Bilinear Generalized Approximate Message Passing (BiG-AMP) for Matrix Recovery Problems

Phil Schniter and Volkan Cevher

(With support from NSF CCF-1018368, DARPA/ONR N66001-10-1-4090, ERC Future Proof, MIRG-268398, SNR 200021-132548, DARPA KECoM, and a Rice Faculty Fellowship)

Three Important Matrix Recovery Problems:

• Matrix Completion (MC):

Recover <u>low-rank</u> matrix X from AWGN-corrupted <u>incomplete</u> observations $Y = \mathcal{P}_{\Omega}(X + W)$.

• Robust Principle Components Analysis (RPCA):

Recover <u>low-rank</u> matrix X and <u>sparse</u> matrix S from AWGN-corrupted observations Y = X + S + W.

• Dictionary Learning (DL):

Recover overcomplete dictionary A and sparse matrix S from AWGN-corrupted observations Y = AS + W.

The following **extensions** may also be of interest:

- RPCA and DL with incomplete observations and/or <u>structured</u> sparsity.
- Any of the above with a <u>non-additive noise</u> model (e.g., quantized Y).

Our contribution:

- We propose a novel unified approach to these matrix-recovery problems that leverages the recent framework of **approximate message passing** (AMP).
- While previous AMP algorithms have been proposed for the linear model:
 - $\begin{array}{l} \mbox{ Infer } \boldsymbol{s} \sim \prod_n p_S(s_n) \mbox{ from } \boldsymbol{y} = \boldsymbol{\Phi} \boldsymbol{s} + \boldsymbol{w} \\ \mbox{ with AWGN } \boldsymbol{w} \mbox{ and known } \boldsymbol{\Phi} & \mbox{ [Donoho/Maleki/Montanari'10]} \end{array}$

or the generalized linear model:

 $\begin{array}{l} - \mbox{ Infer } \boldsymbol{s} \sim \prod_n p_S(s_n) \mbox{ from } \boldsymbol{y} \sim \prod_m p_{Y|X}(y_m|x_m) \\ \mbox{ with hidden } \boldsymbol{x} = \boldsymbol{\Phi} \boldsymbol{s} \mbox{ and known } \boldsymbol{\Phi} \end{array} \tag{Rangan'10}$

our new algorithm is formulated for the **generalized bilinear model**:

- $\text{ Infer } \boldsymbol{A} \sim \prod_{m,r} p_A(a_{mr}) \text{ and } \boldsymbol{B} \sim \prod_{r,n} p_B(b_{rn}) \text{ from} \\ \boldsymbol{Y} \sim \prod_{m,n} p_{Y|X}(y_{mn}|x_{mn}) \text{ with hidden } \boldsymbol{X} = \boldsymbol{A}\boldsymbol{B} \qquad \text{[Schniter/Cevher'11]}$
- Although our work is still **in-progress**, the preliminary results look very encouraging!

Outline:

- 1. **Brief review** of popular approaches to matrix-completion and robust PCA:
 - Convex
 - Greedy
 - Bayesian
- 2. Bilinear Generalized AMP (BiG-AMP).
 - What is it?
 - What are AMP's approximations?
 - How to apply to MC, RPCA, DL?
- 3. Preliminary results:
 - Phase transition curves
 - NMSE and runtime
 - Practical example: video surveillance

Convex-Optimization for Matrix-Completion & Robust PCA:

• Consider the combined MC-and-RPCA problem:

Recover low-rank X and sparse S from AWGN-corrupted incomplete observations $Y = \mathcal{P}_{\Omega}(X + S + W)$.

• Optimization approach:

$$\begin{split} \min_{\boldsymbol{X},\boldsymbol{S}} \left\{ \operatorname{rank}(\boldsymbol{X}) + \gamma \|\boldsymbol{S}\|_{0} \right\} & \text{s.t.} \quad \|\mathcal{P}_{\Omega}(\boldsymbol{X} + \boldsymbol{S}) - \boldsymbol{Y}\|_{F} \leq \eta \quad \dots \text{ intractable} \\ & \min_{\boldsymbol{X},\boldsymbol{S}} \left\{ \|\boldsymbol{X}\|_{*} + \gamma \|\boldsymbol{S}\|_{1} \right\} & \text{s.t.} \quad \|\mathcal{P}_{\Omega}(\boldsymbol{X} + \boldsymbol{S}) - \boldsymbol{Y}\|_{F} \leq \eta \quad \dots \text{ convex!} \end{split}$$

- Convex relaxation yields **perfect noiseless** & **stable noisy** recovery when:
 - $-\operatorname{rank}(\boldsymbol{X})$ is sufficiently small,
 - singular vectors of $oldsymbol{X}$ are not too cross-correlated nor too spiky,
 - support of old S is random and sufficiently sparse,
 - observation set Ω is random and sufficiently large.

Details given in, e.g., [Candés/Recht'08], [Candés/Plan'09], [Candés/Li/Ma/Wright'09], [Zhou/Wright/Li/Candés/Ma'10], and [Chen/Jalali/Sanghavi/Caramanis'11].

Fast Algorithms for Convex Matrix-Completion & Robust PCA:

• A comparison of convex RPCA algorithms is given at Yi Ma's webpage:

http://	/perception	.csl.uiuc.	edu/matrix-	rank/samp	le_code.html
	Por orpore		• • • • • • • • • • • • • • • • • • • •	- ap	

Algorithm	Error	Time (sec)
Singular Value Thresholding [Cai/Candes/Shen'08]	3.4e-4	877
Dual Method [Lin/Ganesh/Wright/Wu/Chen/Ma'09]	1.6e-5	177
Accelerated Proximal Gradient (partial SVD) [Lin/Ganesh/Wright/Wu/Chen/Ma'09]	1.8e-5	8
Alternating Direction Methods [Yuan/Yang'09]	2.2e-5	5
Exact Augmented Lagrange Method [Lin/Chen/Wu/Ma'09]	7.6e-8	4
Inexact Augmented Lagrange Method [Lin/Chen/Wu/Ma'09]	4.3e-8	2

for the recovery of 400×400 rank-20 matrix X corrupted by 5%-sparse S with amplitudes uniform in [-50, 50].

• Evidently a lot of progress has been made! Can one do better?

Greedy Approaches to Matrix-Completion & Robust PCA:

- First consider matrix completion, where we want to recover low-rank X from AWGN-corrupted incomplete observations $Y = \mathcal{P}_{\Omega}(X + W)$.
- If we suppose that ...

• Example algorithms:

 $oldsymbol{X} \in \mathbb{R}^{M imes N}$ is square or tall (i.e., $M \geq N$) with $\mathrm{rank}(oldsymbol{X}) = R$,

then the difficult part of the MC problem is finding the column space of X, leading to squared-error minimization on the **Grassmanian manifold** $\mathcal{G}_{M,R}$:

$$\min_{oldsymbol{A}\in\mathcal{G}_{M,R}}\min_{oldsymbol{B}}\|\mathcal{P}_{\Omega}(oldsymbol{A}oldsymbol{B})-oldsymbol{Y}\|_{F}^{2}$$

- Optspace [Keshavan/Montanari/Oh'09]: Grad-descent minimizing (A, B).
- SET [Dai/Milenkovic'09]: Solves for B, then takes gradient w.r.t A.
- **GROUSE** [Balzano/Nowak/Recht'10]: Grad-descent one column at a time.
- This greedy approach can also be extended to **RPCA**:
 - **GRASTA** [He/Balzano/Lui'11].

Bayesian Approaches to Matrix-Completion & Robust PCA:

- First consider matrix completion, where we want to recover low-rank X from AWGN-corrupted incomplete observations $Y = \mathcal{P}_{\Omega}(X + W)$.
- The basic Bayesian approach decomposes X = AB and assumes priors $A \sim \mathcal{N}(\mathbf{0}, \sigma_A^2 I)$ and $B \sim \mathcal{N}(\mathbf{0}, I)$. The log posterior then becomes

$$\ln p(\boldsymbol{A}, \boldsymbol{B} | \boldsymbol{Y}) = \frac{1}{2\sigma_W^2} \| \mathcal{P}_{\Omega}(\boldsymbol{A}\boldsymbol{B}) - \boldsymbol{Y} \|_F^2 + \frac{1}{2\sigma_A^2} \| \boldsymbol{A} \|_F^2 + \frac{1}{2} \| \boldsymbol{B} \|_F^2 + C.$$

To infer $(\boldsymbol{A}, \boldsymbol{B})$, various schemes have been proposed, e.g.,

- **EM** ("Probabilistic PCA") [Tipping/Bishop'99]
- **SDP** ("Maximum-Margin Matrix Factorization") [Srebro/Rennie/Jaakkola'04]
- VB ("Variational Bayes") [Lim/Teh'07]
- MCMC ("Probabilistic Matrix Factorization") [Salakhutdinov/Mnih'08] Each has their own way of estimating the hyperparameters $\{\sigma_W^2, \sigma_A^2\}$.
- This approach can be extended to **RPCA** by changing the noise model to a heavy-tailed one (e.g., [Luttinen/Ilin/Karhunen'09], [Ding/He/Carin'11]).

Bilinear Generalized AMP (BiG-AMP):

 BiG-AMP is a Bayesian approach that uses approximate message passing (AMP) strategies to infer (A, B, S).

- In AMP, beliefs are propagated on a loopy factor graph using approximations that exploit the **blessings of dimensionality**:
 - 1. Gaussian message approximation (motivated by CLT),
 - 2. Taylor-series approximation of message differences.
- A rigorous large-system analysis of AMP for CS (with i.i.d Gaussian Φ) has established a number of optimalities [Bayati/Montanari'10],[Rangan'10].

The means and variances of $p_{i\leftarrow r}^B, p_{i\leftarrow r}^A$ suffice to compute $\hat{x}_i(b_j), \nu_i^x(b_j)$, thus **Gaussian message passing!** (Same thing happens with $X \rightarrow A$ messages.)

2. Although Gaussian, we still have 4MNR messages to compute (too many!). Exploiting similarity among the messages $\{p_{i \leftarrow j}^B\}_{i=1}^M$, AMP employs a Taylor-series approximation whose error vanishes as $M \rightarrow \infty$. (Same for $\{p_{i \leftarrow j}^A\}_{i=1}^N$.) In the end, AMP only needs to compute $\mathcal{O}(MN)$ messages!

BiG-AMP for MC, RPCA, and DL:

BiG-AMP can be applied to a wide variety of matrix recovery problems:

• Matrix Completion (MC):

Recover low-rank AB from $Y = \mathcal{P}_{\Omega}(AB + W)$.

... set $\boldsymbol{A} \sim \mathcal{N}(\boldsymbol{0}, \sigma_A^2 \boldsymbol{I})$ and $\boldsymbol{B} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}).$

• Robust PCA (RPCA):

Recover low-rank AB and sparse S from Y = AB + S + W.

... set $A \sim \mathcal{N}(\mathbf{0}, \sigma_A^2 I)$, $B \sim \mathcal{N}(\mathbf{0}, I)$, and $S \sim \text{Bern}(\lambda)$ - $\mathcal{N}(\mathbf{0}, \sigma_S^2 I)$.

• **Dictionary Learning** (DL):

Recover overcomplete A and sparse S from Y = AS + W. ...set $A \sim \mathcal{N}(\mathbf{0}, \sigma_A^2 I)$ and $S \sim \text{Bern}(\lambda) - \mathcal{N}(\mathbf{0}, \sigma_S^2 I)$.

Moreover:

- Non-Gaussian (e.g., quantized) observations can be incorporated via $p_{Y|X}$.
- Structured sparsity can be incorporated via "turbo-AMP." [Schniter'10]
- Hyperparameters can be learned via EM. [Ziniel/Schniter'10],[Vila/Schniter'11]

BiG-AMP in Context:

Advantages:

- A unified approach to a wide range of problems, e.g., MC, RPCA, DL, ...
- Competitive with best algorithms for each application.
 - Very fast and scaleable: no SVDs, easily parallelizable.
 - ... will see from runtime curves.
 - Accurate: in part due to flexibility of choice of priors.
 - ... will see from phase transition and NMSE curves.

Relation to other message-passing algorithms for matrix completion:

- [Kim/Yedla/Pfister'10]
 - All quantities are **discrete**.
- [Keshavan/Montanari'11] (1 page poster only!)
 - Variable nodes are vector-valued; updates involve matrix inversion?

BiG-AMP is a Work-In-Progress:

- Implementation not yet optimized.
 - IALM uses ProPack
 - GRASTA uses Mex (5x speedup!)
- Adaptation of **stepsize** not yet implemented.
 - Current stepsize is conservative/slow.
- EM hyperparameter learning not implemented.
 - For now, statistics assumed known.
- Many **extensions** to pursue:
 - quantized outputs (e.g., Netflix ratings)
 - non-negativity constraints (e.g., pmf)
 - structure (e.g., tree-structured dictionaries)
 - linear (not missing) observations
 - etc, etc, etc...
- Theoretical analysis/guarantees?

Matrix Completion — Phase Transitions:

For $M \times N = 512 \times 512$ matrices in the absence of noise, median over 10 trials:

where

- $DoF \triangleq #$ degrees-of-freedom in SVD (i.e., $MR + RN R^2$).
- $|\Omega| \triangleq \#$ of observed entries ($|\Omega| \le MN$).

Observations:

- **BiG-AMP has a better phase transition** than Inexact ALM and GROUSE.
- We are working on understanding its strange behavior near $|\Omega|/MN \approx 1$.

Robust PCA — Phase Transitions:

For $M \times N = 500 \times 500$ matrices in the absence of noise, median over 10 trials:

where

- R = rank.
- $\|\boldsymbol{S}\|_0 = \#$ of corrupted entries.
- $|\Omega| = MN$; all entries observed (although BiG-AMP & GRASTA support $|\Omega| < MN$)

Observations:

• **BiG-AMP has a better phase transition** than Inexact ALM and GRASTA.

Conclusions:

BiG-AMP is

- Approximate message passing (AMP) for the generalized bilinear model.
- A **unified** approach to many **matrix-recovery** problems (MC, RPCA, DL...)
- **Competitive** with the best algorithms for each application.
 - Better phase transitions than IALM and GROUSE/GRASTA.
 - Faster on "difficult" problems (e.g., high-rank MC).
- Still a work in progress ... stay tuned!

Special Acknowledgment:

• Many thanks to my PhD student Jason Parker!!