
Phil Schniter The Ohio State University✬

✫

✩

✪

Communications over Sparse Channels:

Fundamental limits and practical design

Phil Schniter

(With support from NSF grant CCF-1018368, NSF grant CCF-1218754,

and DARPA/ONR grant N66001-10-1-4090)
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Sparse Channels:

• At large communication bandwidths, channel impulse responses are sparse.

• Below left shows channel taps x = [x0, . . . , xL−1], where

– xn = x(nT ) for bandwidth T−1 = 256 MHz,

– x(t) = h(t) ∗ pRC(t), and

– h(t) is generated randomly using 802.15.4a outdoor NLOS specs.
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Simplified Channel Model:

First, let’s simplify things to talk concretely about sparse channels. . .

Consider a discrete-time channel that is

• block-fading with block size N ,

• frequency-selective with impulse response length L (where L < N),

• sparse with S non-zero complex-Gaussian taps (where 0 < S ≤ L),

where both the channel coefficients and support are unknown to the receiver.

Important questions:

1. What is the capacity of this channel?

2. How can we build a practical comm system that operates near this capacity?
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Noncoherent Capacity of the Sparse Channel:

For the unknown N -block-fading, L-length, S-sparse channel described earlier, we

established [1] that

1. In the high-SNR regime, the ergodic capacity obeys

Csparse(SNR) =
N − S

N
log(SNR) +O(1).

2. To achieve the prelog factor Rsparse =
N−S
N

, it suffices to use

• pilot-aided OFDM (with N subcarriers, of which S are pilots)

• with joint channel estimation and data decoding.

Key points:

• The effect of unknown channel support manifests only in the O(1) offset.

• Standard non-sparse-channel methods would use L pilots.

• “Compressed channel sensing” would use S polylogN pilots.

[1] A. Pachai-Kannu and P. Schniter, “On communication over unknown sparse frequency selective

block-fading channels,” IEEE Trans. Info. Thy., Oct. 2011.
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Practical Communication over the unknown Sparse Channel:

We now propose a communication scheme that. . .

• is practical, with decode complexity O(N log2N +N |S|) per N -block,

• delivers outage rates matching the optimal prelog factor Rsparse =
N−S
N

,

• significantly outperforms “compressed channel sensing” (CCS) schemes.

Our scheme uses. . .

• a conventional transmitter: pilot-aided BICM OFDM,

• a novel receiver: based on belief propagation with the generalized approximate

message passing (GAMP) algorithm [3] used in a “turbo” configuration [2].

[2] P. Schniter, “‘Turbo reconstruction of structured sparse signals,” CISS 2010.

[3] S. Rangan, “Generalized approximate message passing for estimation with random linear mixing,”

arXiv:1010.5141, 2010.
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Factor Graph for pilot-aided BICM-OFDM:

SISO (de)coding GAMP
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To jointly infer all random variables, we perform loopy-BP via the sum-product

algorithm, using AMP approximations in the GAMP sub-graph.
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Numerical Results — Perfectly Sparse Channel:

Transmitter:

• LDPC codewords with length ∼ 10000 bits.

• 2M -QAM with 2M ∈ {4, 16, 64, 256} and multi-level Gray mapping.

• OFDM with N = 1024 subcarriers.

• P pilot subcarriers and/or T training MSBs.

Channel:

• Length L = 256 = N/4.

• Sparsity S = 64 = N/16.

Reference Schemes:

• Pilot-aided LASSO (i.e., compressed channel sensing) with oracle tuning.

• Pilot-aided LMMSE, support-aware MMSE, and info-bit+support-aware

MMSE channel estimates were also tested.
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BER & Outage vs SNR (with P =L pilots & T =0 training MSBs):
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Key points:

• GAMP outperforms both LASSO and the support genie (SG).

• GAMP performs nearly as well as the info-bit+support-aware genie (BSG).

• With P = L, all approaches yield prelog factor R = N−L

N
= 3

4
, which falls short of

the optimal Rsparse =
N−S

N
= 15

16
.
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BER & Outage vs SNR (with P =0 pilots & T =SM training MSBs):
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Key points:

• GAMP favors P =0 pilot subcarriers and T =SM training MSBs.

– Precisely the necc/suff redundancy of the capacity-maximizing system!

• GAMP achieves the sparse-channel’s capacity-prelog factor, Rsparse =
N−S

N
.
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In practice, channel taps are not perfectly sparse, nor i.i.d:

• For example, consider channel taps x = [x0, . . . , xL−1], where

– xn = x(nT ) for bandwidth T−1 = 256 MHz,

– x(t) = h(t) ∗ pRC(t), and

– h(t) is generated randomly using 802.15.4a outdoor NLOS specs.
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• The tap distribution varies as the lag increases, becoming more heavy-tailed.

• The big taps are clustered together in lag, as are the small ones.
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Proposed channel model:

• Saleh-Valenzuela (e.g., 802.15.4a) models are accurate but difficult to exploit

in receiver design.

• We propose a structured-sparse channel model based on a 2-state Gaussian

Mixture model with discrete-Markov-chain structure on the state:

p(xj | dj) =







CN (xj ; 0, µ
0
j ) if dj=0 “small”

CN (xj ; 0, µ
1
j ) if dj=1 “big”

Pr{dj+1 = 1} = p10j Pr{dj = 0}+ (1− p01j ) Pr{dj = 1}

• Our model is parameterized by the lag-dependent quantities:

{µ1

j} : big-state power-delay profile

{µ0

j} : small-state power-delay profile

{p01j } : big-to-small transition probabilities

{p10j } : small-to-big transition probabilities

• Can learn these statistical params from observed realizations via the EM alg.
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Factor graph for pilot-aided BICM-OFDM:

SISO decoding GAMP MC
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To jointly infer all random variables, we perform loopy-BP via the sum-product

algorithm, using AMP approximations in the GAMP sub-graph.
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Numerical results:

Transmitter:

• OFDM with N = 1024 subcarriers.

• 16-QAM with multi-level Gray mapping

• LDPC codewords with length ∼ 10000 yielding spectral efficiency of 2 bpcu.

• P pilot subcarriers and T training MSBs.

Channel:

• 802.15.4a outdoor-NLOS (not our Gaussian-mixture model!)

• Length L = 256 = N/4.

Reference Channel Estimation / Equalization Schemes:

• soft-input soft-output (SISO) versions of LMMSE and LASSO.

• perfect-CSI genie.
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BER versus Eb/No for P = 224 pilots and T = 0 training MSBs:
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Note 4dB improvement over (turbo) LASSO.

Only 0.5dB from perfect-CSI genie!
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BER versus Eb/No for P = 0 pilots and T = 448 training MSBs:
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Use of training MSBs gives 1dB improvement over use of pilot subcarriers!
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Communications over Underwater Channels:

• SPACE-08 Underwater Experiment 2920156F038 C0 S6

• Time-varying channel response estimated using WHOI M-sequence:
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• The channel is nearly over-spread: fdTsL = 20× 1

10000
× 400 = 0.8 !

• Can’t afford to ignore structure of temporal variations!
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BICM-OFDM Factor Graph with Temporal Channel Structure:

SISO (de)coding GAMP
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• Channel taps are modeled as independent Bernoulli-Gaussian processes:

– each tap’s amplitude follows a temporal Gauss-Markov chain

– each tap’s on/off state follows a temporal discrete-Markov chain

[4] P. Schniter and D. Meng, “A Message-Passing Receiver for BICM-OFDM over Unknown Time-Varying

Sparse Channels,” Allerton 2011.
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Performance versus SNR:

Settings:

• experimentally measured

underwater channel

• 16-QAM

• 1024 total tones

• 0 pilot tones

• 256 training MSBs

• LDPC length 10k

• LDPC rate 0.5
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Exploiting the persistence in channel support and channel amplitudes was critical

in this difficult underwater application.

18



Phil Schniter The Ohio State University✬

✫

✩

✪

Communications in Impulsive Noise:

• In many wireless and power-line communication systems, the (time-domain)

noise is not Gaussian but impulsive.

• The marginal noise statistics are well

captured by a 2-state Gaussian mixture

(i.e., Middleton class-A) model.

• Noise burstiness is well captured by a

discrete Markov chain on the noise state.
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Factor Graph for pilot-aided BICM-OFDM:

[5] M. Nassar, P. Schniter, and B. Evans, “A Factor-Graph Approach to Joint OFDM Channel Estimation

and Decoding in Impulsive Noise Environments,” IEEE Trans. Signal Process., 2014.
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Numerical Results — Uncoded Case:

Settings:

• 5 channel taps

• GM noise

• 256 total tones

• 15 pilot tones

• 80 null tones

• 4-QAM

Proposed “joint channel/impulsive-noise/symbol” estimation (JCIS) scheme gives

∼15 dB gain over previous state-of-the-art and performs within 1 dB of MFB!
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Numerical Results — Coded Case:

Settings:

• 10 channel taps

• GM noise

• 1024 total tones

• 150 pilot tones

• 0 null tones

• 16-QAM

• LDPC

• Rate 0.5

• Length 60k

Proposed “joint channel/impulsive-noise/symbol/bit” estimation (JCISB) scheme

gives ∼15 dB gain over traditional DFT-based receiver!
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Conclusions:

• At wide bandwidths, channel impulse responses are approximately sparse.

– Sparsity increases the pre-log factor of high-SNR noncoherent ergodic

capacity.

– AMP-based joint channel-estimation/decoding delivers outage rates that

empirically match the capacity pre-log factor.

– Channels impulses are in fact structured-sparse, and exploiting this

structure leads to additional performance gains.

– Sparsity can also be exploited in time-varying channels.

• Impulsive noise is another source of sparsity in communications.

– AMP-based joint channel-estimation/impulse-estimation/decoding delivers

error-rates that approach the matched-filter bound.
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