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Standard Linear Regression

Goal: Recover xo ∈ R
N from observations y = Axo +w ∈ R

M

Examples:

Compressive Sensing / Medical Imaging:
y = measurements xo = sparse image/signal representation
w = sensor noise A = ΦΨ, Φ measurement operator, Ψ basis

Wireless communications:
y = received samples xo = finite-alphabet symbols
w = noise & interference A = channel operator

Statistics / Machine Learning:
y = experimental outcomes xo = prediction coefficients
w = model error A = feature data
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Implicit assumptions used in most of this talk

Standard linear regression:

Recover xo ∈ R
N from y = Axo +w ∈ R

M

A is a known and high dimensional (e.g., M,N & 100)

often N ≫ M (more unknowns than observations)

w ∼ N (0, τwI) (additive white Gaussian noise)

xo is “structured” (e.g., sparse, natural image, etc.)

quantities are real-valued (but can be easily extended to
complex-valued)

Later will describe extension to generalized linear model:

Recover xo from y ∼ p(y|z) with hidden z = Axo.
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Regularized loss minimization

One way to approach this problem is

x̂ = argmin
x

1
2‖y −Ax‖2 + λf(x)

where
1
2‖y −Ax‖2 is the quadratic loss function

f(x) is a suitably chosen regularizer

— convex f(·) leads to a convex optimization problem
— choosing f(x) = ‖x‖1 yields sparse x̂

λ > 0 is a tuning parameter

Bayesian interpretation:

x̂ = MAP estimate of x under

{
likelihood p(y|x) = N (y;Ax, τwI)
prior p(x) ∝ exp

(
−λf(x)/τw

)
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Iterative thresholding

One approach to regularized loss minimization:

initialize x̂0=0

for t = 0, 1, 2, . . .

vt = y −Ax̂t compute residual

x̂t+1 = g(x̂t +ATvt) thresholding

where
g(r) = argmin

x

1
2‖r − x‖22 + λf(x) , proxλf (r)

‖A‖22 < 1 ensures convergence1 with convex f(·).

For example, f(x) = ‖x‖1 gives “soft thresholding”

[g(r)]j = sgn(rj)max{0, |rj | − λ}
λ

1
Daubechies,Defrise,DeMol–CPAM’04
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Approximate Message Passing (AMP)

A modification of iterative thresholding:

initialize x̂0=0, v−1=0

for t = 0, 1, 2, . . .

vt = y −Ax̂t + N
M vt−1

〈
gt−1′(x̂t−1 +ATv̂t−1)

〉
corrected residual

x̂t+1 = gt(x̂t +ATvt) thresholding

where
〈
g′(r)

〉
, 1

N

∑N
j=1

∂gj(r)
∂rj

“divergence.”

Note:

The residual vt now includes an “Onsager correction.”

The thresholding gt(·) can vary with iteration t.

Can be derived using Gaussian & Taylor-series approximations of
min-sum belief-propagation / message passing.
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AMP vs ISTA (and FISTA)

Typical convergence behavior with i.i.d. Gaussian A:
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Experiment:

M = 250, N = 500

Pr{xn 6= 0} = 0.1

SNR= 40dB

ISTA, FISTA2, AMP all
reach same solution:
NMSE= −36.8dB

Convergence to −35dB:

• ISTA: 2407 iterations
• FISTA: 174 iterations
• AMP: 25 iterations

2
Beck,Teboulle–JIS’09
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AMP’s denoising property

Assumption 1

A ∈ R
M×N is i.i.d. Gaussian

M,N → ∞ s.t. M
N = δ ∈ (0,∞)

f(x) =
∑N

j=1 f(xj) with Lipschitz f

Under Assumption 1, something remarkable happens to the input to the
thresholder:3

rt , x̂t +ATvt = xo +N (0, τ trI)

with τ tr = 1
M ‖vt‖2 , τ̂ tr

In other words, rt is a noisy version of the true signal xo, where the noise
is Gaussian with known variance.

3
Bayati,Montanari–TransIT’11
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AMP’s state evolution

Define the iteration-t mean-squared error (MSE)

E t = 1
N E

{
‖x̂t − xo‖

2
}
.

Under Assumption 1, AMP has the following scalar state evolution (SE):

for t = 0, 1, 2, . . .

τ tr = τw + N
M E t

E t+1 = 1
N E

{∥∥gt
(
xo +N (0, τ trI)

)
− xo

∥∥2}

The rigorous proof4 of the SE uses Bolthausen’s conditioning trick from
the statistical physics literature.

4
Bayati,Montanari–TransIT’11
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Choice of denoiser in AMP

1) LASSO/BPDN

Goal: compute “x̂ = argmaxx
1
2‖y −Ax‖2 + λ‖x‖1.”

Use gt(r) = soft
(
r;α

√
τ̂ tr
)
, where α has a one-to-one map to λ.

2) Bayesian MMSE

Goal: compute/approximate MMSE estimate x̂ = E{x|y}.

Suppose xo ∼ i.i.d. p(xj) with known p(xj).

Use [gt(r)]j = E
{
xj
∣∣rj = xo,j +N (0, τ̂ tr)

}
. . . scalar denoising!

MMSE is achieved when the SE has a unique fixed point!

The choice of denoiser determines the problem solved by AMP.
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Choice of denoiser in AMP (cont.)

3) Non-parametric (or model free) estimation

Goal: compute MMSE estimate without knowing i.i.d. prior p(xj).

Assume scalar GMM(θ) with unknown parameters θ.

Use MMSE scalar estimator for GMM(θt) at iteration t.

Use EM algorithm to update θt. Details given later. . .

4) Black-Box Denoisers5

Goal: leverage sophisticated off-the-shelf denoisers like BM3D for
natural images or BM4D for image sequences.

Use gt(r) = BM3D(r; τ tr).

Approximate divergence as 〈gt′(r)〉 ≈
1

N

N∑

j=1

gtj(r + ǫs)− sjg
t
j(r)

ǫ
where {sj} ∼ i.i.d. uniform ±1.

5
Metzler,Maleki,Baraniuk–TIT’16
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The limitations of AMP

The good:

For large i.i.d. sub-Gaussian A, AMP performs provably well.6

Finite-sample analysis shows mild degradation with not-so-large i.i.d.
Gaussian A.7

Empirical evidence shows good performance in some other cases (e.g.,
randomly sub-sampled Fourier A & i.i.d. sparse x)

The bad:

For general A, AMP can perform poorly

The ugly:

For general A, AMP may fail to converge!

ill-conditioned A

non-zero mean A

6
Bayati,Lelarge,Montanari–AAP’15

7
Rush,Venkataraman–ISIT’16
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This talk: Vector AMP

For SLR y = Ax+w, the vector AMP algorithm is8

for t = 0, 1, 2, . . .

x̂
t
1 = g(rt1; γ

t
1) denoising

αt
1 =

〈
g′(rt1; γ

t
1)
〉

divergence

rt2 = 1
1−αt

1

(
x̂
t
1 − αt

1r
t
1

)
Onsager correction

γt
2 = γt

1
1−αt

1

αt

1

precision of rt2

x̂
t
2 =

(
ATA/τ̂w + γt

2I
)
−1(

ATy/τ̂w + γt
2r

t
2

)
LMMSE

αt
2 =

γt

2

N
Tr

[(
ATA/τ̂w + γt

2I
)
−1]

divergence

rt+1
1 = 1

1−αt

2

(
x̂
t
2 − αt

2r
t
2

)
Onsager correction

γt+1
1 = γt

2
1−αt

2

αt

2

precision of rt+1
1

Note similarities with standard AMP.
8
Rangan,Schniter,Fletcher–arXiv:1610.03082.
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Vector AMP without matrix inverses

Can avoid matrix inverses using an “economy” SVD A = USV T:

for t = 0, 1, 2, . . .

x̂t = g(rt1; γ
t
1) denoising

αt
1 =

〈
g′(rt1; γ

t
1)
〉

divergence

rt2 =
1

1−αt
1

(
x̂t − αt

1r
t
1

)
Onsager

γt2 = γt1
1−αt

1

αt
1

precision

αt
2 =

1
N

∑
j γ

t
2/
(
s2j/τ̂w + γt2

)
divergence

rt+1
1 = rt2 +

1
1−αt

2

V
(
S2 + τ̂wγ

t
2I

)
−1

S
(
UTy − SV Trt2

)
2 matvec

γt+1
1 = γt2

1−αt
2

αt
2

precision

Note economy SVD computable with O(M3 +M2N) operations.
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Why call this “Vector AMP”?

1) Can be derived using an approximation of message passing on a factor
graph, now with vector-valued variable nodes.

2) Performance can be rigorously characterized by a state-evolution in the
high-dimensional limit of certain random A:

SVD A = USV T

U is deterministic
S is deterministic
V is uniformly distributed on the group of orthogonal matrices

“A is right-rotationally invariant”
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Message-passing derivation of VAMP

Write joint density as p(x,y) = p(x)p(y|x) = p(x)N (y;Ax, τwI)

p(x) x N (y;Ax, τwI)

Variable splitting: p(x1,x2,y) = p(x1)δ(x1 − x2)N (y;Ax2, τwI)

p(x1)
x1

δ(x1 − x2)

x2 N (y;Ax2, τwI)

Perform9 message-passing with messages approximated as N (µ, σ2I).

An instance of expectation-propagation10 (EP).

9
Rangan,Schniter,Fletcher–arXiv:1610.03082.

10
Minka–Dissertation’01
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Free-energy derivation of VAMP

Want to compute posterior density:

p(x|y) =
p(x)ℓ(x)

Z
with





p(x)= prior
ℓ(x)=N(y;Ax, τwI), likelihood

Z =
∫
p(x)ℓ(x)dx, partition fxn

but difficult due to high-dimensional integral.

What if we compute the density via

argmin
b(x)

D
(
b(x)

∥∥p(x|y)
)

where the KL divergence can be written as

D
(
b
∥∥p

)
= D

(
b
∥∥p

)
+D

(
b
∥∥ℓ
)
+H

(
b
)

︸ ︷︷ ︸
Gibbs free energy

+ const,

thus avoiding the partition function Z. Still difficult. . .

Phil Schniter (Ohio State) Vector Approximate Message Passing iTWIST — Aug’16 17 / 35



Free-energy derivation of VAMP (cont.)

What about splitting the belief b(x):

argmin
b1,b2

max
q

J(b1, b2, q) s.t. b1 = b2 = q

J(b1, b2, q) = D
(
b1
∥∥p

)
+D

(
b2
∥∥ℓ
)
+H

(
q
)

noting that D(·‖p) is convex and H(·) is concave?

Still difficult due to the pdf constraint. . .

So, relax the pdf constraint to moment-matching constraints:

b1 = b2 = q −→

{
E{x|b1} = E{x|b2} = E{x|q}
Tr[Cov{x|b1}] = Tr[Cov{x|b2}] = Tr[Cov{x|q}]

An instance of expectation-consistent approximation11 (EC).

11
Opper,Winther–NIPS’04, Fletcher,Rangan,Schniter–ISIT’16
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Free-energy derivation of VAMP (cont.)

The stationary points of the EC optimization are

b1(x) ∝ p(x)N (x; r1; I/γ1)

b2(x) ∝ ℓ(x)N (x; r2; I/γ2)

q(x) = N (x; x̂; I/η)

for parameters r1, γ1, r2, γ2, x̂, η that satisfy

x̂ = E{x|b1} = E{x|b2} = E{x|q}

1/η = 1
N Tr[Cov{x|b1}] =

1
N Tr[Cov{x|b2}] =

1
N Tr[Cov{x|q}].

Can then construct algorithms whose fixed points coincide with these
stationary points (e.g., EC, ADATAP,12 S-AMP13). But convergence is
not guaranteed.

12
Opper,Winther–NC’00

13
Cacmak,Winter,Fleury–ITW’14
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Putting things in perspective

The aforementioned belief-propagation and free-energy derivations are
both well known and heuristic (in general).

The resulting algorithms may not converge to their fixed points

– S-AMP diverges with mildly ill-conditioned matrices

Even if they do converge, the accuracy of the fixed points is unclear:

– EP generally suboptimal due to approximation of messages

– EC generally suboptimal due to approximation of constraint

The important question is whether/when a given heuristic can be
rigorously analyzed and proven to work well.

AMP rigorous analyzed under large i.i.d. Gaussian A and
Bayes optimal under certain combinations of {p(x), ℓ(x)}.
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VAMP state evolution

VAMP has a rigorous SE14

Assuming empirical convergence of {sj}→S and {(r01,j , xo,j)}→(R0
1, Xo) and

Lipschitz continuity of g and g′, the VAMP-SE under τ̂w = τw is as follows:

for t = 0, 1, 2, . . .

Et
1 = E

{[
g
(
Xo +N (0, τ t1); γ

t
1

)
−Xo

]2}
MSE

αt
1 = E

{
g′(Xo +N (0, τ t1); γ

t
1)
}

divergence

γt
2 = γt

1
1−αt

1

αt

1

, τ t2 = 1
(1−αt

1
)2

[
Et
1 −

(
αt
1

)2
τ t1
]

Et
2 = E

{[
S2/τw + γt

2

]
−1}

MSE

αt
2 = γt

2 E
{[
S2/τw + γt

2

]
−1}

divergence

γt+1
1 = γt

2
1−αt

2

αt

2

, τ t+1
1 = 1

(1−αt

2
)2

[
Et
2 −

(
αt
2

)2
τ t2
]

More complicated expressions for Et
2 and αt

2 apply when τ̂w 6= τw.

14
Rangan, Schniter, Fletcher–arXiv:1610.03082
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Connections to the replica prediction

The replica method from statistical physics is often used to characterize
the average behavior of large disordered systems.

Although not fully rigorous, replica predictions are usually correct.

For SLR under large right-rotationally invariant A and matched priors,

The MMSE E1(γ1) should satisfy the fixed-point equation15

γ1 = R
A

T
A/τw

(−E1(γ1)),

where RC(·) denotes the R-transform of matrix C and

E1(γ1) , E
{[
gmmse

(
Xo +N (0, 1/γ1); γ1

)
−Xo

]2}
.

It can be shown that VAMP’s matched SE obeys the above equation.

Thus, if the replica prediction is correct, then VAMP’s estimates will be
MMSE whenever the replica fixed-point equation has a unique solution.

15
Tulino,Caire,Verdu,Shamai–TIT’13
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Experiment with Matched Priors I
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N = 1024
M/N = 0.5

A = U Diag(s)V T

U ,V drawn uniform
sn/sn−1 = φ ∀n
φ determines κ(A)

Xo ∼Bernoulli-Gaussian
Pr{X0 6= 0} = 0.1

SNR= 40dB

Note robustness w.r.t. condition number of A.
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Experiment with Matched Priors II
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N = 1024
M/N = 0.5

A = U Diag(s)V T

U ,V drawn uniform
sn/sn−1 = φ ∀n
φ determines κ(A)

Xo ∼Bernoulli-Gaussian
Pr{X0 6= 0} = 0.1

SNR= 40dB

Note convergence speed relative to (damped) EM-AMP.
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Non-parametric (model-free) regression

So far we considered recovering xo from

y = Axo +w, xo ∼ p(x), w ∼ N (0, τwI),

when p(x) and τw are known.

Can we learn τw? Yes, through an EM procedure.16

Can we learn p(x)? Yes if p(x) =
∏

j p(xj).

Why is p(xj) learnable with VAMP?

Recall that rt1 = xo +N (0, τ t1I).
Thus rt1 contains i.i.d. samples of p(xj) ∗ N (xj ; 0, τ

t
1).

Should be able to deconvolve p(xj) from the empirical distribution of rt1.

A practical method: Model p(xj) = GMM(xj ;θx).
Learn parameters θx using EM.

16
Fletcher,Schniter–arXiv:1602.08207
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EM-VAMP

Recall

{
prior p(x;θx)
likelihood ℓ(x; τw)

→ Learn parameters θ , (θx, τw).

EM: iterate

Q
(
θ; θ̂

k)
=

∫
p
(
x|y; θ̂

k)
ln p(x,y;θ)dx “expectation”

θ̂
k+1

= argmaxθ Q(θ; θ̂
k
) “maximization”

which uses the posterior p
(
x|y; θ̂

k)
in the E step.

With VAMP’s posterior approx, EM is an alternating approach to

min
b1,b2,θ

max
q

D
(
b1
∥∥p(θx)

)
+D

(
b2
∥∥ℓ(τw)

)
+H

(
q
)

s.t.

{
E{x|b1} = E{x|b2} = E{x|q}
Tr[Cov{x|b1}] = Tr[Cov{x|b2}] = Tr[Cov{x|q}]

Can make faster by putting θ optimization in the inner loop.
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Experiment with Learned Parameters I

Learning both τw and θx:
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N = 1024
M/N = 0.5

A = U Diag(s)V T

U ,V drawn uniform

sn/sn−1 = φ ∀n
φ determines κ(A)

Xo ∼Bernoulli-Gaussian

Pr{X0 6= 0} = 0.1

SNR= 40dB

EM-VAMP achieves oracle performance at all condition numbers.
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Experiment with Learned Parameters II

Learning both τw and θx:

10
0

10
1

10
2

10
3

-50

-40

-30

-20

-10

0

a
v
e
ra

g
e
 N

M
S

E
 [
d
B

]

condition number=3.1623

10
0

10
1

10
2

10
3

iterations

-50

-40

-30

-20

-10

0

a
v
e
ra

g
e
 N

M
S

E
 [
d
B

]

condition number=31.6228

damped EM-AMP

damped EM-AMP

EM-VAMP

EM-VAMP

VAMP

VAMP

VAMP SE

VAMP SE

N = 1024
M/N = 0.5

A = U Diag(s)V T

U ,V drawn uniform

sn/sn−1 = φ ∀n
φ determines κ(A)

Xo ∼Bernoulli-Gaussian

Pr{X0 6= 0} = 0.1

SNR= 40dB

EM-VAMP nearly as fast as VAMP and much faster than EM-AMP.
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Noiseless Image Recovery with BM3D

PSNR time

1
0
%

L1-AMP 17.7 dB 0.5 s
L1-VAMP 17.6 dB 0.5 s

BM3D-AMP 25.2 dB 10.1 s

BM3D-VAMP 25.2 dB 10.4 s

2
0
%

L1-AMP 20.2 dB 1.0 s
L1-VAMP 20.2 dB 0.9 s

BM3D-AMP 30.0 dB 8.8 s
BM3D-VAMP 30.0 dB 8.5 s

3
0
%

L1-AMP 22.4 dB 1.6 s
L1-VAMP 22.4 dB 1.4 s

BM3D-AMP 32.5 dB 8.6 s
BM3D-VAMP 32.5 dB 8.2 s

4
0
%

L1-AMP 24.6 dB 2.3 s
L1-VAMP 24.8 dB 1.8 s

BM3D-AMP 35.1 dB 9.1 s
BM3D-VAMP 35.2 dB 8.5 s

5
0
%

L1-AMP 27.0 dB 3.1 s
L1-VAMP 27.2 dB 2.3 s

BM3D-AMP 37.4 dB 9.8 s
BM3D-VAMP 37.7 dB 8.8 s

Avg results for recovering
128x128 lena, barbara, boat,
fingerprint, house, and pep-
pers from y = Axo with i.i.d.
Gaussian A at various sam-
pling ratios.

All algorithms use 20 itera-
tions and learn the noise vari-
ance τw.

VAMP slightly outperforms
AMP in accuracy and runtime.
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Noiseless Image Recovery with BM3D (cont.)
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Now look a sampling
rates ≤ 5%.

Goal: recover 128x128
lena from y = Axo

with i.i.d. Gaussian A

and unknown τw.

BM3D-VAMP does
much better than
BM3D-AMP.
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Generalized linear models

Until now we have considered SLR, y = Axo +w.

VAMP can also support the generalized linear model (GLM)

y ∼ p(y|z) with hidden z = Axo

which supports, e.g.,

yi = zi + wi: additive, possibly non-Gaussian noise
yi = sgn(zi + wi): binary classification / one-bit sensing
yi = |zi + wi|: phase retrieval in noise
Poisson yi: photon-limited imaging

Trick: z = Ax ⇔ 0︸︷︷︸
z̃

= [A− I]︸ ︷︷ ︸
Ã

[
x

z

]

︸︷︷︸
x̃
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One-bit compressed sensing / Probit regression

Learning both τw and θx:
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EM-AMP

EM-VAMP

VAMP

VAMP-SE

N = 512
M/N = 4

A = U Diag(s)V T

U ,V drawn uniform

sn/sn−1 = φ ∀n
φ determines κ(A)

Xo ∼Bernoulli-Gaussian

Pr{X0 6= 0} = 1/32

SNR= 40dB

VAMP and EM-VAMP robust to ill-conditioned A.
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One-bit compressed sensing / Probit regression

Learning both τw and θx:
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EM-AMP
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EM-VAMP

EM-VAMP

VAMP

VAMP

VAMP-SE

VAMP-SE

N = 512
M/N = 4

A = U Diag(s)V T

U ,V drawn uniform

sn/sn−1 = φ ∀n
φ determines κ(A)

Xo ∼Bernoulli-Gaussian

Pr{X0 6= 0} = 1/32

SNR= 40dB

EM-VAMP mildly slower than VAMP but much faster than damped AMP.
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Conclusions

AMP exhibits some remarkable properties

low cost-per-iteration and relatively few iterations to convergence,

intermediate estimates of form rt = xo +N (0, τ trI),

rigorous state evolution,

easy tuning of prior & likelihood,

compatibility with plug-in denoisers like BM3D,

but those properties are guaranteed only under large i.i.d. Gaussian A.

Vector AMP has the same properties, but for a much larger class of A.

Ongoing work: analysis of EM procedure, bilinear extensions, connections
with deep learning, various applications. . .
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Thanks for listening!
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