\ (1+\epsilon)\boldsymbol{f}(\boldsymbol{x})\ ^2}$	7.99e-10	0	5.60e-9	1.52e-13	5.09e-10	2.06e-9
$\frac{\ [\widehat{J\boldsymbol{f}}(\boldsymbol{x})]\boldsymbol{x} - \boldsymbol{f}(\boldsymbol{x})\ ^2}{\ \boldsymbol{f}(\boldsymbol{x})\ ^2}$	4.10e-4	2.14e-15	5.63e-3	0.214	2.60e-4	8.02e-3

Avg gradient error on suite of 16×16 images:

$\frac{\ \nabla\rho_{red}(\boldsymbol{x})-\widehat{\nabla\rho_{red}}(\boldsymbol{x})\ ^2}{\ \widehat{\nabla\rho_{red}}(\boldsymbol{x})\ ^2}$	TDT	MF	NLM	BM3D	TNRD	DnCNN
$ abla ho_{red}({m{x}}) \; with \; D$	3.39e-19	2.65e-15	6.17e-21	2.14e-13	5.42e-17	1.02e-12
$ abla ho_{red}({m{x}})$ with D,LH	0.565	6.09e-15	0.0699	0.344	0.139	1.20

Key points:

- It is important how LH is quantified.
- The RED gradient is very sensitive to small imperfections in LH.

Implications of our Findings

We found:

- The RED algorithms solve a fixed-point equation corresponding to $\nabla \rho({m x}) = {m x} {m f}({m x}).$
- x f(x) is very different from $\nabla \rho_{red}(x)$ under practical $f(\cdot)$, such as TDT, MF, NLM, BM3D, TNRD, and DnCNN.

Implication:

• $\rho_{\rm red}(\cdot)$ does not explain the RED algorithms under practical $f(\cdot)$.

A bigger problem:

For non-JS $f(\cdot)$, can show that there exists no explicit regularizer $\rho(\cdot)$ for which $\nabla \rho(x) = x - f(x)$, i.e., explaining the RED algorithms!

How to Explain the RED Algorithms?

The RED algorithms assume $\nabla
ho({m x}) = {m x} - {m f}({m x})$ and work very well.

Can we justify this $\nabla \rho(\boldsymbol{x})$? Even when $\boldsymbol{f}(\cdot)$ is not LH and/or JS?

Yes! Using score matching. We explain this in 3 steps:

- **1** regularization by log-likelihood (RLL),
- 2 RLL as kernel density estimation (KDE),
- **3** score matching.

Regularization by Log-Likelihood (RLL)

Consider noisy pseudo-measurements

$$\boldsymbol{r} = \boldsymbol{x}^0 + \mathcal{N}(0, \nu \boldsymbol{I}).$$

Suppose we adopt the prior pdf $\widehat{p_{\mathsf{x}}}.$ Then the likelihood of \boldsymbol{r} is

 $\widehat{p_{\mathbf{r}}}(\mathbf{r};\nu) = \int_{\mathbb{R}^N} \mathcal{N}(\mathbf{r};\mathbf{x},\nu\mathbf{I}) \, \widehat{p_{\mathbf{x}}}(\mathbf{x}) \, \mathrm{d}\mathbf{x}. \quad \text{``Gaussian blurred prior''}$

Define the RLL regularization as

$$\rho_{\mathsf{LL}}(\boldsymbol{r};\nu) \triangleq -\nu \ln \widehat{p}_{\mathsf{r}}(\boldsymbol{r};\nu)$$

■ Then it can be shown using Tweedie's formula⁴ that

$$\nabla \rho_{\mathsf{LL}}(\boldsymbol{r};\nu) = \boldsymbol{r} - \widehat{\boldsymbol{f}}_{\mathsf{mmse},\nu}(\boldsymbol{r}),$$

which is consistent with the RED algorithms!

⁴Robbins'56

RLL as Kernel Density Estimation

Given training data $\{\boldsymbol{x}_t\}_{t=1}^T$, consider the empirical prior

$$\widehat{p}_{\mathsf{x}}(\boldsymbol{x}) = \frac{1}{T} \sum_{t=1}^{T} \delta(\boldsymbol{x} - \boldsymbol{x}_t).$$

• A better match to the true p_x is obtained via KDE or Parzen windowing:

$$\widetilde{p_{\mathsf{x}}}(\boldsymbol{x};\nu) = \frac{1}{T} \sum_{t=1}^{T} \mathcal{N}(\boldsymbol{x};\boldsymbol{x}_t,\nu \boldsymbol{I}).$$
 "blurred empirical prior"

• Using this \widetilde{p}_x for MAP/variational optimization yields

$$\begin{split} \widehat{\boldsymbol{x}} &= \arg\min_{\boldsymbol{x}} \frac{1}{2\sigma^2} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|^2 - \ln \widetilde{p_{\mathsf{x}}}(\boldsymbol{x};\nu) \\ &= \arg\min_{\boldsymbol{x}} \frac{1}{2\sigma^2} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|^2 + \lambda \rho_{\mathsf{LL}}(\boldsymbol{x};\nu) \text{ for } \lambda = \frac{1}{\nu} \end{split}$$

So RLL arises naturally in non-parametric estimation via KDE!

Score-Matching by Denoising

- The above RLL/KDE framework encompasses only JS denoisers $f(\cdot)$. We now generalize.
- First note that, for large # of examples T, gradient is very expensive:

$$\nabla \ln \widetilde{p_{\mathsf{x}}}(\boldsymbol{x};\nu) = \frac{\widehat{\boldsymbol{f}}_{\mathsf{mmse},\nu}(\boldsymbol{x}) - \boldsymbol{x}}{\nu} \text{ with } \widehat{\boldsymbol{f}}_{\mathsf{mmse},\nu}(\boldsymbol{x}) = \frac{\sum_{t=1}^{T} (\boldsymbol{x}_t - \boldsymbol{x}) \mathcal{N}(\boldsymbol{x}; \boldsymbol{x}_t,\nu \boldsymbol{I})}{\sum_{t=1}^{T} \mathcal{N}(\boldsymbol{x}; \boldsymbol{x}_t,\nu \boldsymbol{I})}.$$

Practical idea:⁵ use best match to "score" $\nabla \ln \widetilde{p}_{x}(\boldsymbol{x})$ among computationally friendly functions $\psi(\boldsymbol{x}; \boldsymbol{\theta})$:

$$\widehat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} \mathbb{E}_{\widetilde{p}_{\mathsf{x}}} \left\{ \left\| \boldsymbol{\psi}(\boldsymbol{x}; \widehat{\boldsymbol{\theta}}) - \nabla \ln \widetilde{p}_{\mathsf{x}}(\boldsymbol{x}; \boldsymbol{\nu}) \right\|^2 \right\}.$$

• Vincent⁶ connected to denoising: if $\psi(\boldsymbol{x}; \boldsymbol{\theta}) = [\boldsymbol{f}(\boldsymbol{x}; \boldsymbol{\theta}) - \boldsymbol{x}]/\nu$, then $\widehat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} \frac{1}{T} \sum_{t=1}^{T} \mathbb{E} \{ \| \boldsymbol{f}_{\boldsymbol{\theta}}(\boldsymbol{x}_t + \mathcal{N}(0, \nu \boldsymbol{I})) - \boldsymbol{x}_t \|^2 \},$

where $f_{\widehat{\theta}}(\cdot)$ is MMSE optimal $f_{\theta} \in \mathcal{F}$, where $\mathcal{F} \triangleq \{f_{\theta} : \theta \in \Theta\}$.

⁵Hyvärinen'05, ⁶Vincent'11

Schniter & Reehorst (OSU) RED Clarifications & Interpretations

Score-Matching by Denoising (SMD)

Key points:

- **1** SMD interpretation yields $\nabla \rho(x) = x f(x)$, thus explaining RED algs.
- **2** SMD interpretation holds for any \hat{p}_{x} , any denoiser class \mathcal{F} (i.e., f_{θ} may be non-JS and/or non-LH), and any θ (maybe not MMSE).
- **3** SMD arises naturally via non-parametric estimation and KDE. Matches construction of *learned* denoisers liked TNRD and DnCNN.

Related work:

Alain and Bengio⁷ recently showed that learned auto-encoders can be explained by score-matching and *not* by minimization of an energy function.

⁷Alain/Bengio'14

Schniter & Reehorst (OSU)

Fast RED Algorithms

Until now we focused on how to explain the RED algorithms, which solve

$$\mathsf{RED \ fixed-point\ condition:}\ \ \frac{1}{\sigma^2} \boldsymbol{A}^\top (\boldsymbol{A} \widehat{\boldsymbol{x}} - \boldsymbol{y}) + \lambda \big(\widehat{\boldsymbol{x}} - \boldsymbol{f}(\widehat{\boldsymbol{x}}) \big) = \boldsymbol{0}$$

We now focus on interpretation/design of fast RED algorithms.

In the RED paper, three algorithms were described:

- 1 Steepest-Descent
- 2 ADMM with I inner iters (to solve $\arg\min_{x} \{\lambda \rho(x) + \frac{\beta}{2} ||x r_k||^2\}$)
- 3 A "fixed-point" method (we show equivalence to proximal gradient alg⁸)

We propose a couple more...

⁸Combettes/Pesquet'11

Schniter & Reehorst (OSU) RED

Algorithm Comparison: Image Deblurring

New algorithms:

In this experiment, APG is about $3 \times$ faster than the Fixed-Point method.

⁹Beck/Teboulle'09

Schniter & Reehorst (OSU)

Conclusions

- The RED algorithms work very well in practice.
- But they do not minimize $C_{\mathsf{red}}(x) = \ell(x; y) + \lambda \rho_{\mathsf{red}}(x)$ for many $f(\cdot)$.
 - Why? Practical denoisers $f(\cdot)$ are not sufficiently LH and JS.
 - Can construct examples of RED-SD *increasing* $C_{red}(x)$ over the iterations.
- We explained RED algorithms as "score-matching by denoising".
- We proposed new RED algorithms with faster convergence.

http://arxiv.org/abs/1806.02296