Bilinear Generalized Approximate Message Passing (BiG-AMP) for Matrix Recovery Problems

Phil Schniter and Volkan Cevher

ÉCOLE POLYTECHNIQUE fédérale de Lausanne

(With support from NSF CCF-1018368, DARPA/ONR N66001-10-1-4090, ERC Future Proof, MIRG-268398, SNR 200021-132548, DARPA KECoM, and a Rice Faculty Fellowship)

$$
\text { ITA }-2 / 9 / 2012
$$

Three Important Matrix Recovery Problems:

- Matrix Completion (MC):

Recover low-rank matrix \boldsymbol{X} from AWGN-corrupted incomplete observations $\boldsymbol{Y}=\mathcal{P}_{\Omega}(\boldsymbol{X}+\boldsymbol{W})$.

- Robust Principle Components Analysis (RPCA):

Recover low-rank matrix \boldsymbol{X} and sparse matrix \boldsymbol{S} from
AWGN-corrupted observations $\boldsymbol{Y}=\boldsymbol{X}+\boldsymbol{S}+\boldsymbol{W}$.

- Dictionary Learning (DL):

Recover overcomplete dictionary \boldsymbol{A} and sparse matrix \boldsymbol{S} from
AWGN-corrupted observations $\boldsymbol{Y}=\boldsymbol{A} \boldsymbol{S}+\boldsymbol{W}$.

The following extensions may also be of interest:

- RPCA and DL with incomplete observations and/or structured sparsity.
- Any of the above with a non-additive noise model (e.g., quantized \boldsymbol{Y}).

Our contribution:

- We propose a novel unified approach to these matrix-recovery problems that leverages the recent framework of approximate message passing (AMP).
- While previous AMP algorithms have been proposed for the linear model:
$-\operatorname{Infer} \boldsymbol{s} \sim \prod_{n} p_{S}\left(s_{n}\right)$ from $\boldsymbol{y}=\boldsymbol{\Phi} \boldsymbol{s}+\boldsymbol{w}$ with AWGN \boldsymbol{w} and known $\boldsymbol{\Phi}$
[Donoho/Maleki/Montanari'10]
or the generalized linear model:
- Infer $\boldsymbol{s} \sim \prod_{n} p_{S}\left(s_{n}\right)$ from $\boldsymbol{y} \sim \prod_{m} p_{Y \mid X}\left(y_{m} \mid x_{m}\right)$ with hidden $\boldsymbol{x}=\boldsymbol{\Phi} s$ and known $\boldsymbol{\Phi}$
our new algorithm is formulated for the generalized bilinear model:
$-\operatorname{Infer} \boldsymbol{A} \sim \prod_{m, r} p_{A}\left(a_{m r}\right)$ and $\boldsymbol{B} \sim \prod_{r, n} p_{B}\left(b_{r n}\right)$ from $\boldsymbol{Y} \sim \prod_{m, n} p_{Y \mid X}\left(y_{m n} \mid x_{m n}\right)$ with hidden $\boldsymbol{X}=\boldsymbol{A} \boldsymbol{B} \quad$ [Schniter/Cevher'11]
- Although our work is still in-progress, the preliminary results look very encouraging!

Outline:

1. Brief review of popular approaches to matrix-completion and robust PCA:

- Convex
- Greedy
- Bayesian

2. Bilinear Generalized AMP (BiG-AMP).

- What is it?
- What are AMP's approximations?
- How to apply to MC, RPCA, DL?

3. Preliminary results:

- Phase transition curves
- NMSE and runtime
- Practical example: video surveillance

Convex-Optimization for Matrix-Completion \& Robust PCA:

- Consider the combined MC-and-RPCA problem:

Recover low-rank \boldsymbol{X} and sparse \boldsymbol{S} from AWGN-corrupted incomplete observations $\boldsymbol{Y}=\mathcal{P}_{\Omega}(\boldsymbol{X}+\boldsymbol{S}+\boldsymbol{W})$.

- Optimization approach:

$$
\begin{gathered}
\min _{\boldsymbol{X}, \boldsymbol{S}}\left\{\operatorname{rank}(\boldsymbol{X})+\gamma\|\boldsymbol{S}\|_{0}\right\} \text { s.t. }\left\|\mathcal{P}_{\Omega}(\boldsymbol{X}+\boldsymbol{S})-\boldsymbol{Y}\right\|_{F} \leq \eta \quad \ldots \text { intractable } \\
\min _{\boldsymbol{X}, \boldsymbol{S}}\left\{\|\boldsymbol{X}\|_{*}+\gamma\|\boldsymbol{S}\|_{1}\right\} \text { s.t. }\left\|\mathcal{P}_{\Omega}(\boldsymbol{X}+\boldsymbol{S})-\boldsymbol{Y}\right\|_{F} \leq \eta \ldots \text { convex! }
\end{gathered}
$$

- Convex relaxation yields perfect noiseless \& stable noisy recovery when:
$-\operatorname{rank}(\boldsymbol{X})$ is sufficiently small,
- singular vectors of \boldsymbol{X} are not too cross-correlated nor too spiky,
- support of \boldsymbol{S} is random and sufficiently sparse,
- observation set Ω is random and sufficiently large.

Details given in, e.g., [Candés/Recht'08], [Candés/Plan'09], [Candés/Li/Ma/Wright'09],
[Zhou/Wright/Li/Candés/Ma'10], and [Chen/Jalali/Sanghavi/Caramanis'11].

Fast Algorithms for Convex Matrix-Completion \& Robust PCA:

- A comparison of convex RPCA algorithms is given at Yi Ma's webpage:
http://perception.csl.uiuc.edu/matrix-rank/sample_code.html

Algorithm	Error	Time (sec)
Singular Value Thresholding [Cai/Candes/Shen'08] Dual Method	$3.4 \mathrm{e}-4$	877
[Lin/Ganesh/Wright/Wu/Chen/Ma'09] Accelerated Proximal Gradient (partial SVD) [Lin/Ganesh/Wright/Wu/Chen/Ma'09]	$1.6 \mathrm{e}-5$	177
Alternating Direction Methods [Yuan/Yang'09]	$2.2 \mathrm{e}-5$	5
Exact Augmented Lagrange Method [Lin/Chen/Wu/Ma'09]	$7.6 \mathrm{e}-8$	4
Inexact Augmented Lagrange Method		
[Lin/Chen/Wu/Ma'09]		

for the recovery of 400×400 rank- 20 matrix \boldsymbol{X} corrupted by 5%-sparse \boldsymbol{S} with amplitudes uniform in $[-50,50]$.

- Evidently a lot of progress has been made! Can one do better?

Greedy Approaches to Matrix-Completion \& Robust PCA:

- First consider matrix completion, where we want to recover low-rank \boldsymbol{X} from AWGN-corrupted incomplete observations $\boldsymbol{Y}=\mathcal{P}_{\Omega}(\boldsymbol{X}+\boldsymbol{W})$.
- If we suppose that ...
$\boldsymbol{X} \in \mathbb{R}^{M \times N}$ is square or tall (i.e., $M \geq N$) with $\operatorname{rank}(\boldsymbol{X})=R$, then the difficult part of the MC problem is finding the column space of \boldsymbol{X}, leading to squared-error minimization on the Grassmanian manifold $\mathcal{G}_{M, R}$:
- Example algorithms: $\min _{\boldsymbol{A} \in \mathcal{G}_{M, R}} \min _{\boldsymbol{B}}\left\|\mathcal{P}_{\Omega}(\boldsymbol{A B})-\boldsymbol{Y}\right\|_{F}^{2}$
- Optspace [Keshavan/Montanari/Oh'09]: Grad-descent minimizing ($\boldsymbol{A}, \boldsymbol{B}$).
- SET [Dai/Milenkovic'09]: Solves for \boldsymbol{B}, then takes gradient w.r.t \boldsymbol{A}.
- GROUSE [Balzano/Nowak/Recht'10]: Grad-descent one column at a time.
- This greedy approach can also be extended to RPCA:
- GRASTA [He/Balzano/Lui'11].

Bayesian Approaches to Matrix-Completion \& Robust PCA:

- First consider matrix completion, where we want to recover low-rank \boldsymbol{X} from AWGN-corrupted incomplete observations $\boldsymbol{Y}=\mathcal{P}_{\Omega}(\boldsymbol{X}+\boldsymbol{W})$.
- The basic Bayesian approach decomposes $\boldsymbol{X}=\boldsymbol{A B}$ and assumes priors $\boldsymbol{A} \sim \mathcal{N}\left(\mathbf{0}, \sigma_{A}^{2} \boldsymbol{I}\right)$ and $\boldsymbol{B} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{I})$. The log posterior then becomes

$$
\ln p(\boldsymbol{A}, \boldsymbol{B} \mid \boldsymbol{Y})=\frac{1}{2 \sigma_{W}^{2}}\left\|\mathcal{P}_{\Omega}(\boldsymbol{A} \boldsymbol{B})-\boldsymbol{Y}\right\|_{F}^{2}+\frac{1}{2 \sigma_{A}^{2}}\|\boldsymbol{A}\|_{F}^{2}+\frac{1}{2}\|\boldsymbol{B}\|_{F}^{2}+C
$$

To infer $(\boldsymbol{A}, \boldsymbol{B})$, various schemes have been proposed, e.g.,

- EM ("Probabilistic PCA")
[Tipping/Bishop'99]
- SDP ("Maximum-Margin Matrix Factorization") [Srebro/Rennie/Jaakkola'04]
- VB ("Variational Bayes") [Lim/Teh'07]
- MCMC ("Probabilistic Matrix Factorization") [Salakhutdinov/Mnih'08]

Each has their own way of estimating the hyperparameters $\left\{\sigma_{W}^{2}, \sigma_{A}^{2}\right\}$.

- This approach can be extended to RPCA by changing the noise model to a heavy-tailed one (e.g., [Luttinen/llin/Karhunen'09], [Ding/He/Carin'11]).

Bilinear Generalized AMP (BiG-AMP):

- BiG-AMP is a Bayesian approach that uses approximate message passing (AMP) strategies to infer $(\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{S})$.

- In AMP, beliefs are propagated on a loopy factor graph using approximations that exploit the blessings of dimensionality:

1. Gaussian message approximation (motivated by CLT),
2. Taylor-series approximation of message differences.

- A rigorous large-system analysis of AMP for CS (with i.i.d Gaussian $\boldsymbol{\Phi}$) has established a number of optimalities [Bayati/Montanari'10],[Rangan'10].

BiG-AMP Approximations (sum-product version):

1. Message from $i^{\text {th }}$ node of \boldsymbol{X} to $j^{\text {th }}$ node of \boldsymbol{B} :

$$
\begin{aligned}
p_{i \rightarrow j}^{B}\left(b_{j}\right) & \propto \int_{\left\{a_{r}\right\}_{r=1}^{R},\left\{b_{r}\right\}_{r \neq j}}^{x_{Y \mid X} \mid b_{j}} \approx=\mathcal{N} \text { via CLT! }(y_{i} \mid \overbrace{\sum_{r} a_{r} b_{r}})\left(\prod_{r} p_{i \leftarrow r}^{B}\left(b_{r}\right)\right)\left(\prod_{r \neq j} p_{i \leftarrow r}^{A}\left(a_{r}\right)\right) \\
& \approx \int_{x_{i}} p_{Y \mid X}\left(y_{i} \mid x_{i}\right) \mathcal{N}\left(x_{i} ; \hat{x}_{i}\left(b_{j}\right), \nu_{i}^{x}\left(b_{j}\right)\right) \approx \mathcal{N} \text { (exact for AWGN!) }
\end{aligned}
$$

The means and variances of $p_{i \leftarrow r}^{B}, p_{i \leftarrow r}^{A}$ suffice to compute $\hat{x}_{i}\left(b_{j}\right), \nu_{i}^{x}\left(b_{j}\right)$, thus Gaussian message passing! (Same thing happens with $\boldsymbol{X} \rightarrow \boldsymbol{A}$ messages.)
2. Although Gaussian, we still have $4 M N R$ messages to compute (too many!). Exploiting similarity among the messages $\left\{p_{i \leftarrow j}^{B}\right\}_{i=1}^{M}$, AMP employs a Taylor-series approximation whose error vanishes as $M \rightarrow \infty$. (Same for $\left\{p_{i \leftarrow j}^{A}\right\}_{i=1}^{N}$.) In the end, AMP only needs to compute $\mathcal{O}(M N)$ messages!

BiG-AMP for MC, RPCA, and DL:

BiG-AMP can be applied to a wide variety of matrix recovery problems:

- Matrix Completion (MC):

Recover low-rank $\boldsymbol{A B}$ from $\boldsymbol{Y}=\mathcal{P}_{\Omega}(\boldsymbol{A B}+\boldsymbol{W})$.
\ldots set $\boldsymbol{A} \sim \mathcal{N}\left(\mathbf{0}, \sigma_{A}^{2} \boldsymbol{I}\right)$ and $\boldsymbol{B} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{I})$.

- Robust PCA (RPCA):

Recover low-rank $\boldsymbol{A B}$ and sparse \boldsymbol{S} from $\boldsymbol{Y}=\boldsymbol{A B}+\boldsymbol{S}+\boldsymbol{W}$.
\ldots set $\boldsymbol{A} \sim \mathcal{N}\left(\mathbf{0}, \sigma_{A}^{2} \boldsymbol{I}\right), \boldsymbol{B} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{I})$, and $\boldsymbol{S} \sim \operatorname{Bern}(\lambda)-\mathcal{N}\left(\mathbf{0}, \sigma_{S}^{2} \boldsymbol{I}\right)$.

- Dictionary Learning (DL):

Recover overcomplete \boldsymbol{A} and sparse \boldsymbol{S} from $\boldsymbol{Y}=\boldsymbol{A} \boldsymbol{S}+\boldsymbol{W}$.
\ldots set $\boldsymbol{A} \sim \mathcal{N}\left(\mathbf{0}, \sigma_{A}^{2} \boldsymbol{I}\right)$ and $\boldsymbol{S} \sim \operatorname{Bern}(\lambda)-\mathcal{N}\left(\mathbf{0}, \sigma_{S}^{2} \boldsymbol{I}\right)$.
Moreover:

- Non-Gaussian (e.g., quantized) observations can be incorporated via $p_{Y \mid X}$.
- Structured sparsity can be incorporated via "turbo-AMP."
[Schniter'10]
- Hyperparameters can be learned via EM. [Ziniel/Schniter'10],[Vila/Schniter'11]

BiG-AMP in Context:

Advantages:

- A unified approach to a wide range of problems, e.g., MC, RPCA, DL, ...
- Competitive with best algorithms for each application.
- Very fast and scaleable: no SVDs, easily parallelizable.
. . . will see from runtime curves.
- Accurate: in part due to flexibility of choice of priors.
... will see from phase transition and NMSE curves.

Relation to other message-passing algorithms for matrix completion:

- [Kim/Yedla/Pfister'10]
- All quantities are discrete.
- [Keshavan/Montanari'11] (1 page poster only!)
- Variable nodes are vector-valued; updates involve matrix inversion?

BiG-AMP is a Work-In-Progress:

- Implementation not yet optimized.
- IALM uses ProPack
- GRASTA uses Mex ($5 \times$ speedup!)
- Adaptation of stepsize not yet implemented.
- Current stepsize is conservative/slow.
- EM hyperparameter learning not implemented.
- For now, statistics assumed known.
- Many extensions to pursue:
- quantized outputs (e.g., Netflix ratings)
- non-negativity constraints (e.g., pmf)
- structure (e.g., tree-structured dictionaries)
- linear (not missing) observations
- etc, etc, etc...
- Theoretical analysis/guarantees?

Matrix Completion - Phase Transitions:

For $M \times N=512 \times 512$ matrices in the absence of noise, median over 10 trials:

where

- $\operatorname{DoF} \triangleq \#$ degrees-of-freedom in SVD (i.e., $M R+R N-R^{2}$).
- $|\Omega| \triangleq \#$ of observed entries $(|\Omega| \leq M N)$.

Observations:

- BiG-AMP has a better phase transition than Inexact ALM and GROUSE.
- We are working on understanding its strange behavior near $|\Omega| / M N \approx 1$.

Matrix Completion - NMSE and Runtime (to -50 dB):

(vertical slices of phase plane)

BiG-AMP is more accurate than Inexact ALM and GROUSE, and its complexity scales better with rank!

Robust PCA - Phase Transitions:

For $M \times N=500 \times 500$ matrices in the absence of noise, median over 10 trials:

BiG-AMP

where

- $R=$ rank.
- $\|\boldsymbol{S}\|_{0}=\#$ of corrupted entries.
- $|\Omega|=M N$; all entries observed (although BiG-AMP \& GRASTA support $|\Omega|<M N$)

Observations:

- BiG-AMP has a better phase transition than Inexact ALM and GRASTA.

Robust PCA - NMSE and Runtime (to -20 dB):

(vertical slices of phase plane)

BiG-AMP is more accurate than Inexact ALM and GRASTA, and its complexity scales better with rank.

Robust PCA - Video Surveillance (over 200 frames):

frame 35:

difference

frame 125 :

Conclusions:

BiG-AMP is ...

- Approximate message passing (AMP) for the generalized bilinear model.
- A unified approach to many matrix-recovery problems (MC, RPCA, DL...)
- Competitive with the best algorithms for each application.
- Better phase transitions than IALM and GROUSE/GRASTA.
- Faster on "difficult" problems (e.g., high-rank MC).
- Still a work in progress ...stay tuned!

Special Acknowledgment:

- Many thanks to my PhD student Jason Parker!!

