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We propose a high-spectral-efficiency multicarrier system for communication over the doubly dispersive (DD) channel which
yields very low frame error rate (FER), with quadratic (in the frame length) receiver complexity. To accomplish this, we combine
a non-(bi)orthogonal multicarrier modulation (MCM) scheme recently proposed by the authors with novel sequence detection
(SD) and channel estimation (CE) algorithms. In particular, our MCM scheme allows us to accurately represent the DD channels
otherwise complicated intercarrier interference (ICI) and intersymbol interference (ISI) response with a relatively small number of
coefficients. The SD and CE algorithms then leverage this sparse ICI/ISI structure for low-complexity operation. Our SD algorithm
combines a novel adaptive breadth-first search procedure with a new fast MMSE-GDFE preprocessor, while our CE algorithm uses
a rank-reduced pilot-aided Wiener technique to estimate only the significant ICI/ISI coefficients.
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1. INTRODUCTION

In wireless data communication, the information signal un-
dergoes multipath propagation which, due to variations
among path lengths, induces a time-domain spreading ef-
fect on the information signal. Furthermore, relative motion
between the transmitter, receiver, and scattering objects im-
parts each path with a unique Doppler shift, so that multi-
path propagation also induces a frequency-domain spread-
ing effect on the information signal. We refer to such chan-
nels as “doubly dispersive” (DD).

Reliable high-spectral-efficiency communication over
the DD channel is difficult. Consider that a sequence of N
symbols transmitted over this channel will appear, to the
receiver, as a complicated time-variant mixture corrupted
by additive noise. The mixing may make it difficult to cor-
rectly infer the transmitted sequence, even when optimal
maximum-likelihood (ML) sequence detection (SD) is used.
Furthermore, the complexity of MLSD may be impractical.
In general, communication over the DD channel is a com-
promise between spectral efficiency, frame error rate (FER),
and implementation complexity. For example, by sacrific-
ing spectral efficiency, one could transmit symbols sepa-
rated far enough in time and/or frequency to avoid interfer-
ence, thereby guaranteeing simple optimal reception. How-
ever, since low spectral efficiency cannot usually be tolerated,
the properties of DD-induced interference play a fundamen-
tal role in communication performance and complexity.

We can identify two major approaches to the design of
coherent communication schemes for the DD channel. In
the so-called maximum-diversity linear precoding (MDLP)
approach [1], linear modulation waveforms are designed to
maximize the exploitable diversity at the channel output in
an effort to minimize the FER achieved by MLSD in the high-
SNR regime. MDLP makes liberal use of time-domain and
frequency-domain guard intervals, which limits its spectral
efficiency to about 0.5 QAM-symbols/s/Hz for the DD chan-
nels we consider, which have time-frequency spreading fac-
tors in the range 0.03–0.1. More significantly, such channels
require long MDLP frames (e.g., N ∼ 1000) for which MLSD
is infeasible. Though suboptimal reduced-complexity deci-
sion feedback (DF) detectors have been proposed to alleviate
this problem [2], they too remain computationally impracti-
cal for these highly dispersive channels.

In what we will refer to as the multicarrier modulation
(MCM) approach [3], linear modulation waveforms are de-
signed to yield a “simple” interference response—in order to
ease the SD task—without explicitly considering the achiev-
able FER performance. The vast majority of DD-channel
communication schemes fit into this category, for exam-
ple, cyclic-prefix (CP) orthogonal frequency-division mul-
tiplexing (OFDM) [4], zero-padded (ZP) OFDM [5], and
Strohmer and Beaver’s “optimal” OFDM [6]. For example,
CP-OFDM and ZP-OFDM were originally designed for time-
dispersive—rather than doubly dispersive—channels, and
are capable of totally suppressing intersymbol interference
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(ISI). When used in DD channels, however, CP-OFDM and
ZP-OFDM succumb to significant intercarrier interference
(ICI) which greatly complicates SD. In response, more so-
phisticated MCM schemes have been proposed based on
smooth ISI/ICI-minimizing pulses. Though these “pulse-
shaped” MCM schemes succumb to less ICI than their ZP-
OFDM and CP-OFDM counterparts, their ISI/ICI responses
are, in general, still too complicated for practical MLSD.

Due to the impracticality of the MLSD in DD-channel
MCM, several methods of reduced-complexity reception
have been proposed. These schemes are typically based on
the combination of ISI/ICI truncation with suboptimal SD.
By ISI/ICI truncation, we mean that only the “significant”
ICI/ISI coefficients are estimated at the receiver and used
in SD. Examples of suboptimal SD include linear detection
(e.g., [7–9]), DF detection (e.g., [10–12]), iterative/turbo de-
tection (e.g., [13–15]), and approximate-ML detection (e.g.,
[16–19]). We conclude that the judicious design of a DD-
channel communication system includes

(1) MCM that near-perfectly suppresses all but a small
number of ISI/ICI coefficients,

(2) a near-ML SD algorithm which leverages the structure
of significant-ISI/ICI for complexity reduction, and

(3) a high-performance estimation of the significant-
ISI/ICI coefficients.

In the present paper, we combine the non-(bi)orthogonal
(NBO) MCM previously proposed by the authors in [14, 15]
with near-ML sequential decoding (SqD) algorithms [20–22]
—sometimes referred to as lattice decoders or tree search
decoders—with rank-reduced pilot-aided Wiener channel
estimation for high-spectral-efficiency, high-performance,
and low-complexity multicarrier communication over the
DD channel. By “near ML,” we mean FER performance
equivalent to that attained by MLSD at a fraction-of-a-dB
lower signal-to-noise ratio (SNR). We tolerate this small loss
because, as we will see, it enables huge complexity savings rel-
ative to true MLSD. We choose the NBO-MCM scheme from
[14, 15] because of its high spectral efficiency and excellent
ISI/ICI suppression; these considerations will be discussed
further in Section 2.1. We propose SqD based on a novel
fast MMSE-GDFE preprocessor [23] and on a novel channel-
adaptive T-algorithm [24], both of which are specifically tai-
lored to the ISI/ICI structure induced by NBO-MCM over
the DD channel. We discuss, in Section 2.3, the shortcom-
ings of traditional SqDs on these channels. Numerical exper-
iments are conducted to evaluate the efficacy of the NBO-
MCM scheme, the proposed SqD, the channel estimator, and
their combination, relative to other designs.

The paper is organized as follows. Section 2 reviews
MCM and SqD and establishes our system model. Section 3
presents the low-complexity preprocessing techniques, the
channel-adaptive T-algorithm, and the rank-reduced chan-
nel estimation algorithm. Numerical results are given in
Section 4 and conclusions in Section 5.

We use (·)T to denote the transpose, (·)∗ the conjugate,
and (·)H the conjugate transpose. D(b) denotes the diago-
nal matrix created from vector b, IL denotes the L × L iden-

tity matrix, and [B]m,n denotes the element in the mth row
and nth column of matrix B, where row/column indices be-
gin with zero. Similarly, [b]m denotes the mth entry of vector
b. Expectation is denoted by E{·}, the !2 norm by ‖·‖, the
Kronecker delta by δl, and the modulo-N operation by 〈·〉N .
Finally, R denotes the real field, C the complex field, and Z
the integers.

2. BACKGROUND

2.1. Multicarrier modulation

Equations (1)–(4) describe the baseband-equivalent opera-
tion of a QAM-based MCM system in a DD channel. The
MCM transmitter uses time-frequency shifts of the pulse a(t)
to modulate the QAM data {sk,n} onto the transmitted wave-
form s(t). In (1), Ts denotes the symbol spacing and Fs the
subcarrier spacing. The channel, characterized by the time-
varying impulse response h(t, τ) and the noise waveform
z(t), produces the received signal x(t). The receiver then uses
time-frequency shifts of the pulse b(t) to generate the sub-
channel outputs {xl,m}. Equation (4) decomposes xl,m into
its desired, ICI, ISI, and noise components, respectively, us-
ing the pulse-shaped channel coefficients {hl,m,k,n}. Though
it is straightforward to write hl,m,k,n in terms of h(t, τ), a(t),
and b(t), we omit the expression here for brevity:

s(t) =
∞∑

n=−∞

N−1∑

k=0

sk,na
(
t − nTs

)
e j2πkFs(t−nTs), (1)

x(t) =
∫ Th

0
h(t, τ)s(t − τ)dτ + z(t), (2)

xl,m =
∫∞

−∞
x(t) b∗

(
t −mTs

)
e− j2πlFstdt for 0 ≤ l < N

(3)

= hl,msl,m +
∑

k *=l
hl,m, k,msk,m +

N−1∑

k=0

∑

n*=m
hl,m, k,nsk,n + zl,m.

(4)

In MCM systems based on offset-QAM [25], the real and
imaginary components of each QAM symbol are transmit-
ted with a relative time offset of Ts/2 seconds, requiring a
reformulation of (1).

The pulses a(t) and b(t) are typically designed to sup-
press ISI and/or ICI, assuming knowledge of the channel
statistics (e.g., maximum delay and Doppler spreads), but
not of channel realizations, which change very quickly in
the DD case. MCM designs can be categorized into orthogo-
nal (e.g., [6, 26–28]), biorthogonal (e.g., [29, 30]), and non-
(bi)orthogonal (e.g., [11, 13–16, 31]) designs. We give a brief
overview of these three schemes below; see [25] for a com-
prehensive overview of orthogonal and biorthogonal MCM.

Orthogonal MCM sets b(t) = a(t), and constrains a(t)
to be orthogonal to a(t − nTs)e j2πkFs(t−nTs) for all nonzero
(n, k) ∈ Z2. Orthogonal MCM has the intuitively satis-
fying properties that, in a nonspreading channel with flat
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noise spectral density, ICI/ISI will vanish and the subchan-
nel noise {zl,m} will be white. Because the Gaussian pulse
gσ (t) := (2σ)0.25e−πσt2

achieves the optimal time-frequency
localization, several authors have proposed MCM based on
orthogonalization of gσ (t) [6, 27]. For example, Strohmer
and Beaver [6] specified an orthogonalization procedure that
yields an “optimally time-frequency localized” a(t), that is,
a(t) that is closest (in the L2 sense) to gσ (t) among all pos-
sible orthogonal pulse shapes. Biorthogonal MCM allows
b(t) to be different than a(t), as long as b(t) remains or-
thogonal to a(t − nTs)e j2πkFs(t−nTs) for all nonzero (n, k) ∈
Z2. In biorthogonal MCM, ICI/ISI vanishes in nonspread-
ing channels though the noise samples {zl,m} may be corre-
lated [29]. Due to more freedom in pulse design, biorthog-
onal MCM can suppress DD-channel-induced ICI/ISI bet-
ter than orthogonal MCM (at the same spectral efficiency).
Non-(bi)orthogonal (NBO) MCM goes one step further and
removes the ICI/ISI-free constraint for nonspreading chan-
nels in the hope of better ICI/ISI suppression in DD chan-
nels.

In striving for near-ML performance, it is of critical im-
portance to suppress residual ICI/ISI. In [19], for exam-
ple, residual ICI was ignored so that the Viterbi algorithm
[19, 32] could be applied in DD-channel CP-OFDM, with
the result being a large gap between ICI/ISI-truncated Viterbi
performance and true MLSD. For efficient near-ML SD, we
also find it essential that the subchannel noise {zl,m} is white,
since the whitening of colored subchannel noise would effec-
tively destroy the sparse ICI/ISI structure which we wish to
exploit in complexity reduction. Finally, we desire an MCM
scheme with high spectral efficiency, since we consider data
rate to be of paramount importance.

We know of only one MCM technique which ensures
white noise, high spectral efficiency, and near-perfectly sup-
pressed residual ICI/ISI: the “max-SINR” transmission-pulse
(MSTP)-MCM that we proposed in [14, 15]. In this NBO-
MCM scheme, the transmission pulse a(t) is designed to
maximize a signal-to-interference-plus-noise ratio (SINR),
where “signal” refers to the average energy contributed to
xl,m from sl,m, and where interference-plus-noise refers to
the average energy contributed to xl,m from ISI, from ICI
beyond a radius of D subcarriers, and from additive noise.
The MSTP-MCM reception pulse b(t) is rectangular, as in
CP-OFDM, to facilitate white subchannel noise. For pulse
design, we assume that the channel’s maximum delay and
Doppler spreads are known,1 though not the channel’s re-
alization. For even highly spread channels, MSTP-MCM
performs well at the Nyquist rate of 1 QAM-symbol/s/Hz,
that is, that of CP-OFDM with zero-length CP. For more
details on MSTP-MCM, see [14, 15]. Section 4 conducts
a detailed comparison of MSTP-MCM, CP-OFDM, ZP-
OFDM, and Strohmer and Beaver’s “optimal” orthogonal
MCM.

1 In CP-OFDM and ZP-OFDM, knowledge of delay spread is implic-
itly assumed in guard length selection. In nearly all orthogonal and
(bi)orthogonal MCMs, knowledge of both delay and Doppler spread is
implicitly assumed in pulse design.

2.2. System model

We consider an N-subcarrier QAM-based2 MCM system op-
erating in a noisy baseband-equivalent DD channel, as de-
scribed by (1)–(4). A square QAM constellation of size, Q2

with real and imaginary components chosen from the Q-
ary PAM constellation S := {−(Q − 1)/2,−(Q − 1)/2 +
1, . . . , (Q−1)/2}, is assumed. By splitting the complex-valued
elements {xl,m}N−1

l=0 , {sk,m}N−1
k=0 , {zl,m}N−1

l=0 , and {hl,m,k,n}N−1
l,k=0

from (4) into their real and imaginary components, we ob-
tain the real-valued vector model (5), which will be more
convenient for SqD implementation. In particular, the vec-
tor xm ∈ R2N is constructed so that [xm]2l = Re(xl,m) and
[xm]2l+1 = Im(xl,m) for 0 ≤ l < N , while sm ∈ R2N ,
zm ∈ R2N , and Hm,n ∈ R2N×2N are constructed in a simi-
lar manner:

xm =
∞∑

n=−∞
Hm,nsm−n + zm. (5)

Note that the matrix sequence {Hm,n}∞n=−∞ specifies the im-
pulse response relating the transmitted multicarrier-symbol
sequence {sn}∞n=−∞ to the time-m modulator output xm; it is
a function of the pulse shapes {a(t), b(t)} and the channel
realization h(t, τ). Thus, the matrix coefficients {Hm,n}n*=0

characterize the intersymbol interference (ISI) while the off-
diagonal elements of Hm,0 characterize the intercarrier inter-
ference (ICI).

While much of the theoretical MCM literature assumes
continuous pulse shapes as in (1)–(3), practical MCM im-
plementations use pulse sequences {ak} and {bk} to mod-
ulate a chip-waveform p(t) with approximate time support
Tc = 1/NFs and approximate frequency support NFs [25],
that is, a(t) =

∑
k ak p(t − kTc) and b(t) =

∑
k bk p(t − kTc).

In this case, the significant entries in Hm,0 lie within the “qua-
sibanded” support shown in Figure 1(a), where the “ICI ra-
dius” D depends on the pulse designs and channel spread-
ing characteristics. Specifically, D is chosen so that D =
2(, fdTcN-+Cmin), where fdTc denotes the maximum single-
sided Doppler spread and Cmin is a small nonnegative in-
teger that is chosen based on the pulse design.3 This phe-
nomenon motivates the partition Hm,0 = HD

m + H̄D
m, where

HD
m extracts the coefficients of Hm,0 inside the shaded region

of Figure 1(a), and where H̄D
m extracts the coefficients outside

the shaded region. More precisely, for 0 ≤ D < N ,

[
HD

m

]
k,l

:=




[
Hm,0

]
k,l for k, l s.t. −D ≤ 〈k − l + N〉2N −N ≤ D,

0 else.

(6)

2 Though the real-valued equation (5) is capable of modeling OQAM-
MCM, we restrict the focus of this paper to QAM-MCM.

3 For MSTP-MCM, we find that Cmin = 2 yields the best FER performance;
Cmin = 1 performs only slightly worse.
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D + 1 D

L = 2N

(a)

2D + 1 2D

(b)

Figure 1: Channel matrices associated with MCM: (a) “quasibanded” channel matrix, (b) “V-shaped” channel matrix.

Using this partition, we rewrite (5) as

xm = HD
msm + H̄D

msm +
∑

n*=0

Hm,nsm−n + zm

︸ ︷︷ ︸
:=wm

, (7)

where HD
msm contains the signal and “significant ICI,” while

wm contains the noise, ISI, and “insignificant ICI.” We will
see that MSTP-MCM [14, 15] guarantees E{zmzTm} = σ2

z I and
suppresses both ISI and insignificant ICI to a level well below
the noise floor, so that E{wmwT

m} ≈ σ2
z I, even with a highly

dispersive channel over a broad range of SNR.

2.3. Sequential decoding

The MCM features noted at the end of Section 2.2 allow us
to focus on a system model free of ISI and insignificant ICI.
Suppressing the m and D notation, (7) becomes

x = Hs + w, (8)

where H retains the quasibanded structure in Figure 1(a) and
w is white Gaussian noise. Since (8) involves 2N-dimensional
real-valued vectors, we define L := 2N for use in the sequel.
By definition, the MLSD solution to (8) under known H has
the form

ŝML = arg min
s∈SL

∥∥x−Hs
∥∥2
. (9)

The brute-force approach to finding ŝ requires O(QL) op-
erations, which is impractical for large L. If H was banded
with a band radius of D, then the Viterbi algorithm could
be used to solve (9) with a complexity of L(2D + 1)Q(2D+1)

real multiply-accumulate (MAC) operations per frame [19].
Since H is only quasibanded, a different approach is needed.
For example, one could instead use a “tail-biting” MLSD
which hypothesizes an initial state at an arbitrary location
within the frame, runs the standard Viterbi algorithm from
that state, and forces a termination back to that state. Exhaus-
tively searching among the Q2D possible hypotheses yields an

MLSD algorithm with a complexity of L(2D + 1)Q(4D+1) real
MACs per frame. However, these Viterbi algorithms, while
much cheaper than brute force search, will still be impracti-
cal in many applications.

Closest lattice point search (CLPS) algorithms present an
alternative to brute-force and Viterbi MLSD [33]. After con-
verting the linear system (8) to upper triangular form, effi-
cient CLPS algorithms based on sequential decoding (SqD)
[20, 21] or sphere decoding (SpD) [34, 35] can be used to im-
plement MLSD with an average complexity far below O(QL).
Since SqD and SpD are closely related (see, e.g., [36]), we re-
fer to them collectively as SqD. For the system (8) with gen-
eral (i.e., nonbanded) channel matrix H, for example, sphere
decoding maintains an average complexity of approximately
O(L3) at high SNR, regardless of constellation size Q [36].
This remarkable fact encourages a more thorough investi-
gation of SqD algorithms capable of leveraging the quasi-
banded structure of H for further complexity reduction. In
fact, we will show that quasibanded H allows near-ML SqD
with an average complexity close to O(L2). SqD consists of a
preprocessing step and a tree search step; both are discussed
next.

2.3.1. SqD preprocessing

We refer to “SqD preprocessing” as that which converts the
linear system (8) to upper triangular form. The traditional
SqD preprocessing method uses the QR decomposition
H = QR to transform (8) into the equivalent system x′ =
QTx = Rs+w′, where R is upper triangular and w′ is statisti-
cally equivalent to w. In this case, the detection problem (9)
is equivalently restated as

ŝML = arg min
s∈SL

∥∥x′ − Rs
∥∥2
. (10)

It is not unusual for the preprocessed channel matrix R to
be ill-conditioned. When this is the case, the complexity of
near-ML SqD is known to grow significantly [22].

Minimum mean-squared error (MMSE) generalized de-
cision feedback equalization (GDFE) preprocessing [23, 36]
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was recently proposed as an alternative to the traditional QR
preprocessing. It is motivated by the well-known fact that,
under perfect decision feedback, the MMSE-GDFE [37] ex-
hibits higher signal to interference-plus-noise ratio (SINR)
than the zero-forcing DFE at the decision point. We now
outline the main ideas behind the MMSE-GDFE preprocess-
ing algorithm in [23]. Under the assumptions that s and w
are zero-mean uncorrelated random vectors with covariance
matrices σ2

s IL and σ2
z IL, respectively, we define γ := σ2

s /σ
2
z

and the augmented channel matrix H̃ in (11):

H̃ :=




H
1
√γ

IL


 (11)

= Q̃R̃ =
(

Q1

Q2

)
R̃. (12)

Equation (12) gives the QR decomposition of H̃, where Q̃ has
orthonormal columns and R̃ is upper triangular with posi-
tive diagonal entries. MMSE-GDFE preprocessing produces
the transformed observation ρ := QT

1 x which is used in the
detection problem

ŝPP = arg min
s∈SL

∥∥ρ − R̃s
∥∥2
. (13)

Because Q1 ∈ RL×L is not guaranteed to be orthogonal, we
cannot claim (for general4 constellations S) that ŝPP = ŝML.
When H is fully populated (i.e., not quasibanded) as in flat-
fading multiantenna communication, Damen [23] demon-
strated that, at moderate-to-high SNR, ŝPP is near-ML and
can be found, via SqD, at an average search complexity of
O(L3), regardless of constellation size Q. We note, for later
use, that the error n := ρ − R̃s, while signal dependent and
non-Gaussian, is white with covariance σ2

z IL [39].
It is important to realize that, when H has the quasi-

banded structure in Figure 1(a), R̃ will have the “V-shaped”
structure in Figure 1(b). Since, as we will see, the V-shaped
structure can have a profound affect on SqD behavior, it is
worthwhile to consider the conditions under which this V-
shaping arises. As suggested by Figure 1, we measure the de-
gree of V-shaping by the ratio (4D + 1)/2N ; as (4D + 1)/2N
decreases below 1, the V-shaping becomes more prominent.
Recalling D = 2(, fdTcN- + Cmin) and assuming the typical
choice N = 4Nh, where Nh := Th/Tc denotes the normalized
delay spread, we find

4D + 1
2N

= 8
⌈
4 fdTcNh

⌉
+ 8Cmin + 1

8Nh
= 1.125 + Cmin

Nh
,

(14)

where the second equality in (14) holds for all reasonable
spreading factors, that is, for 0 < 2 fdTh ≤ 0.5. When Cmin =
2 (as used in Section 4), (4D + 1)/2N = 3.125/Nh, and so R̃
will be V-shaped for Nh > 3. In most applications of inter-

4 It has been established that ŝML = s ⇒ ŝPP = s when the data is uncoded
QPSK [38].

est, though, we have Nh 2 3, in which case R̃ is prominently
V-shaped.

Additional SqD preprocessing might also be considered.
For example, relaxing the constraint s ∈ SL in (13) to s ∈ ZL

allows more freedom in the choice of lattice basis [22]. In
our application, however, we are interested in preserving the
quasibanded structure of H, which limits the types of prepro-
cessing that can be performed. These issues will be discussed
further in Section 3.1.2.

2.3.2. Tree search

The preprocessed SD problems (10) and (13) both corre-
spond to tree search over a tree with depth L, where every
tree node has Q children. A brute-force approach to tree
search would entail the examination of the Euclidean met-
rics (10) and (13) at each of the QL leaf nodes. We are in-
terested in search algorithms which prune branches that are
unlikely to contain the ML path, thus drastically reducing
the search complexity. Unlike their ML counterparts, near-
ML tree search algorithms can, in some cases, discard the
ML path, and hence return a suboptimal sequence estimate.
Thus, each near-ML algorithm achieves a particular tradeoff
between performance and complexity.

Tree search algorithms can be categorized as breadth-
first, depth-first, or best-first search algorithms [21, 22].
Breadth-first search algorithms include, for example, the M-
algorithm [21], T-algorithm [24], statistical pruning algo-
rithms [40], Wozencraft SqD [41], and Pohst sphere decoder
[42]. Depth-first search algorithms include, for example, the
Schnor-Euchner sphere decoder (SE-SpD) and its variants
[34–36]. Best-first search algorithms include, for example,
the stack and Fano algorithms [20, 22, 43]. Since the SqD
literature is large and rapidly growing, an exhaustive com-
parison of existing SqD algorithms is difficult if not impossi-
ble. Instead, we focus on a few representative SqDs and dis-
cuss their strengths and weaknesses in the context of solving
(13) for the DD-channel MCM application, that is, when R̃
has the V-shaped structure in Figure 1(b), as opposed to the
general case of (13) that results from, for example, flat-fading
multiantenna channels and time-dispersive single-antenna
channels—neither5 of which yield V-shaped R̃. In fact, we
find that the structure of R̃ has a profound effect on SqD be-
havior.

We now briefly discuss depth-first, breadth-first, and
best-first SqD algorithms to gain insight into their behav-
ior in the DD-channel MCM application. But first, we have
some notation. We associate every node on the “ith level” of
the tree (i ≥ 0) with a realization of the partial path

s(i) :=
[
si, si+1, . . . , sL−1

]T ∈ SL−i. (15)

5 The ICI span of properly designed MCM (i.e., 2D+1) will be much shorter
than the ISI span of an equivalent single-carrier system (i.e., 2Nh). Thus,
while a time-domain channel matrix would be banded, it would have a
much wider band than our quasibanded H. Unless H has a narrow band,
R̃ will not be V-shaped.
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2D + 1 2D0

= +

L 4D 2 L 2D 1 L 2D 1

Figure 2: Illustration of ρ = R̃s + n for V-shaped R̃. The PAM sym-
bol sL−2D−1 does not affect {ρ0, . . . , ρL−4D−2}.

The root node corresponds to the Lth level and the leaf nodes
to the 0th level. The Euclidean partial-path metric associated
with s(i) is defined in (16) using r̃k,l := [R̃]k,l:

M
(

s(i)
)

:=
L−1∑

k=i

∣∣∣∣∣ρk −
L−1∑

l=k
r̃k,lsl

∣∣∣∣∣

2

. (16)

(i) Depth-first search

Depth-first search (DFS) algorithms proceed down the tree
by following the minimum-cost branch at each level. The
first full path obtained in this manner, corresponding to the
classical DFE sequence estimate, is kept as a reference. The
DFS algorithm then backs up one level at a time, reexam-
ining the discarded branches at each level and pursuing any
that have a chance at beating the reference. If a new best-
sequence is found, it is used as the new reference and the pro-
cess is repeated. DFS yields very low search complexity when
the initial (i.e., DFE) sequence estimate is ML, since no other
branches will be reexamined. For this reason, DFS complex-
ity approaches DFE complexity at high SNR. At low SNR,
however, DFS can waste a lot of effort on non-ML paths,
leading to very costly searches.

When R̃ is V-shaped, as in MCM-shaped DD channels,
and the SNR is moderate to low, DFS will not be efficient in
solving (13). To see why, consider Figure 2, which shows that
sL−2D−1 does not affect {ρ0, . . . , ρL−4D−1}. Consequently, an
error in ŝL−2D−1 will be invisible to the branch metrics at lev-
els i ∈ {0, . . . ,L−4D−2}. When such an error occurs, all DFS
branch reexaminations at levels i ∈ {0, . . . ,L − 4D − 2} will
be performed in vain. Similar situations occur with errors in
ŝk for k ∈ {2D + 1, . . . ,L − 2D − 2}. Note that this behav-
ior does not manifest for general upper-triangular R̃. Thus,
while DFS algorithms like the SE-SpD may be attractive in
multiantenna or time-dispersive channels, they are not well
suited to MCM-shaped DD channels. These notions will be
confirmed numerically in Section 4.

(ii) Best-first search

Best-first search (BeFS) algorithms maintain a sorted list of
the best partial paths (of possibly different lengths). At each
iteration, BeFS extends the best partial path, replaces its list
entry with that of its children, and re-sorts the list. BeFS ter-
minates as soon as the best partial path reaches a leaf node,
since, at that point, all other partial paths are destined to yield
inferior full-path metrics. The Fano algorithm is a near-ML
BeFS algorithm that uses the biased partial-path metric

MFano
(

s(i)) :=
L−1∑

k=i

∣∣∣∣∣ρk −
L−1∑

l=k
r̃k,lsl

∣∣∣∣∣

2

− (L− i)b for b > 0.

(17)

Larger b biases Fano in favor of longer paths, yielding quicker
searches; for very large b, Fano behaves like DFS, greedily ex-
tending the best path at every level and returning the DFE
sequence estimate. In practice, b is chosen to achieve a par-
ticular complexity/performance tradeoff.

A recent comprehensive comparison [22] suggested that
a properly designed Fano algorithm achieves a better com-
plexity/performance tradeoff than all other known SqD al-
gorithms when R̃ has a fully populated upper triangle. For
V-shaped R̃, however, BeFS algorithms (like Fano) can face
difficulties. Recalling Figure 2, when the best partial path
includes an error in ŝL−2D−1, the branch metrics at levels
i ∈ {0, . . . ,L − 4D − 2} will be noninformative about this
error, and thus BeFS algorithms can waste lots of time pursu-
ing extensions of this “best” path in vain. Similar situations
occur with errors in ŝk for k ∈ {2D + 1, . . . ,L − 2D − 2}.
Furthermore, best-partial-path errors in any of these ŝk’s will
be gradually deemphasized by the Fano bias term in (17)
as these “best” partial paths are extended, making the Fano
algorithm less likely to revisit the shorter stack elements
without the error in ŝk. Consequently, Fano exhibits an ex-
ploding complexity at low SNR and an inferior complex-
ity/performance tradeoff at high SNR when used with the R̃
that results from MCM-shaped DD channels. These notions
will be confirmed numerically in Section 4.

(iii) Breadth-first search

As we saw earlier, the complexity of DFS and BeFS explodes
at low SNR because a huge amount of searching is needed
to eliminate suboptimal paths, and the problem is exacer-
bated by V-shaped R̃. Breadth-first search (BrFS) complexity,
in contrast, is much less sensitive to SNR and the structure of
R̃, suggesting that it might be advantageous in our applica-
tion. The M-algorithm, for example, has complexity that is
invariant to both SNR and R̃. The M-algorithm starts at the
root node (i.e., level L) and chooses the M best child nodes at
level L− 1. The children of these level-(L− 1) nodes are then
evaluated, and the M best are chosen. This process repeats at
every level, extending M nodes per level, until finally the best
leaf node is chosen as the sequence estimate.
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At high SNR, however, the M-algorithm is much more
expensive than DFS and BeFS because it is not aggres-
sive enough in branch pruning. Hence, a better complex-
ity/performance tradeoff might be achieved by a BrFS al-
gorithm that varies the number of nodes considered at
each level. For example the T-algorithm only extends paths
from nodes whose Euclidean metrics lie in the interval
[M(s(i)

! ), M(s(i)
! ) + T), where M(s(i)

! ) denotes the minimum
Euclidean metric among all considered nodes, and where T
is a threshold parameter that is chosen to achieve a particu-
lar complexity/performance tradeoff. Several approaches to
the design of T have been proposed. For example, [24] took
an experimental approach, while [44, 45] used SNR and code
structure. In Section 3.2 we propose an adaptive T-algorithm
which uses the elements in R̃, as well as SNR, to optimize T at
each level. We will see that this adaptive T-algorithm results
in a superior complexity/performance tradeoff for MCM-
shaped DD channels.

3. PROPOSED MCM SEQUENCE DETECTION

In the proposed MCM receiver, a fast SqD preprocessing is
applied to the subchannel outputs {xm} prior to SqD via the
adaptive T-algorithm. The channel coefficients used in SqD
are estimated via pilot symbols. Below, we describe each re-
ceiver component in detail.

3.1. SqD preprocessing

In this section we describe low-complexity SqD preprocess-
ing which leverages the quasibanded structure in H. For sim-
plicity, we assume system model (8) rather than its nota-
tionally elaborate equivalent (5). In Section 3.1.1 we describe
a low-complexity implementation of MMSE-GDFE prepro-
cessing, while in Section 3.1.2 we describe a simple ordering
scheme which preserves the quasibanded structure in H.

3.1.1. Fast MMSE-GDFE preprocessing

The MMSE-GDFE preprocessing originally proposed in [23]
involves QR decomposition with complexity O(L3). In this
section, we propose an O(D2L) implementation of MMSE-
GDFE preprocessing that leverages the quasibanded struc-
ture of H found in our application. We note connections
to the fast MMSE-DFE in [11], which was formulated for a
banded (as opposed to quasibanded) matrix H that occurs
when the edge subcarriers are inactive.

Recall the augmented channel matrix H̃ in (11) and its
QR decomposition (12). Note that, while H is quasibanded
with 2D+1 active diagonals (as defined by (6) and illustrated
in Figure 1(a)), H̃ is not quasibanded. However, the matrix
H̃TH̃, which can be computed in (4D2 + 4D + 2)L MACs, is
quasibanded with 4D+ 1 active diagonals. Now, since Q̃ is an
orthogonal matrix, we know H̃TH̃ = R̃T R̃. Hence, R̃ can be
obtained via Cholesky factorization [46] of H̃TH̃ in O(D2L)
operations. Algorithm 1 details the fast Cholesky factoriza-
tion A = GGT , where A := H̃TH̃ and where G := R̃T is the

Say A = GGT , where G is lower triangular and
A ∈ RL×L is quasibanded with ±2D diagonals.
for j = 0 : L− 4D − 1

vj:L−1 = [A] j:L−1, j

m1 = max{0, j − 2D − 1}
m2 = j + 2D − 1
for i = m1 : j − 1

vj:m2 = vj:m2− [G] j,i[G] j:m2, j

vL−2D−1:L−1 = vL−2D−1:L−1

−[G] j,i[G]L−2D−1:L−1, j

end
[G] j:m2, j = vj:m2 /

√vj
[G]L−2D−1:L−1, j = vL−2D−1:L−1/

√vj
end
for j = L− 4D : L− 2D − 1

vj:L−1 = [A] j:L−1, j

m1 = max{0, j − 2D − 1}
for i = m1 : j − 1

vj:L−1 = vj:L−1− [G] j,i[G] j:L−1, j

end
[G] j:L−1, j = vj:L−1/

√vj
end
for j = L− 2D : L− 1

vj:L−1 = [A] j:L−1, j

for i = 0 : j − 1
vj:L−1 = vj:L−1− [G] j,i[G] j:L−1, j

end
[G] j:L−1, j = vj:L−1/

√vj
end

Algorithm 1: Fast cholesky factorization of quasibanded A.

lower triangular Cholesky factor. This fast computation of R̃
can be shown to consume (10D2 + 11D+ 2)L− (1/3)(74D3 +
133D2 + 44D + 3) MAC operations.6

Next, we consider the implementation of the preprocess-
ing operation ρ = QT

1 x. Multiplication of this equality by R̃T

yields

R̃Tρ = R̃TQT
1 x = HTx := b. (18)

Due to quasibanded H, the vector b can be computed in
(2D+1)LMAC operations. From b we can solve (18) for ρ us-
ing forward substitution in O(DL) additional operations, be-
cause R̃T has the sparse “V-shaped” structure in Figure 1(b).
In total, this consumes (6D+2)L−6D2−3D MAC operations
(see footnote 5). Combining forward substitution with fast
Cholesky decomposition, our fast MMSE-GDFE preprocess-
ing requires (14D2+21D+6)L−(76/3)D3−53D2−(53/3)D−1
real MAC operations.

6 Contact the authors for details.



8 EURASIP Journal on Applied Signal Processing

3.1.2. Circular ordering

In [36], Damen et al. outline three stages of SqD preprocess-
ing: lattice reduction, column ordering, and MMSE-GDFE
preprocessing. In our application, the lattice reduction and
column ordering would destroy the quasibanded structure
of H, in which case the subsequent MMSE-GDFE prepro-
cessing would require a complexity of O(L3). Since, in prac-
tice, L = 2N can be quite large (e.g., in the hundreds or
thousands), such a complexity would be impractical. For
these reasons, we restrict ourselves to preprocessing opera-
tions which preserve the quasibanded structure of H.

One admissible preprocessing operation is an n-place
circular shift in column order of H. Using the left circular
shift matrix J, the shifting operation transforms (8) into the
equivalent system (19) with channel matrix HJ−n:

x =
(

HJ−n
)

Jns + w, (19)

J :=
(

0L−1 IL−1

1 0T
L−1

)
. (20)

Though HJ−n is not quasibanded in the sense of (6), the
matrix H̃TH̃ = R̃T R̃ is allowing the fast MMSE-GDFE pro-
cessing from Section 3.1.1. Among the unique shifts n ∈
{0, . . . ,L−1}, we choose the one which maximizes the norm
of the rightmost column of HJ−n, that is, the norm of the
rightmost column of R̃. Thus, the PAM symbol contribut-
ing the most energy to x is placed at the root of the tree. The
complexity of this circular ordering stage is dominated by the
evaluation of column norms, requiring O(DN) operations.
We have observed, numerically, that this “circular ordering”
scheme yields a modest improvement in terms of the perfor-
mance/complexity tradeoff.

3.2. Channel-adaptive T-algorithm

In this section we propose a channel-adaptive version of the
T-algorithm in which the threshold parameter Ti is adjusted
at the ith level in the tree according to the channel realization
and noise variance. Recall that the T-algorithm is a breadth-
first search algorithm which, at the ith level, discards all par-
tial paths s(i) whose metric M(s(i)) exceeds that of the best
partial path s(i)

! := arg mins(i) M(s(i)) by an amount ≥ Ti.
(See Figure 3.) Thus, the T-algorithm will make a frame er-
ror if the true partial path s(i)

T is discarded at any level i ∈
{L− 1,L− 2, . . . , 0}.

In our adaptive T-algorithm, we set the threshold Ti so
that the true path is discarded with probability εo when the
true path is not the best partial path:

Pr
{
M

(
s(i)
T

)
> M

(
s(i)
!
)

+ Ti |M
(

s(i)
T

)
> M

(
s(i)
!
)}

< εo.
(21)

Note that this is different from simply setting Ti so that the
true path is discarded with probability εo. In the latter case,Ti

will increase—thereby increasing search complexity—at low
SNR. Intuition, however, tells us that it is not worthwhile to

M(s(i))

T2

T3

T1

T0

3 2 1 0

Level i

Figure 3: Illustration of path evolution in the T-algorithm when
Q = 2 and L = 4. The circled points denote the minimum path
metrics, the crossed points denote the discarded path metrics, and
the bold line denotes the true path. Note that, in this example,
M(s(2)

! ) < M(s(2)
T ).

search extensively at low SNR because, even if found, the ML
path is more likely to be in error.

With µ(i) :=M(s(i)
T )−M(s(i)

! ), we can rewrite (21) as

Pr
{
µ(i) > Ti | µ(i) > 0

}
< εo. (22)

We now analyze the random variable µ(i). To do this, we
define ρ(i) := [ρi, ρi+1, . . . , ρL−1]T and construct R̃(i) ∈
R(L−i)×(L−i) from the last L − i rows and columns of R̃, that
is, [R̃(i)] j,k = [R̃] j+i,k+i. This way, (16) can be written as

M(s(i)) = ‖ρ(i)−R̃(i)s(i)‖2. Using the error vector e(i) := s(i)
! −

s(i)
T and the interference vector n(i) := ρ(i) − R̃(i)s(i)

T , we find

µ(i) =
∥∥∥ρ(i) − R̃(i)s(i)

T

∥∥∥
2
−
∥∥∥ρ(i) − R̃(i)s(i)

!
∥∥∥

2

=
∥∥n(i)

∥∥2 −
∥∥∥n(i) − R̃(i)e(i)

∥∥∥
2

= 2n(i)T R̃(i)e(i) −
∥∥∥R̃(i)e(i)

∥∥∥
2
.

(23)

Since the statistics of e(i) are difficult to characterize, we
approximate e(i) by the simple error event most likely to
occur at the ith level, that is, an error vector of the form
e(i) = [0, . . . , 0,±1, 0, . . . , 0]T . The partial metric M(s(i)) =
‖ρ(i) − R̃(i)s(i)‖2 suggests that this error will occur at the in-
dex of the “weakest” column of R̃(i). Thus we assume [e(i)]l =
±δl−li for

li := arg min
l

∥∥∥r̃(i)
l

∥∥∥, (24)

where r̃(i)
l ∈ RL−i denotes the lth column of R̃(i). In this case,

µ(i) = ±2n(i)T r̃(i)
li −

∥∥∥r̃(i)
li

∥∥∥
2
. (25)

Recall from our discussion in Section 2.3 that the inter-
ference vector n is zero-mean, white, and Gaussian in the
case of ZF-GDFE preprocessing; and zero-mean, white, and
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non-Gaussian in the case of MMSE-GDFE preprocessing. In
the latter case, the non-Gaussianity of n is due to a contri-
bution from not-yet-detected PAM symbols, which we treat
as random since their values are unknown when designing
Ti. To proceed further, we approximate n as Gaussian with
covariance σ2

z IL. With these assumptions,

µ(i) ∼ N
(
−
∥∥∥r̃(i)

li

∥∥∥
2
, 4
∥∥∥r̃(i)

li

∥∥∥
2
σ2
z

)
. (26)

Using the statistical description (26), we can solve for Ti in
(22) given a particular εo. From Bayes rule we find

Pr
{
µ(i) > Ti | µ(i) > 0

}
=





Pr
{
µ(i) > Ti

}

Pr
{
µ(i) > 0

} , Ti ≥ 0,

1, else,
(27)

from which it is straightforward to show that

Ti = 2σz
∥∥∥r̃(i)

li

∥∥∥Q−1

(
εoQ

(∥∥r̃(i)
li

∥∥

2σz

))
−
∥∥∥r̃(i)

li

∥∥∥
2

(28)

using the tabulated function Q(x) := (1/
√

2π)
∫∞
x e−x

2/2dx.
From (28) we can see that the desired error probability εo
is “weighted” by an SNR-dependent quantity; as SNR in-
creases, so does the Q−1(·) term.

3.3. Channel estimation

Here we propose a rank-reduced pilot-aided Wiener channel
estimation scheme. We discuss the pilot pattern first and the
estimation scheme later.

We choose a pilot pattern where one out of every P ≥ 2
multicarrier symbols is used as a pilot. These pilot sym-
bols are then used to estimate the channel coefficients of the
P − 1 multicarrier data symbols in-between. Pilot patterns
of this form are relatively common, having been used in sev-
eral other works (e.g., [10, 47]). We choose this pattern over
one where each multicarrier symbol contains a mixture of pi-
lot and data sub-carriers for the following reason. Assuming
a significant ICI radius equal to D, the pilot and data sub-
carriers would interfere unless a frequency-domain guard
with radius 2D was placed around each pilot tone. Since
Nyquist sampling considerations imply the need for at least
Nh pilot tones, prevention of pilot/data interference would
require that at least (4D + 1)Nh sub-carriers are spared from
data transmission. For many applications of interest (e.g., the
setup in Section 4), however, (4D + 1)Nh > N , making this
scheme impractical. Since the design of optimal pilot sym-
bols appears to be a challenging problem, we used values ob-
tained from a semiexhaustive search.

We now define some quantities that follow from our pi-
lot pattern. Say that, for all indices m corresponding to pilot

symbols, we have sm = p. For these m, (7) implies that

xm = Phm + wm,

hm :=
[

diag−D
(

HD
m

)T , . . . , diagD
(

HD
m

)T]T ∈ R(2D+1)L,

P :=
(

JDD(p) · · · J−DD(p)
)

,
(29)

where D(·) transforms a vector argument into a diago-
nal matrix, and where diagk(·) extracts the kth sub-diag-
onal of its matrix argument, that is, diagk(H) := [[H]k,0,
[H]k+1,1, . . . , [H]k+L−1,L−1]T with modulo-L indexing as-
sumed. Recall that J was defined in (20). Our goal is to es-

timate the local-ICI coefficients #hm := [hT
m+1, . . . , hT

m+P−1]T

from the pilot observations #xm := [xT
m, xT

m+P]T . Say that
hm = Cgm, where gm ∈ CNbNh contains all complex-baseband
time-domain impulse response coefficients that affect the
mth observation, and where C is a function of the MCM
pulse shapes {an} and {bn}.

The linear MMSE estimate of #hm from #xm is [48]

#̂hm = RhxR−1
xx #xm, (30)

where Rhx := E{#hm#x
T
m} and Rxx := E{#xm#x

T
m}. We can write

Rhx =




R1
hx R1−P

hx

R2
hx R2−P

hx
...

...
RP−1
hx R−1

hx




,

Rxx =

R0

xx R−Pxx

RP
xx R0

xx


 ,

(31)

with

Rq
hx := C E

{
gmgH

m−q
}

CHPT ,

Rq
xx := PC E

{
gmgH

m−q
}

CHPT + δqσ2
z I2L.

(32)

Note that E{gmgH
m−q} is easily calculated from the time-

domain channel autocorrelation function.
Because each of the 2Nh real-valued channel taps changes

slowly over the pilot/data/pilot interval (i.e., Nb + PNs chan-
nel uses), it contributes only K = 1 + ,2 fdTc(Nb + PNs)-
nonnegligible singular values to RhxR−1

xx . Thus, as in [10], op-
timal rank reduction [48] can be used to significantly reduce
the complexity of channel estimation with little performance

degradation. The optimal rank-2NhK estimate of #hm is con-
structed as follows [48]. From the SVD RhxR−1

xx = UΣVH ,
we build UK and VK from the first 2NhK columns of U
and V, respectively, and we build ΣK from the first 2NhK
rows and columns of Σ. We find that RhxR−1

xx ≈ UKFH
K for

UK ∈ R(P−1)(2D+1)L×2NhK and FK := VKΣK ∈ C2L×2NhK .
Note that UK can be interpreted as the MMSE-optimal order-

2NhK basis expansion for #hm and FH
K can be interpreted as
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Figure 4: ML and MFB performance of several MCM schemes using global ICI (full H) or local ICI (D = 6) at (a) fdTc = 0.001; (b)
fdTc = 0.003.

the linear MMSE estimator of the corresponding basis coef-

ficients#λm. The resulting rank-reduced estimation procedure

#̂λm = FH
K#xm,

#̂g
m
= UK

#̂λm
(33)

requires only 2NhK[2L+(P−1)(2D+1)L] complex MACs per
P − 1 frames. In Section 4 we demonstrate that, with K = 2,
the complexity of this channel estimation method is on par
with that of preprocessed SqD. Experiments have confirmed
that the rank-reduced performance is nearly indistinguish-
able from the full-rank performance [49].

4. NUMERICAL RESULTS

4.1. Setup

Our experiments employed the ICI/ISI-corrupted MCM sys-
tem specified in complex-valued form by (4) and in real-
valued form by (7). Uncoded QPSK symbols {sk,m}N−1

k=0 (i.e.,
Q = 2) were communicated over N = 64 MCM subcarriers
(i.e., L = 128), and the demodulator outputs xm were used to
detect the QPSK sequence sm. For SD, we focused on the case
where only the “significant” ICI coefficients HD

m were known,

in which case ISI and residual ICI were treated as unknown
interference.

Several methods of SD were examined: MLSD, near-ML
SqD, and MMSE-DFE. In each case, we first apply circular or-
dering and fast MMSE-GDFE preprocessing to arrive at the
detection problem (13), since, in the case of uncoded QPSK,
solutions to (13) are known to be ML [38]. For MLSD, we
solve (13) via SE-SpD, while for near-ML SqD, we obtain
an approximate solution to (13) via suboptimal tree search.
For MMSE-DFE, we decode the bits {sk,m}L−1

k=0 in the order
sL−1,m, sL−2,m, . . . , s0,m by first making a hard decision on each
bit and then subtracting its (estimated) contribution from xm

[37].
We assumed a wide-sense stationary uncorrelated scat-

tering (WSSUS) Rayleigh fading channel [50] whose realiza-
tions were generated using Jakes method. The channel had
a uniform delay-profile with normalized7 delay spread Nh =
Th/Tc = 16 and a normalized single-sided Doppler spread
fdTc ∈ {0.001, 0.003}. These parameters correspond to, for
example, a system with subcarrier spacing Fs = 20 kHz, car-
rier frequency fc = 10 GHz, delay spread Th = 12.25 µs, and

7 These quantities are normalized to the “channel-use interval” or “chip
interval,” Tc = 1/NFs.
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Figure 5: MMSE-DFE performance of several MCM schemes using global ICI (full H) or local ICI (D = 6) at (a) fdTc = 0.001; (b)
fdTc = 0.003.

effective8 velocities of 138 km/h and 414 km/h, respectively.
We defined SNR as the ratio of signal energy to noise energy
in (pulse-shaped and sampled) receiver inputs.

Four FFT-based MCM schemes were considered: CP-
OFDM [4], ZP-OFDM [5], Strohmer and Beaver’s “optimal”
OFDM (S-OFDM) [6], and MSTP-MCM [14, 15]. Each of
these schemes was allowed the same transmitted energy per
information bit. With the exception of ZP-OFDM, all guar-
antee white subchannel noise samples (i.e., E{zmzTm} = σ2

z I).
For CP-OFDM and ZP-OFDM, we employed a length-Ng =
16 guard to avoid ISI, yielding a spectral efficiency of 0.8
QPSK-symbols/s/Hz. For S-OFDM, N = 64 QPSK sym-
bols were transmitted every 80 channel uses, also yielding
a spectral efficiency of 0.8 QPSK-symbols/s/Hz. For MSTP-
MCM, N QPSK symbols were transmitted every N channel
uses, yielding a spectral efficiency of 1 QPSK-symbol/s/Hz.
The dilation factor σ of the Gaussian pulse gσ (t) orthogo-
nalized for S-OFDM (see [6, page 1114]) was numerically

8 Effective velocity v can result from mobile velocity v/3 in, for example,
a “triple-Doppler” situation, when the downlink signal bounces off of a
reflector traveling directly towards (away from) the base station at velocity
v/3 and is received by a mobile traveling away from (towards) the base
station at velocity v/3.

optimized to minimize the total power of ICI plus ISI. The
MSTP-MCM transmitter pulse {an}was length Na = (3/2)N
and the MSTP-MCM receiver pulse {bn} was length-N rect-
angular and preceded by (3/2)Nh zeros.

4.2. FER performance

Figure 4 examines the frame9 error rate (FER) performance
of the four MCM schemes with MLSD. When MLSD was too
costly, the matched filter bound (MFB) was used as an ap-
proximation. When the MLSD has perfect global-ICI knowl-
edge (i.e., knowledge of {Hm,0} in (5)), MSTP-MCM and ZP-
OFDM performed similarly, and significantly outperformed
S-OFDM and CP-OFDM. S-OFDM performed poorly due
to a high level of ISI. Better S-OFDM performance was ob-
served when the dilation factor was chosen to decrease ISI
and increase ICI (which is incorporated in MLSD), but, since
that was inconsistent with the S-OFDM design methodology
in [6], we do not present those results here. CP-OFDM suf-
fers from high FER because it wastes energy on a CP that
is discarded by the receiver, and because CP-OFDM does

9 We use the terms “frame” and “multicarrier symbol” interchangeably in
this paper.
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Figure 6: Performance of several SqDs on doubly dispersed MSTP-MCM with perfect knowledge of local ICI (i.e., D = 6) at (a) fdTc = 0.001;
(b) fdTc = 0.003.

not make for easy extraction of delay diversity with uncoded
transmissions. When using MLSD with global ICI knowl-
edge, all MCMs schemes other than S-OFDM benefit from
additional Doppler diversity at higher fdTc. S-OFDM, in
contrast, reacts to the fdTc increase by dilating the pulse in
such a way that both ICI and ISI increase, but the increase in
ISI hurts more than the increase in ICI helps. In compar-
ing the schemes, it is important to remember that MSTP-
MCM operates at 25% higher spectral efficiency than the
other schemes.

When the receiver has only local-ICI knowledge up to
±3 subcarriers (i.e., knowledge of HD

m for D = 6), Figure 4
shows that the MLSD performance of MSTP-MCM is indis-
tinguishable from that with global-ICI knowledge. This con-
firms that MSTP-MCM suppresses nonlocal ICI well below
the noise floor over the SNR range of interest. In contrast, the
MLSD performance of ZP-OFDM and CP-OFDM collapse
when only the local ICI is known; while S-OFDM avoids
this collapse, it does so at the expense of high ISI power.
Note that [19], which applies Viterbi SD to CP-OFDM un-
der local-ICI knowledge, is lower-bounded by the CP-OFDM
MFB D = 6 trace, and hence performs far worse than the
proposed MSTP-MCM scheme.

Figure 5 examines FER performance of the four MCM
schemes under MMSE-DFE detection. It is interesting to

note that, when the MMSE-DFE detector is given perfect
global-ICI knowledge, the MSTP-MCM FER floors at high
SNR. This is consistent with [11], which showed simi-
lar MMSE-DFE performance for max-SINR reception-pulse
(MSRP) MCM. We conjecture that max-SINR pulse-shaped
schemes are more prone to DFE error because the channel
energy is not as well concentrated in the main diagonal of R̃
as it is for CP-OFDM, ZP-OFDM, and S-OFDM. When the
MMSE-DFE has only local-ICI knowledge up to±3 subcarri-
ers, the FER performances of ZP-OFDM and CP-OFDM col-
lapse, while the performance of MSTP-OFDM remains the
same as that with global-ICI knowledge. As before, S-OFDM
avoids this collapse, though at the cost of high ISI power.
Once again, this confirms that MSTP-MCM suppresses non-
local ICI well below the noise floor over the SNR range of
interest. Note, however, that in all cases, the MMSE-DFE per-
formances are significantly worse than their MLSD counter-
parts in Figure 4. Fortunately, there is no need to use MMSE-
DFE detection on MSTP-MCM because (as we will see) SqD
can be used to achieve near-ML performance with MMSE-
DFE-like complexity.

Figure 6 shows the FER performance of various SqD al-
gorithms operating on DD-channel MSTP-MCM with per-
fect knowledge of ±3 subcarriers of local ICI (i.e., D =
6). For the M-algorithm, we set M = 8, and, for the
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Figure 7: Number of real MAC operations per frame for doubly dispersed MSTP-MCM reception at (a) fdTc = 0.001; (b) fdTc = 0.003.
Viterbi complexity above assumes inactive edge subcarriers (as in [19]); for active subcarriers, the tail-biting version would require L5.10

MACs/frame.

T-algorithm, we set T = 0.4 when fdTc = 0.001, and T = 0.5
when fdTc = 0.003. For both algorithms, these were the com-
putationally cheapest parameter settings which guaranteed
near-ML performance over the SNR range of interest. For
the adaptive T-algorithm, we set εo = 10−5 and limited the
maximum list size to 8. For the Fano algorithm of [22], we
set10 the bias b = σ2

z /2 and the “step size” = σ2
z . For SE-

SpD, we initialized the squared sphere radius at 1.2 times the
average squared Euclidean distance between the observation
and the ML point. From Figure 6 we see that, with the excep-
tion of MMSE-DFE, all SqD algorithms give near-ML perfor-
mance. In fact, the ML and SE-SpD traces are identical since
MMSE-GDFE preprocessed SE-SpD yields ML performance
with uncoded QPSK [38]. The MMSE-DFE error floor is
consistent with that observed in [11] for MSRP-MCM.

4.3. Complexity

Figure 7 compares the average complexity of the SqD algo-
rithms and the Viterbi algorithm used in [19] when operat-

10 These settings were personally suggested by the authors of [22].

ing on MSTP-MCM11 with perfect knowledge of ±3 subcar-
riers of local ICI (i.e., D = 6). Here “complexity” is measured
in real MAC operations per decoded frame and is plotted on
a log (base-L) scale, as in other near-ML SqD studies (e.g.,
[22, 36]). For the SqD algorithms, we plot the average num-
ber of operations required to achieve the FER performance of
Figure 6, including that required for MSTP-MCM demodu-
lation, circular ordering, and fast MMSE-GDFE preprocess-
ing.

For the reasons discussed in Section 2.3, both the SE-SpD
and Fano algorithms exhibit reasonable complexity at high
SNR but explosive complexity at low SNR. As expected, the
M-algorithm has the same complexity at all SNRs. Interest-
ingly, the T-algorithm has almost the same complexity as the
M-algorithm. Remarkably, the adaptive T-algorithm yields
DFE-like complexity at high SNR and complexity that is not
higher than that of the M- and T-algorithms at low SNR.
As discussed in Section 2.3, the adaptive T-algorithm’s excel-
lent low-SNR complexity is a consequence of its BrFS nature,

11 Since Viterbi complexity is invariant to the channel realization, the values
reported in Figure 7 apply equally well to CP-OFDM transmission, as was
used in [19].
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Figure 8: Performance of several SqDs operating on doubly dispersed MSTP-MCM with rank-reduced pilot-aided estimates of local-ICI
(i.e., D = 6) at (a) fdTc = 0.001; (b) fdTc = 0.003, using pilot spacing P = 2.

while its excellent high-SNR complexity is a consequence of
the fact that it uses channel knowledge to intelligently guide
the search process.

The D = 6 Viterbi complexity is much larger than that of
the near-ML BrFS algorithms and the MMSE-DFE. Further-
more, the Viterbi complexity plotted in Figure 7 (i.e., L(2D+
1)Q(4D+1) = L3.39) is valid only when D edge subcarriers are
inactive. For our case, where all subcarriers are active, the
“tail-biting” Viterbi approach proposed in Section 2.3 would
be an admissible MLSD with complexity L(2D + 1)Q(4D+1) =
L5.10 (which is well outside the range of Figure 7). In con-
clusion, Figure 7 shows that, by sacrificing a fraction of a dB
in performance relative to MLSD, SqD can be implemented
with near-MMSE-DFE complexity, even when all subcarriers
are active.

4.4. Effect of imperfect channel estimates

In Figures 8, 9 we investigate the effect of channel esti-
mation error on SqD performance in DD-channel MSTP-
MCM. For this, we use the rank-2NhK pilot-aided Wiener
estimator proposed in Section 3.3 with K = 2. With pilot-
spacing P = 2, Figure 8 shows that imperfect channel esti-
mates yield an SNR loss of about 1 dB at fdTc = 0.001 and
about 2 dB at fdTc = 0.003 for all the SqD algorithms ex-
amined, that is, MMSE-DFE, the M-algorithm, the adaptive

T-algorithm, and MLSD. For our parameter choices, the
channel estimation complexity reported in Section 3.3 trans-
lates into about L2.4 real MACs per frame, which is com-
parable to the complexity of preprocessed SqD. With pilot-
spacing P = 3, Figure 9 shows that imperfect channel es-
timates yield a significantly higher SNR loss, especially at
fdTc = 0.003, making this choice impractical. A more thor-
ough investigation of reduced-rank pilot-aided Wiener chan-
nel estimation appears in [49].

5. CONCLUSION

This paper proposed a means of high-spectral-efficiency
MCM with practically realizable near-ML SqD suitable for
communication over the DD channel. Our solution con-
sisted of three components: (1) MCM that guarantees a small
number of significant ICI/ISI coefficients while maintain-
ing high spectral efficiency and white subchannel noise sam-
ples; (2) near-ML SD which leverages the MCM-shaped DD-
channel ICI/ISI structure for low complexity over a wide
SNR range; and (3) rank-reduced pilot-aided Wiener esti-
mation of significant ICI/ISI coefficients. Because traditional
MCM schemes (i.e., CP-OFDM, ZP-OFDM, and S-OFDM)
were shown (numerically) to yield too many nonnegligible
ISI/ICI coefficients, we utilized the MSTP-MCM scheme pre-
viously proposed by the authors in [14, 15]. MSTP-MCM
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Figure 9: Performance of several SqDs operating on doubly dispersed MSTP-MCM with rank-reduced pilot-aided estimates of local-ICI
(i.e., D = 6) at (a) fdTc = 0.001; (b) fdTc = 0.003, using pilot spacing P = 3.

combines an SINR-maximizing transmission pulse with a
rectangular reception pulse, permitting ICI/ISI truncation
with negligible loss in performance. Because traditional
ML and near-ML SDs (e.g., Viterbi, Fano, and sphere de-
coders) were shown (numerically) to incur high search com-
plexity when used with the MCM-shaped DD channel, a
novel SD algorithm was proposed. The new SD combines
a fast MMSE-GDFE preprocessor with a channel-adaptive
T-algorithm, of which both components were specifically
tuned to the MCM-shaped DD-channel’s ICI/ISI structure.
The new SD demonstrated FER performance indistinguish-
able from that of MLSD with a complexity that is approxi-
mately quadratic in the frame length, that is, similar to that of
fast MMSE-DFE. Finally, the use of rank-reduced pilot-aided
channel estimates was observed to cause only a small loss
in FER performance (relative to perfect channel knowledge)
without significantly increasing the overall receiver complex-
ity.
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Boston, Mass, USA, 2002.

[26] R. W. Chang, “Synthesis of band-limited orthogonal signals
for multichannel data transmission,” Bell System Technical
Journal, vol. 45, pp. 1775–1796, 1966.

[27] B. Le Floch, M. Alard, and C. Berrou, “Coded orthogonal fre-
quency division multiplex,” Proceedings of the IEEE, vol. 83,
no. 6, pp. 982–996, 1995.

[28] R. Haas and J.-C. Belfiore, “A time-frequency well-localized
pulse for multiple carrier transmission,” Wireless Personal
Communications, vol. 5, no. 1, pp. 1–18, 1997.

[29] W. Kozek and A. F. Molisch, “Nonorthogonal pulseshapes for
multicarrier communications in doubly dispersive channels,”
IEEE Journal on Selected Areas in Communications, vol. 16,
no. 8, pp. 1579–1589, 1998.

[30] H. Bölcskei, P. Duhamel, and R. Hleiss, “Design of pulse-
shaping OFDM/OQAM systems for high data-rate transmis-
sion over wireless channels,” in Proceedings of IEEE Interna-
tional Conference on Communications (ICC ’99), vol. 1, pp.
559–564, Vancouver, British Columbia, Canada, June 1999.

[31] P. Schniter, “A new approach to multicarrier pulse design for
doubly-dispersive channels,” in Proceedings of Annual Allerton
Conference on Communication, Control, and Computing, pp.
1012–1021, Monticello, Ill, USA, October 2003.

[32] G. D. Forney Jr., “The Viterbi algorithm,” Proceedings of the
IEEE, vol. 61, no. 3, pp. 268–278, 1973.

[33] W. H. Mow, “Maximum likelihood sequence estimation from
the lattice viewpoint,” IEEE Transactions on Information The-
ory, vol. 40, no. 5, pp. 1591–1600, 1994.

[34] E. Viterbo and J. Boutros, “A universal lattice code decoder
for fading channels,” IEEE Transactions on Information Theory,
vol. 45, no. 5, pp. 1639–1642, 1999.

[35] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger, “Closest point
search in lattices,” IEEE Transactions on Information Theory,
vol. 48, no. 8, pp. 2201–2214, 2002.

[36] M. O. Damen, H. El Gamal, and G. Caire, “On maximum-
likelihood detection and the search for the closest lattice
point,” IEEE Transactions on Information Theory, vol. 49,
no. 10, pp. 2389–2402, 2003.

[37] N. Al-Dhahir and A. H. Sayed, “The finite-length multi-input
multi-output MMSE-DFE,” IEEE Transactions on Signal Pro-
cessing, vol. 48, no. 10, pp. 2921–2936, 2000.

[38] S.-J. Hwang and P. Schniter, “On the optimality of MMSE-
GDFE pre-processed sphere decoding,” in Proceedings of An-
nual Allerton Conference on Communication, Control, and
Computing, Monticello, Ill, USA, October 2005.

[39] H. El Gamal, G. Caire, and M. O. Damen, “Lattice coding and
decoding achieve the optimal diversity-multiplexing tradeoff
of MIMO channels,” IEEE Transactions on Information Theory,
vol. 50, no. 6, pp. 968–985, 2004.

[40] R. Gowaikar and B. Hassibi, “Efficient statistical pruning for
maximum likelihood decoding,” in Proceedings IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP ’03), vol. 5, pp. 49–52, Hong Kong, 2003.



S.-J. Hwang and P. Schniter 17

[41] J. M. Wozencraft and B. Reiffen, Sequential Decoding, MIT
Press, Cambridge, Mass, USA; John Wiley & Sons, New York,
NY, USA, 1961.

[42] U. Fincke and M. Pohst, “Improved methods for calculating
vectors of short length in a lattice,” Mathematics of Computa-
tion, vol. 44, no. 170, pp. 463–471, 1985.

[43] R. M. Fano, “A heuristic discussion of probabilistic decoding,”
IEEE Transactions on Information Theory, vol. 9, no. 2, pp. 64–
74, 1963.

[44] H. Zamiri-Jafarian and S. Pasupathy, “Adaptive T-algorithm
in mlsd/mlsde receivers for fading channels,” in Proceedings of
IEEE International Conference on Communications (ICC ’99),
vol. 1, pp. 539–543, Vancouver, British Columbia, Canada,
June 1999.

[45] M. Kokkonen and K. Kalliojarvi, “Soft-decision decoding of
binary linear block codes using reduced breadth-first search
algorithms,” IEEE Transactions on Communications, vol. 48,
no. 6, pp. 905–907, 2000.

[46] G. H. Golub and C. F. Van Loan, Matrix Computations, John
Hopkins University Press, Baltimore, Md, USA, 3rd edition,
1996.

[47] T. Zemen and C. F. Mecklenbräuker, “Time-variant channel
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