Vector Approximate Message Passing

Phil Schniter

The Ohio State University

Collaborators: Sundeep Rangan (NYU), Alyson Fletcher (UCLA)
Supported in part by NSF grant CCF-1527162.
iTWIST @ Aalborg University — Aug 24, 2016

Standard Linear Regression

Goal: Recover $\boldsymbol{x}_{o} \in \mathbb{R}^{N}$ from observations $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}_{o}+\boldsymbol{w} \in \mathbb{R}^{M}$
Examples:
■ Compressive Sensing / Medical Imaging:
$\boldsymbol{y}=$ measurements $\quad \boldsymbol{x}_{o}=$ sparse image/signal representation
$\boldsymbol{w}=$ sensor noise $\quad \boldsymbol{A}=\boldsymbol{\Phi} \boldsymbol{\Psi}, \boldsymbol{\Phi}$ measurement operator, Ψ basis
■ Wireless communications:

$$
\begin{array}{ll}
\boldsymbol{y}=\text { received samples } & \boldsymbol{x}_{o}=\text { finite-alphabet symbols } \\
\boldsymbol{w}=\text { noise } \& \text { interference } & \boldsymbol{A}=\text { channel operator }
\end{array}
$$

■ Statistics / Machine Learning:

$$
\begin{array}{ll}
\boldsymbol{y}=\text { experimental outcomes } & \boldsymbol{x}_{o}=\text { prediction coefficients } \\
\boldsymbol{w}=\text { model error } & \boldsymbol{A}=\text { feature data }
\end{array}
$$

Implicit assumptions used in most of this talk

Standard linear regression:
Recover $\boldsymbol{x}_{o} \in \mathbb{R}^{N}$ from $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}_{o}+\boldsymbol{w} \in \mathbb{R}^{M}$
■ \boldsymbol{A} is a known and high dimensional (e.g., $M, N \gtrsim 100$)
■ often $N \gg M$ (more unknowns than observations)
■ $\boldsymbol{w} \sim \mathcal{N}\left(\mathbf{0}, \tau_{w} \boldsymbol{I}\right)$ (additive white Gaussian noise)
■ \boldsymbol{x}_{o} is "structured" (e.g., sparse, natural image, etc.)

- quantities are real-valued (but can be easily extended to complex-valued)

Later will describe extension to generalized linear model:
Recover \boldsymbol{x}_{o} from $\boldsymbol{y} \sim p(\boldsymbol{y} \mid \boldsymbol{z})$ with hidden $\boldsymbol{z}=\boldsymbol{A} \boldsymbol{x}_{o}$.

Regularized loss minimization

One way to approach this problem is

$$
\widehat{\boldsymbol{x}}=\arg \min _{\boldsymbol{x}} \frac{1}{2}\|\boldsymbol{y}-\boldsymbol{A} \boldsymbol{x}\|^{2}+\lambda f(\boldsymbol{x})
$$

where
■ $\frac{1}{2}\|\boldsymbol{y}-\boldsymbol{A} \boldsymbol{x}\|^{2}$ is the quadratic loss function

- $f(\boldsymbol{x})$ is a suitably chosen regularizer
- convex $f(\cdot)$ leads to a convex optimization problem
- choosing $f(\boldsymbol{x})=\|\boldsymbol{x}\|_{1}$ yields sparse $\widehat{\boldsymbol{x}}$

■ $\lambda>0$ is a tuning parameter

Bayesian interpretation:
$\widehat{\boldsymbol{x}}=$ MAP estimate of \boldsymbol{x} under $\left\{\begin{array}{l}\text { likelihood } p(\boldsymbol{y} \mid \boldsymbol{x})=\mathcal{N}\left(\boldsymbol{y} ; \boldsymbol{A x}, \tau_{w} \boldsymbol{I}\right) \\ \text { prior } p(\boldsymbol{x}) \propto \exp \left(-\lambda f(\boldsymbol{x}) / \tau_{w}\right)\end{array}\right.$

Iterative thresholding

One approach to regularized loss minimization:

$$
\begin{aligned}
& \text { initialize } \widehat{\boldsymbol{x}}^{0}=\mathbf{0} \\
& \text { for } t=0,1,2, \ldots \\
& \quad \boldsymbol{v}^{t}=\boldsymbol{y}-\boldsymbol{A} \widehat{\boldsymbol{x}}^{t} \\
& \widehat{\boldsymbol{x}}^{t+1}=\boldsymbol{g}\left(\widehat{\boldsymbol{x}}^{t}+\boldsymbol{A}^{\top} \boldsymbol{v}^{t}\right) \\
& \text { thresholding }
\end{aligned}
$$

where

$$
\begin{aligned}
& \boldsymbol{g}(\boldsymbol{r})=\arg \min _{\boldsymbol{x}} \frac{1}{2}\|\boldsymbol{r}-\boldsymbol{x}\|_{2}^{2}+\lambda f(\boldsymbol{x}) \triangleq \operatorname{prox}_{\lambda f}(\boldsymbol{r}) \\
&\|\boldsymbol{A}\|_{2}^{2}<1 \text { ensures convergence } \\
& \\
& \\
& \text { with convex } f(\cdot) .
\end{aligned}
$$

For example, $f(\boldsymbol{x})=\|\boldsymbol{x}\|_{1}$ gives "soft thresholding"

$$
[\boldsymbol{g}(\boldsymbol{r})]_{j}=\operatorname{sgn}\left(r_{j}\right) \max \left\{0,\left|r_{j}\right|-\lambda\right\}
$$

Approximate Message Passing (AMP)

A modification of iterative thresholding:
initialize $\widehat{\boldsymbol{x}}^{0}=\mathbf{0}, \boldsymbol{v}^{-1}=\mathbf{0}$
for $t=0,1,2, \ldots$

$$
\begin{array}{ll}
\boldsymbol{v}^{t}=\boldsymbol{y}-\boldsymbol{A} \widehat{\boldsymbol{x}}^{t}+\frac{N}{M} \boldsymbol{v}^{t-1}\left\langle\boldsymbol{g}^{t-1^{\prime}}\left(\widehat{\boldsymbol{x}}^{t-1}+A^{\top} \widehat{\boldsymbol{v}}^{t-1}\right)\right\rangle & \text { corrected residual } \\
\widehat{\boldsymbol{x}}^{t+1}=\boldsymbol{g}^{t}\left(\widehat{\boldsymbol{x}}^{t}+\boldsymbol{A}^{\top} \boldsymbol{v}^{t}\right) & \text { thresholding }
\end{array}
$$

where

$$
\left\langle\boldsymbol{g}^{\prime}(\boldsymbol{r})\right\rangle \triangleq \frac{1}{N} \sum_{j=1}^{N} \frac{\partial g_{j}(\boldsymbol{r})}{\partial r_{j}} \quad \text { "divergence." }
$$

Note:

- The residual \boldsymbol{v}^{t} now includes an "Onsager correction."
- The thresholding $\boldsymbol{g}^{t}(\cdot)$ can vary with iteration t.
- Can be derived using Gaussian \& Taylor-series approximations of min-sum belief-propagation / message passing.

AMP vs ISTA (and FISTA)

Typical convergence behavior with i.i.d. Gaussian \boldsymbol{A} :
Experiment:

■ $M=250, N=500$
■ $\operatorname{Pr}\left\{x_{n} \neq 0\right\}=0.1$

- $\mathrm{SNR}=40 \mathrm{~dB}$
- ISTA, FISTA ${ }^{2}$, AMP all reach same solution: NMSE $=-36.8 \mathrm{~dB}$
- Convergence to -35 dB :
- ISTA: 2407 iterations
- FISTA: 174 iterations
- AMP: 25 iterations

AMP's denoising property

Assumption 1

- $\boldsymbol{A} \in \mathbb{R}^{M \times N}$ is i.i.d. Gaussian

■ $M, N \rightarrow \infty$ s.t. $\frac{M}{N}=\delta \in(0, \infty)$

- $f(\boldsymbol{x})=\sum_{j=1}^{N} f\left(x_{j}\right)$ with Lipschitz f

Under Assumption 1, something remarkable happens to the input to the thresholder: ${ }^{3}$

$$
\begin{aligned}
& \quad \boldsymbol{r}^{t} \triangleq \widehat{\boldsymbol{x}}^{t}+\boldsymbol{A}^{\top} \boldsymbol{v}^{t}=\boldsymbol{x}_{o}+\mathcal{N}\left(\mathbf{0}, \tau_{r}^{t} \boldsymbol{I}\right) \\
& \text { with } \tau_{r}^{t}=\frac{1}{M}\left\|\boldsymbol{v}^{t}\right\|^{2} \triangleq \widehat{\tau}_{r}^{t}
\end{aligned}
$$

In other words, \boldsymbol{r}^{t} is a noisy version of the true signal \boldsymbol{x}_{o}, where the noise is Gaussian with known variance.

AMP's state evolution

Define the iteration- t mean-squared error (MSE)

$$
\mathcal{E}^{t}=\frac{1}{N} \mathrm{E}\left\{\left\|\widehat{\boldsymbol{x}}^{t}-\boldsymbol{x}_{o}\right\|^{2}\right\}
$$

Under Assumption 1, AMP has the following scalar state evolution (SE):

$$
\begin{aligned}
& \text { for } t=0,1,2, \ldots \\
& \quad \tau_{r}^{t}=\tau_{w}+\frac{N}{M} \mathcal{E}^{t} \\
& \quad \mathcal{E}^{t+1}=\frac{1}{N} \mathrm{E}\left\{\left\|\boldsymbol{g}^{t}\left(\boldsymbol{x}_{o}+\mathcal{N}\left(\mathbf{0}, \tau_{r}^{t} \boldsymbol{I}\right)\right)-\boldsymbol{x}_{o}\right\|^{2}\right\}
\end{aligned}
$$

The rigorous proof ${ }^{4}$ of the SE uses Bolthausen's conditioning trick from the statistical physics literature.

Choice of denoiser in AMP

1) LASSO/BPDN

■ Goal: compute " $\widehat{\boldsymbol{x}}=\arg \max _{\boldsymbol{x}} \frac{1}{2}\|\boldsymbol{y}-\boldsymbol{A} \boldsymbol{x}\|^{2}+\lambda\|\boldsymbol{x}\|_{1}$."
■ Use $\boldsymbol{g}^{t}(\boldsymbol{r})=\operatorname{soft}\left(\boldsymbol{r} ; \alpha \sqrt{\widehat{\tau}_{r}^{t}}\right)$, where α has a one-to-one map to λ.
2) Bayesian MMSE

■ Goal: compute/approximate MMSE estimate $\widehat{\boldsymbol{x}}=\mathrm{E}\{\boldsymbol{x} \mid \boldsymbol{y}\}$.
■ Suppose $\boldsymbol{x}_{o} \sim$ i.i.d. $p\left(x_{j}\right)$ with known $p\left(x_{j}\right)$.
■ Use $\left[\boldsymbol{g}^{t}(\boldsymbol{r})\right]_{j}=\mathrm{E}\left\{x_{j} \mid r_{j}=x_{o, j}+\mathcal{N}\left(0, \widehat{\tau}_{r}^{t}\right)\right\} \quad \ldots$ scalar denoising!

- MMSE is achieved when the SE has a unique fixed point!

The choice of denoiser determines the problem solved by AMP.

Choice of denoiser in AMP (cont.)

3) Non-parametric (or model free) estimation

- Goal: compute MMSE estimate without knowing i.i.d. prior $p\left(x_{j}\right)$.

■ Assume scalar $\mathrm{GMM}(\boldsymbol{\theta})$ with unknown parameters $\boldsymbol{\theta}$.
■ Use MMSE scalar estimator for GMM ($\boldsymbol{\theta}^{t}$) at iteration t.
■ Use EM algorithm to update $\boldsymbol{\theta}^{t}$. Details given later...
4) Black-Box Denoisers ${ }^{5}$

■ Goal: leverage sophisticated off-the-shelf denoisers like BM3D for natural images or BM4D for image sequences.
■ Use $\boldsymbol{g}^{t}(\boldsymbol{r})=\mathrm{BM} 3 \mathrm{D}\left(\boldsymbol{r} ; \tau_{r}^{t}\right)$.

- Approximate divergence as $\left\langle\boldsymbol{g}^{t^{\prime}}(\boldsymbol{r})\right\rangle \approx \frac{1}{N} \sum_{j=1}^{N} \frac{g_{j}^{t}(\boldsymbol{r}+\epsilon \boldsymbol{s})-s_{j} g_{j}^{t}(\boldsymbol{r})}{\epsilon}$
where $\left\{s_{j}\right\} \sim$ i.i.d. uniform ± 1.

The limitations of AMP

The good:

- For large i.i.d. sub-Gaussian \boldsymbol{A}, AMP performs provably well. ${ }^{6}$

■ Finite-sample analysis shows mild degradation with not-so-large i.i.d. Gaussian \boldsymbol{A}. ${ }^{7}$

■ Empirical evidence shows good performance in some other cases (e.g., randomly sub-sampled Fourier $\boldsymbol{A} \&$ i.i.d. sparse \boldsymbol{x})

The bad:
■ For general $\boldsymbol{A}, \mathrm{AMP}$ can perform poorly
The ugly:
■ For general $\boldsymbol{A}, \mathrm{AMP}$ may fail to converge!

- ill-conditioned \boldsymbol{A}
- non-zero mean \boldsymbol{A}

[^0]
This talk: Vector AMP

For SLR $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}+\boldsymbol{w}$, the vector AMP algorithm is ${ }^{8}$

$$
\begin{aligned}
\text { for } t & =0,1,2, \ldots \\
\widehat{\boldsymbol{x}}_{1}^{t} & =\boldsymbol{g}\left(\boldsymbol{r}_{1}^{t} ; \gamma_{1}^{t}\right) \\
\alpha_{1}^{t} & =\left\langle\boldsymbol{g}^{\prime}\left(\boldsymbol{r}_{1}^{t} ; \gamma_{1}^{t}\right)\right\rangle \\
\boldsymbol{r}_{2}^{t} & =\frac{1}{1-\alpha_{1}^{t}}\left(\widehat{\boldsymbol{x}}_{1}^{t}-\alpha_{1}^{t} \boldsymbol{r}_{1}^{t}\right) \\
\gamma_{2}^{t} & =\gamma_{1}^{t} \frac{1-\alpha_{1}^{t}}{\alpha_{1}^{t}}
\end{aligned}
$$

denoising
divergence

Onsager correction precision of \boldsymbol{r}_{2}^{t}
$\widehat{\boldsymbol{x}}_{2}^{t}=\left(\boldsymbol{A}^{\top} \boldsymbol{A} / \widehat{\tau}_{w}+\gamma_{2}^{t} \boldsymbol{I}\right)^{-1}\left(\boldsymbol{A}^{\top} \boldsymbol{y} / \widehat{\tau}_{w}+\gamma_{2}^{t} \boldsymbol{r}_{2}^{t}\right)$ LMMSE
$\alpha_{2}^{t}=\frac{\gamma_{2}^{t}}{N} \operatorname{Tr}\left[\left(\boldsymbol{A}^{\top} \boldsymbol{A} / \widehat{\tau}_{w}+\gamma_{2}^{t} \boldsymbol{I}\right)^{-1}\right]$
$\boldsymbol{r}_{1}^{t+1}=\frac{1}{1-\alpha_{2}^{t}}\left(\widehat{\boldsymbol{x}}_{2}^{t}-\alpha_{2}^{t} \boldsymbol{r}_{2}^{t}\right)$
$\gamma_{1}^{t+1}=\gamma_{2}^{t} \frac{1-\alpha_{2}^{t}}{\alpha_{2}^{t}}$

Onsager correction
precision of \boldsymbol{r}_{1}^{t+1}

Note similarities with standard AMP.

[^1]
Vector AMP without matrix inverses

Can avoid matrix inverses using an "economy" SVD $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{S} \boldsymbol{V}^{\top}$:

for t	$=0,1,2, \ldots$
$\widehat{\boldsymbol{x}}^{t}$	$=\boldsymbol{g}\left(\boldsymbol{r}_{1}^{t} ; \gamma_{1}^{t}\right)$
α_{1}^{t}	$=\left\langle\boldsymbol{g}^{\prime}\left(\boldsymbol{r}_{1}^{t} ; \gamma_{1}^{t}\right)\right\rangle$
$\boldsymbol{r}_{2}^{t}=\frac{1}{1-\alpha_{1}^{t}}\left(\widehat{\boldsymbol{x}}^{t}-\alpha_{1}^{t} \boldsymbol{r}_{1}^{t}\right)$	denoising
$\gamma_{2}^{t}=\gamma_{1}^{t} \frac{1-\alpha_{1}^{t}}{\alpha_{1}^{t}}$	divergence
$\alpha_{2}^{t}=\frac{1}{N} \sum_{j} \gamma_{2}^{t} /\left(s_{j}^{2} / \widehat{\tau}_{w}+\gamma_{2}^{t}\right)$	Onsager
$\boldsymbol{r}_{1}^{t+1}=\boldsymbol{r}_{2}^{t}+\frac{1}{1-\alpha_{2}^{t}} \boldsymbol{V}\left(\boldsymbol{S}^{2}+\widehat{\tau}_{w} \gamma_{2}^{t} \boldsymbol{I}\right)^{-1} \boldsymbol{S}\left(\boldsymbol{U}^{\top} \boldsymbol{y}-\boldsymbol{S} \boldsymbol{V}^{\top} \boldsymbol{r}_{2}^{t}\right)$	divergencion
$\gamma_{1}^{t+1}=\gamma_{2}^{t} \frac{1-\alpha_{2}^{t}}{\alpha_{2}^{t}}$	precision

Note economy SVD computable with $O\left(M^{3}+M^{2} N\right)$ operations.

Why call this "Vector AMP"?

1) Can be derived using an approximation of message passing on a factor graph, now with vector-valued variable nodes.
2) Performance can be rigorously characterized by a state-evolution in the high-dimensional limit of certain random \boldsymbol{A} :

SVD $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{S} \boldsymbol{V}^{\top}$
■ \boldsymbol{U} is deterministic
■ \boldsymbol{S} is deterministic
■ V is uniformly distributed on the group of orthogonal matrices
" \boldsymbol{A} is right-rotationally invariant"

Message-passing derivation of VAMP

- Write joint density as $p(\boldsymbol{x}, \boldsymbol{y})=p(\boldsymbol{x}) p(\boldsymbol{y} \mid \boldsymbol{x})=p(\boldsymbol{x}) \mathcal{N}\left(\boldsymbol{y} ; \boldsymbol{A} \boldsymbol{x}, \tau_{w} \boldsymbol{I}\right)$

$$
p(\boldsymbol{x}) \square \bigcirc \frac{\boldsymbol{x}}{\boldsymbol{x}\left(\boldsymbol{y} ; \boldsymbol{A} \boldsymbol{x}, \tau_{w} \boldsymbol{I}\right)}
$$

■ Variable splitting: $p\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{y}\right)=p\left(\boldsymbol{x}_{1}\right) \delta\left(\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right) \mathcal{N}\left(\boldsymbol{y} ; \boldsymbol{A} \boldsymbol{x}_{2}, \tau_{w} \boldsymbol{I}\right)$

■ Perform ${ }^{9}$ message-passing with messages approximated as $\mathcal{N}\left(\boldsymbol{\mu}, \sigma^{2} \boldsymbol{I}\right)$. An instance of expectation-propagation ${ }^{10}$ (EP).

[^2]
Free-energy derivation of VAMP

■ Want to compute posterior density:

$$
p(\boldsymbol{x} \mid \boldsymbol{y})=\frac{p(\boldsymbol{x}) \ell(\boldsymbol{x})}{Z} \text { with }\left\{\begin{aligned}
p(\boldsymbol{x}) & =\text { prior } \\
\ell(\boldsymbol{x}) & =N\left(\boldsymbol{y} ; \boldsymbol{A} \boldsymbol{x}, \tau_{w} \boldsymbol{I}\right), \text { likelihood } \\
Z & =\int p(\boldsymbol{x}) \ell(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}, \text { partition fxn }
\end{aligned}\right.
$$

but difficult due to high-dimensional integral.
■ What if we compute the density via

$$
\arg \min _{b(\boldsymbol{x})} D(b(\boldsymbol{x}) \| p(\boldsymbol{x} \mid \boldsymbol{y}))
$$

where the KL divergence can be written as

$$
D(b \| p)=\underbrace{D(b \| p)+D(b \| \ell)+H(b)}_{\text {Gibbs free energy }}+\text { const }
$$

thus avoiding the partition function Z. Still difficult...

Free-energy derivation of VAMP (cont.)

- What about splitting the belief $b(\boldsymbol{x})$:

$$
\begin{aligned}
& \arg \min _{b_{1}, b_{2}} \max _{q} J\left(b_{1}, b_{2}, q\right) \text { s.t. } b_{1}=b_{2}=q \\
& J\left(b_{1}, b_{2}, q\right)=D\left(b_{1} \| p\right)+D\left(b_{2} \| \ell\right)+H(q)
\end{aligned}
$$

noting that $D(\cdot \| p)$ is convex and $H(\cdot)$ is concave?
Still difficult due to the pdf constraint...

- So, relax the pdf constraint to moment-matching constraints:

$$
b_{1}=b_{2}=q \longrightarrow\left\{\begin{array}{l}
\mathrm{E}\left\{\boldsymbol{x} \mid b_{1}\right\}=\mathrm{E}\left\{\boldsymbol{x} \mid b_{2}\right\}=\mathrm{E}\{\boldsymbol{x} \mid q\} \\
\operatorname{Tr}\left[\operatorname{Cov}\left\{\boldsymbol{x} \mid b_{1}\right\}\right]=\operatorname{Tr}\left[\operatorname{Cov}\left\{\boldsymbol{x} \mid b_{2}\right\}\right]=\operatorname{Tr}[\operatorname{Cov}\{\boldsymbol{x} \mid q\}]
\end{array}\right.
$$

An instance of expectation-consistent approximation ${ }^{11}$ (EC).

Free-energy derivation of VAMP (cont.)

- The stationary points of the EC optimization are

$$
\begin{aligned}
b_{1}(\boldsymbol{x}) & \propto p(\boldsymbol{x}) \mathcal{N}\left(\boldsymbol{x} ; \boldsymbol{r}_{1} ; \boldsymbol{I} / \gamma_{1}\right) \\
b_{2}(\boldsymbol{x}) & \propto \ell(\boldsymbol{x}) \mathcal{N}\left(\boldsymbol{x} ; \boldsymbol{r}_{2} ; \boldsymbol{I} / \gamma_{2}\right) \\
q(\boldsymbol{x}) & =\mathcal{N}(\boldsymbol{x} ; \widehat{\boldsymbol{x}} ; \boldsymbol{I} / \eta)
\end{aligned}
$$

for parameters $\boldsymbol{r}_{1}, \gamma_{1}, \boldsymbol{r}_{2}, \gamma_{2}, \widehat{\boldsymbol{x}}, \eta$ that satisfy

$$
\begin{aligned}
\widehat{\boldsymbol{x}} & =\mathrm{E}\left\{\boldsymbol{x} \mid b_{1}\right\}=\mathrm{E}\left\{\boldsymbol{x} \mid b_{2}\right\}=\mathrm{E}\{\boldsymbol{x} \mid q\} \\
1 / \eta & =\frac{1}{N} \operatorname{Tr}\left[\operatorname{Cov}\left\{\boldsymbol{x} \mid b_{1}\right\}\right]=\frac{1}{N} \operatorname{Tr}\left[\operatorname{Cov}\left\{\boldsymbol{x} \mid b_{2}\right\}\right]=\frac{1}{N} \operatorname{Tr}[\operatorname{Cov}\{\boldsymbol{x} \mid q\}] .
\end{aligned}
$$

- Can then construct algorithms whose fixed points coincide with these stationary points (e.g., EC, ADATAP, ${ }^{12}$ S-AMP ${ }^{13}$). But convergence is not guaranteed.

[^3]
Putting things in perspective

- The aforementioned belief-propagation and free-energy derivations are both well known and heuristic (in general).
- The resulting algorithms may not converge to their fixed points
- S-AMP diverges with mildly ill-conditioned matrices
- Even if they do converge, the accuracy of the fixed points is unclear:
- EP generally suboptimal due to approximation of messages
- EC generally suboptimal due to approximation of constraint
- The important question is whether/when a given heuristic can be rigorously analyzed and proven to work well.

AMP rigorous analyzed under large i.i.d. Gaussian A and Bayes optimal under certain combinations of $\{p(\boldsymbol{x}), \ell(\boldsymbol{x})\}$.

VAMP state evolution

VAMP has a rigorous SE^{14}
Assuming empirical convergence of $\left\{s_{j}\right\} \rightarrow S$ and $\left\{\left(r_{1, j}^{0}, x_{o, j}\right)\right\} \rightarrow\left(R_{1}^{0}, X_{o}\right)$ and Lipschitz continuity of g and g^{\prime}, the VAMP-SE under $\widehat{\tau}_{w}=\tau_{w}$ is as follows:

$$
\begin{array}{rlr}
\text { for } t & =0,1,2, \ldots & \text { MSE } \\
\mathcal{E}_{1}^{t} & =\mathrm{E}\left\{\left[g\left(X_{o}+\mathcal{N}\left(0, \tau_{1}^{t}\right) ; \bar{\gamma}_{1}^{t}\right)-X_{o}\right]^{2}\right\} & \text { divergence } \\
\bar{\alpha}_{1}^{t}=\mathrm{E}\left\{g^{\prime}\left(X_{o}+\mathcal{N}\left(0, \tau_{1}^{t}\right) ; \bar{\gamma}_{1}^{t}\right)\right\} & \\
\bar{\gamma}_{2}^{t}=\bar{\gamma}_{1}^{t} \frac{1-\bar{\alpha}_{1}^{t}}{\bar{\alpha}_{1}^{t}}, \tau_{2}^{t}=\frac{1}{\left(1-\bar{\alpha}_{1}^{t}\right)^{2}}\left[\mathcal{E}_{1}^{t}-\left(\bar{\alpha}_{1}^{t}\right)^{2} \tau_{1}^{t}\right] & \text { MSE } \\
\mathcal{E}_{2}^{t}=\mathrm{E}\left\{\left[S^{2} / \tau_{w}+\bar{\gamma}_{2}^{t}\right]^{-1}\right\} & \text { divergence } \\
\bar{\alpha}_{2}^{t}=\bar{\gamma}_{2}^{t} \mathrm{E}\left\{\left[S^{2} / \tau_{w}+\bar{\gamma}_{2}^{t}\right]^{-1}\right\} & \\
\bar{\gamma}_{1}^{t+1}=\bar{\gamma}_{2}^{t} \frac{1-\bar{\alpha}_{2}^{t}}{\bar{\alpha}_{2}^{t}}, \quad \tau_{1}^{t+1}=\frac{1}{\left(1-\bar{\alpha}_{2}^{t}\right)^{2}}\left[\mathcal{E}_{2}^{t}-\left(\bar{\alpha}_{2}^{t}\right)^{2} \tau_{2}^{t}\right] &
\end{array}
$$

More complicated expressions for \mathcal{E}_{2}^{t} and $\bar{\alpha}_{2}^{t}$ apply when $\widehat{\tau}_{w} \neq \tau_{w}$.

Connections to the replica prediction

- The replica method from statistical physics is often used to characterize the average behavior of large disordered systems.
- Although not fully rigorous, replica predictions are usually correct.

■ For SLR under large right-rotationally invariant \boldsymbol{A} and matched priors,
The MMSE $\mathcal{E}_{1}\left(\bar{\gamma}_{1}\right)$ should satisfy the fixed-point equation ${ }^{15}$

$$
\bar{\gamma}_{1}=R_{\boldsymbol{A}^{\top} \boldsymbol{A} / \tau_{w}}\left(-\mathcal{E}_{1}\left(\bar{\gamma}_{1}\right)\right),
$$

where $\boldsymbol{R}_{\boldsymbol{C}}(\cdot)$ denotes the R-transform of matrix \boldsymbol{C} and $\mathcal{E}_{1}\left(\bar{\gamma}_{1}\right) \triangleq \mathrm{E}\left\{\left[g_{\text {mmse }}\left(X_{o}+\mathcal{N}\left(0,1 / \bar{\gamma}_{1}\right) ; \bar{\gamma}_{1}\right)-X_{o}\right]^{2}\right\}$.

- It can be shown that VAMP's matched SE obeys the above equation.
- Thus, if the replica prediction is correct, then VAMP's estimates will be MMSE whenever the replica fixed-point equation has a unique solution.

Experiment with Matched Priors I

$N=1024$
$M / N=0.5$
$\boldsymbol{A}=\boldsymbol{U} \operatorname{Diag}(\boldsymbol{s}) V^{\boldsymbol{\top}}$
$\boldsymbol{U}, \boldsymbol{V}$ drawn uniform
$s_{n} / s_{n-1}=\phi \forall n$
ϕ determines $\kappa(\boldsymbol{A})$
$X_{o} \sim$ Bernoulli-Gaussian
$\operatorname{Pr}\left\{X_{0} \neq 0\right\}=0.1$
$S N R=40 d B$
Note robustness w.r.t. condition number of \boldsymbol{A}.

Experiment with Matched Priors II

$N=1024$
$M / N=0.5$
$\boldsymbol{A}=\boldsymbol{U} \operatorname{Diag}(s) V^{\top}$
$\boldsymbol{U}, \boldsymbol{V}$ drawn uniform
$s_{n} / s_{n-1}=\phi \forall n$
ϕ determines $\kappa(\boldsymbol{A})$
$X_{o} \sim$ Bernoulli-Gaussian
$\operatorname{Pr}\left\{X_{0} \neq 0\right\}=0.1$
$S N R=40 \mathrm{~dB}$
Note convergence speed relative to (damped) EM-AMP.

Non-parametric (model-free) regression

■ So far we considered recovering \boldsymbol{x}_{o} from

$$
\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}_{o}+\boldsymbol{w}, \quad \boldsymbol{x}_{o} \sim p(\boldsymbol{x}), \quad \boldsymbol{w} \sim \mathcal{N}\left(\mathbf{0}, \tau_{w} \boldsymbol{I}\right)
$$

when $p(\boldsymbol{x})$ and τ_{w} are known.

- Can we learn τ_{w} ? Yes, through an EM procedure. ${ }^{16}$

Can we learn $p(\boldsymbol{x})$? Yes if $p(\boldsymbol{x})=\prod_{j} p\left(x_{j}\right)$.

- Why is $p\left(x_{j}\right)$ learnable with VAMP?
- Recall that $\boldsymbol{r}_{1}^{t}=\boldsymbol{x}_{o}+\mathcal{N}\left(\mathbf{0}, \tau_{1}^{t} \boldsymbol{I}\right)$.
- Thus \boldsymbol{r}_{1}^{t} contains i.i.d. samples of $p\left(x_{j}\right) * \mathcal{N}\left(x_{j} ; 0, \tau_{1}^{t}\right)$.
- Should be able to deconvolve $p\left(x_{j}\right)$ from the empirical distribution of \boldsymbol{r}_{1}^{t}.

■ A practical method: Model $p\left(x_{j}\right)=\operatorname{GMM}\left(x_{j} ; \boldsymbol{\theta}_{x}\right)$.
Learn parameters $\boldsymbol{\theta}_{x}$ using EM.

EM-VAMP

- Recall $\left\{\begin{array}{l}\text { prior } p\left(\boldsymbol{x} ; \boldsymbol{\theta}_{x}\right) \\ \text { likelihood } \ell\left(\boldsymbol{x} ; \tau_{w}\right)\end{array} \rightarrow\right.$ Learn parameters $\boldsymbol{\theta} \triangleq\left(\boldsymbol{\theta}_{x}, \tau_{w}\right)$.

■ EM: iterate

$$
\begin{array}{ll}
Q\left(\boldsymbol{\theta} ; \widehat{\boldsymbol{\theta}}^{k}\right)=\int p\left(\boldsymbol{x} \mid \boldsymbol{y} ; \widehat{\boldsymbol{\theta}}^{k}\right) \ln p(\boldsymbol{x}, \boldsymbol{y} ; \boldsymbol{\theta}) \mathrm{d} \boldsymbol{x} & \text { "expectation" } \\
\widehat{\boldsymbol{\theta}}^{k+1}=\arg \max _{\boldsymbol{\theta}} Q\left(\boldsymbol{\theta} ; \widehat{\boldsymbol{\theta}}^{k}\right) & \text { "maximization" }
\end{array}
$$ which uses the posterior $p\left(\boldsymbol{x} \mid \boldsymbol{y} ; \hat{\boldsymbol{\theta}}^{k}\right)$ in the E step.

■ With VAMP's posterior approx, EM is an alternating approach to

$$
\begin{aligned}
& \min _{b_{1}, b_{2}, \boldsymbol{\theta}} \max _{q} D\left(b_{1} \| p\left(\boldsymbol{\theta}_{x}\right)\right)+D\left(b_{2} \| \ell\left(\tau_{w}\right)\right)+H(q) \\
& \text { s.t. }\left\{\begin{array}{l}
\mathrm{E}\left\{\boldsymbol{x} \mid b_{1}\right\}=\mathrm{E}\left\{\boldsymbol{x} \mid b_{2}\right\}=\mathrm{E}\{\boldsymbol{x} \mid q\} \\
\operatorname{Tr}\left[\operatorname{Cov}\left\{\boldsymbol{x} \mid b_{1}\right\}\right]=\operatorname{Tr}\left[\operatorname{Cov}\left\{\boldsymbol{x} \mid b_{2}\right\}\right]=\operatorname{Tr}[\operatorname{Cov}\{\boldsymbol{x} \mid q\}]
\end{array}\right.
\end{aligned}
$$

■ Can make faster by putting $\boldsymbol{\theta}$ optimization in the inner loop.

Experiment with Learned Parameters I

Learning both τ_{w} and $\boldsymbol{\theta}_{x}$:

$N=1024$
$M / N=0.5$
$\boldsymbol{A}=\boldsymbol{U} \operatorname{Diag}(\boldsymbol{s}) V^{\top}$
$\boldsymbol{U}, \boldsymbol{V}$ drawn uniform
$s_{n} / s_{n-1}=\phi \forall n$
ϕ determines $\kappa(\boldsymbol{A})$
$X_{o} \sim$ Bernoulli-Gaussian
$\operatorname{Pr}\left\{X_{0} \neq 0\right\}=0.1$
$\mathrm{SNR}=40 \mathrm{~dB}$

EM-VAMP achieves oracle performance at all condition numbers.

Experiment with Learned Parameters II

Learning both τ_{w} and $\boldsymbol{\theta}_{x}$:

$N=1024$
$M / N=0.5$
$\boldsymbol{A}=\boldsymbol{U} \operatorname{Diag}(\boldsymbol{s}) V^{\top}$
$\boldsymbol{U}, \boldsymbol{V}$ drawn uniform
$s_{n} / s_{n-1}=\phi \forall n$
ϕ determines $\kappa(\boldsymbol{A})$
$X_{o} \sim$ Bernoulli-Gaussian $\operatorname{Pr}\left\{X_{0} \neq 0\right\}=0.1$
$S N R=40 \mathrm{~dB}$

EM-VAMP nearly as fast as VAMP and much faster than EM-AMP.

Noiseless Image Recovery with BM3D

Avg results for recovering 128×128 lena, barbara, boat, fingerprint, house, and peppers from $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}_{o}$ with i.i.d. Gaussian \boldsymbol{A} at various sampling ratios.

All algorithms use 20 iterations and learn the noise variance τ_{w}.

VAMP slightly outperforms AMP in accuracy and runtime.

Noiseless Image Recovery with BM3D (cont.)

Now look a sampling rates $\leq 5 \%$.

Goal: recover 128×128 lena from $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}_{o}$ with i.i.d. Gaussian \boldsymbol{A} and unknown τ_{w}.

BM3D-VAMP does much better than BM3D-AMP.

Generalized linear models

- Until now we have considered SLR, $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}_{o}+\boldsymbol{w}$.

■ VAMP can also support the generalized linear model (GLM)

$$
\boldsymbol{y} \sim p(\boldsymbol{y} \mid \boldsymbol{z}) \text { with hidden } \boldsymbol{z}=\boldsymbol{A} \boldsymbol{x}_{o}
$$

which supports, e.g.,

- $y_{i}=z_{i}+w_{i}$: additive, possibly non-Gaussian noise
- $y_{i}=\operatorname{sgn}\left(z_{i}+w_{i}\right)$: binary classification / one-bit sensing
- $y_{i}=\left|z_{i}+w_{i}\right|$: phase retrieval in noise
- Poisson y_{i} : photon-limited imaging
- Trick: $\quad \boldsymbol{z}=\boldsymbol{A x} \quad \Leftrightarrow$

One-bit compressed sensing / Probit regression

Learning both τ_{w} and $\boldsymbol{\theta}_{x}$:

$N=512$
$M / N=4$
$\boldsymbol{A}=\boldsymbol{U} \operatorname{Diag}(\boldsymbol{s}) V^{\top}$
$\boldsymbol{U}, \boldsymbol{V}$ drawn uniform
$s_{n} / s_{n-1}=\phi \forall n$
ϕ determines $\kappa(\boldsymbol{A})$
$X_{o} \sim$ Bernoulli-Gaussian $\operatorname{Pr}\left\{X_{0} \neq 0\right\}=1 / 32$
$S N R=40 \mathrm{~dB}$

VAMP and EM-VAMP robust to ill-conditioned \boldsymbol{A}.

One-bit compressed sensing / Probit regression

Learning both τ_{w} and $\boldsymbol{\theta}_{x}$:

$N=512$
$M / N=4$
$\boldsymbol{A}=\boldsymbol{U} \operatorname{Diag}(\boldsymbol{s}) V^{\top}$
$\boldsymbol{U}, \boldsymbol{V}$ drawn uniform
$s_{n} / s_{n-1}=\phi \forall n$
ϕ determines $\kappa(\boldsymbol{A})$

$X_{o} \sim$ Bernoulli-Gaussian $\operatorname{Pr}\left\{X_{0} \neq 0\right\}=1 / 32$
$S N R=40 \mathrm{~dB}$

EM-VAMP mildly slower than VAMP but much faster than damped AMP.

Conclusions

AMP exhibits some remarkable properties
■ low cost-per-iteration and relatively few iterations to convergence,
■ intermediate estimates of form $\boldsymbol{r}^{t}=\boldsymbol{x}_{o}+\mathcal{N}\left(\mathbf{0}, \tau_{r}^{t} \boldsymbol{I}\right)$,

- rigorous state evolution,

■ easy tuning of prior \& likelihood,

- compatibility with plug-in denoisers like BM3D, but those properties are guaranteed only under large i.i.d. Gaussian \boldsymbol{A}.

Vector AMP has the same properties, but for a much larger class of \boldsymbol{A}.
Ongoing work: analysis of EM procedure, bilinear extensions, connections with deep learning, various applications. . .

Thanks for listening!

[^0]: ${ }^{6}$ Bayati,Lelarge,Montanari-AAP'15
 ${ }^{7}$ Rush,Venkataraman-ISIT'16

[^1]: ${ }^{8}$ Rangan,Schniter,Fletcher-arXiv:1610.03082.

[^2]: ${ }^{9}$ Rangan,Schniter,Fletcher-arXiv:1610.03082.
 ${ }^{10}$ Minka-Dissertation'01

[^3]: ${ }^{12}$ Opper, Winther-NC'00
 ${ }^{13}$ Cacmak, Winter, Fleury-ITW'14

