Philip Schniter (Ohio State/Duke)

Alyson Fletcher (UCLA)
Linear Regression with Unknown Prior/Likelihood
Consider the following linear regression problem:
• Observations:

$$y = Ax + w$$
 with $\begin{cases} x : unknown signal \\ A : known linear operator in $\mathbb{R}^{M \times N}$
 $w : white Gaussian noise.$
 $p(x; \theta_1)$ with deterministic unknown parameters θ .
• Likelihood:
 $\ell(x; \theta_2) = \mathcal{N}(y; Ax, \theta_2 I)$ with deterministic unknown variance θ
Goal: jointly infer x and estimate $\theta \triangleq [\theta_1, \theta_2]$.
Approach: combine variational inference with ML estimation.
Variational Inference
• For now, let's suppose that θ is known.
• We would like to compute the posterior density
 $p(x|y) = \frac{p(x; \theta_1)\ell(x; \theta_2)}{Z(\theta)}$ for $Z(\theta) \triangleq \int p(x; \theta_1)\ell(x; \theta_2) dx$,
but the high-dimensional integral in $Z(\theta)$ is difficult to compute.
• We can avoid computing $Z(\theta)$ through variational optimization:
 $p(x|y) = \arg\min_{\theta_1} D(b(x) || p(x; \theta_1)) + D(b(x)) || \ell(x; \theta_2)) + H(b(x))$
 $gibs free energy$
 $= \arg\min_{\theta_1} D(b(x) || p(x; \theta_1)) + D(b_2(x) || \ell(x; \theta_2)) + H(b(x))$
 $gibs free energy$
 $= \arg\min_{\theta_1, \theta_2} - \frac{y}{U(Cov\{x|\theta_1\})} = D(b_1) + D(b_2(x) || \ell(x; \theta_2)) + H((x; \theta_2)) + H(y; \theta_2) + H(y; \theta$$

- I here exist several algorithms (e.g., EC, ADATAP 2, S-AMP 3) whose points coincide with the EC stationary points, but often they don't conve
- An exception is Vector AMP 4, which can be derived using a form of approximation message passing on the vector-valued factor graph

In particular, VAMP is provably convergent under either

- 1) strictly log-concave prior $p(\boldsymbol{x}; \boldsymbol{\theta}_1)$ and arbitrary \boldsymbol{A} (after damping),
- 2) iid prior $p(\boldsymbol{x}; \boldsymbol{\theta}_1)$ and large, right-rotationally invariant \boldsymbol{A} .
- $A = U \operatorname{Diag}(s)V^{\mathsf{T}}$ is said to be "right-rotationally invariant" when Vuniformly distributed on the set of unitary matrices.
- The other SVD quantities, U and S, are deterministic and arbitrary. This model includes mean-perturbed and ill-conditioned A, known to break regular AMP.
- With large, right-rotationally invariant A, VAMP has a rigorous state evolution 4 whose fixed points match the replica prediction of MMSE 5.

Learning and Free Energies for Vector App r (Ohio State/Duke) er (UCLA)	
ear regression problem:	• We now return to the problem of estimating $oldsymbol{ heta}$.
with $\left\{egin{array}{l} oldsymbol{x} : unknown signal \ oldsymbol{A} : known linear operator in \mathbb{R}^{M imes N} \ oldsymbol{w} : white Gaussian noise. \end{array} ight.$	• The maximum-likelihood (ML) estimate is $\widehat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta}} p(\boldsymbol{y} \boldsymbol{\theta}) = \arg \min_{\boldsymbol{\theta}} \left\{ -\ln p(\boldsymbol{y} \boldsymbol{\theta}) \right\}$
with deterministic unknown parameters $oldsymbol{ heta}_1$.	which is difficult to compute directly.
$oldsymbol{A}oldsymbol{x}, heta_2oldsymbol{I})$ with deterministic unknown variance $ heta_2$.	Let's instead consider majorization-minimization: Iteratively rupper bound on $-\ln p(y \theta)$:
estimate $\theta \triangleq [\theta_1, \theta_2]$. Actional inference with ML estimation.	$\widehat{\boldsymbol{\theta}}^{k+1} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \left\{ -\ln p(\boldsymbol{y} \boldsymbol{\theta}) + \underbrace{D(b^{k}(\boldsymbol{x}) \ p(\boldsymbol{x} \boldsymbol{y};\boldsymbol{\theta}))}_{\geq 0} \right\}$ with $b^{k}(\boldsymbol{x}) = p(\boldsymbol{x} \boldsymbol{y};\widehat{\boldsymbol{\theta}}_{k}) \xrightarrow{\geq 0}$
ice	The upper bound " $Q(\boldsymbol{\theta}, b^k)$ " can be rewritten in the form
e that θ is known. Ipute the posterior density	$Q(\boldsymbol{\theta}, b^k) \triangleq -\ln p(\boldsymbol{y} \boldsymbol{\theta}) + D(b^k(\boldsymbol{x}) p(\boldsymbol{x} \boldsymbol{y}; \boldsymbol{\theta}))$ $= -E \{ \ln p(\boldsymbol{y}, \boldsymbol{x}; \boldsymbol{\theta}) b^k \} + \text{const.}$
$\frac{\boldsymbol{\theta}_1)\ell(\boldsymbol{x};\boldsymbol{\theta}_2)}{Z(\boldsymbol{\theta})} \text{for} Z(\boldsymbol{\theta}) \triangleq \int p(\boldsymbol{x};\boldsymbol{\theta}_1)\ell(\boldsymbol{x};\boldsymbol{\theta}_2) \mathrm{d}\boldsymbol{x},$	which is the usual way of writing the EM algorithm, but it ca written in terms of the Gibbs free energy
onal integral in $Z(\theta)$ is difficult to compute.	$Q(\boldsymbol{\theta}, b^k) = D(b^k(\boldsymbol{x}) \ p(\boldsymbol{x}; \boldsymbol{\theta}_1)) + D(b^k(\boldsymbol{x}) \ \ell(\boldsymbol{x}; \boldsymbol{\theta}_2)) + \\ = I(b^k \ b^k \ b^k \cdot \boldsymbol{\theta})$
$(b(\boldsymbol{x}) \ p(\boldsymbol{x} \boldsymbol{y}))$ where $D(\cdot \ \cdot)$ is KL divergence	which yields a variational interpretation of EM 6.
$(b(\boldsymbol{x}) \ p(\boldsymbol{x}; \boldsymbol{\theta}_1)) + D(b(\boldsymbol{x}) \ \ell(\boldsymbol{x}; \theta_2)) + H(b(\boldsymbol{x}))$	The Proposed EM-VAMP Algorithm
Gibbs free energy $x \underbrace{D(b_1(\boldsymbol{x}) \ p(\boldsymbol{x}; \boldsymbol{\theta}_1)) + D(b_2(\boldsymbol{x}) \ \ell(\boldsymbol{x}; \boldsymbol{\theta}_2)) + H(q(\boldsymbol{x}))}_{\triangleq J(b_1, b_2, q; \boldsymbol{\theta})}$ $b_1 = b_2 = q,$ raint keeps the problem difficult.	 Recall that VAMP iteratively computes a posterior approximation minimizing J(b₁, b₂, q; θ) (under moment constraints) with keep likewise, EM iteratively estimates θ by minimizing J(b^k, b^k, b^k, b^k) the posterior approximation b^k(x) = p(x y; θ^k) is available. We propose to combine EM and VAMP as follows:
It approximation (EC) 1 relaxes the density constraint constraints: I(h = h = m 0)	Input \boldsymbol{g}_1 and \boldsymbol{g}_2 , and initialize $\boldsymbol{r}_1 = \boldsymbol{0}$ and $v_1 = \infty$. For $k = 1, 2, 3, \ldots$
$\int_{q}^{\max} J(b_1, b_2, q; \boldsymbol{\theta})$ at $\begin{cases} E\{\boldsymbol{x} b_1\} = E\{\boldsymbol{x} b_2\} = E\{\boldsymbol{x} q\} \\ tr[Cov\{\boldsymbol{x} b_1\}] = tr[Cov\{\boldsymbol{x} b_2\}] = tr[Cov\{\boldsymbol{x} q\}]. \end{cases}$	$ \widehat{\boldsymbol{\theta}}_{1} \leftarrow \arg \max_{\boldsymbol{\theta}_{1}} \mathbb{E}\{\ln p(\boldsymbol{x};\boldsymbol{\theta}_{1}) \mid \boldsymbol{r}_{1}, v_{1}, \widehat{\boldsymbol{\theta}}_{1}\} $ $ \widehat{v}_{1} \leftarrow N^{-1} \operatorname{tr}[\operatorname{Cov}\{\boldsymbol{x} \mid \boldsymbol{r}_{1}, v_{1}, \widehat{\boldsymbol{\theta}}_{1}\}] $ $ posterior $ $ \widehat{\boldsymbol{x}}_{1} \leftarrow \mathbb{E}\{\boldsymbol{x} \mid \boldsymbol{r}_{1}, v_{1}, \widehat{\boldsymbol{\theta}}_{1}\} $
of EC are $(\boldsymbol{x}; \boldsymbol{r}_1, v_1 \boldsymbol{I})$ $(\boldsymbol{x}; \boldsymbol{r}_2, v_2 \boldsymbol{I})$ s.t. $\begin{cases} E\{\boldsymbol{x} b_1\} = E\{\boldsymbol{x} b_2\} = \widehat{\boldsymbol{x}} \\ tr[Cov\{\boldsymbol{x} b_1\}] = tr[Cov\{\boldsymbol{x} b_2\}] = N\widehat{v}. \end{cases}$	$1/v_{2} \leftarrow 1/\hat{v}_{1} - 1/v_{1} \qquad \text{varian}$ $r_{2} \leftarrow (\hat{\boldsymbol{x}}_{1}/\hat{v}_{1} - \boldsymbol{r}_{1}/v_{1})v_{2} \qquad \text{Onsager}$ $\hat{\theta}_{2} \leftarrow \arg \max_{\theta_{2}} \mathbb{E}\{\ln \ell(\boldsymbol{x};\theta_{2}) \mid \boldsymbol{r}_{2}, v_{2}, \hat{\theta}_{2}\}$
MP)	$v_2 \leftarrow N^{-1} \operatorname{tr}[\operatorname{Cov}\{\boldsymbol{x} \boldsymbol{r}_2, v_2, \theta_2\}] \qquad \text{posteriol}$ $\widehat{\boldsymbol{x}}_2 \leftarrow \operatorname{E}\{\boldsymbol{x} \boldsymbol{r}_2, v_2, \widehat{\theta}_2\} \qquad \text{LMMSE}$
gorithms (e.g., EC, ADATAP 2, S-AMP 3) whose fixed he EC stationary points, but often they don't converge.	$\mathbf{r}_1 \leftarrow (\widehat{\boldsymbol{x}}_2/\widehat{v}_2 - \mathbf{r}_2/v_2)v_1$ Varian Vari
or AMP 4 , which can be derived using a form of ge passing on the vector-valued factor graph	$ \operatorname{E} \{ f(\boldsymbol{x}) \mid \boldsymbol{r}_{1}, v_{1}, \boldsymbol{\theta}_{1} \} \triangleq \int f(\boldsymbol{x}) \frac{p(\boldsymbol{x}; \boldsymbol{\theta}_{1}) \mathcal{N}(\boldsymbol{x}; \boldsymbol{r}_{1}, v_{1})}{\int p(\boldsymbol{x}'; \boldsymbol{\theta}_{1}) \mathcal{N}(\boldsymbol{x}'; \boldsymbol{r}_{1}, v_{1})} $
$egin{array}{c c c c c c c c c c c c c c c c c c c $	$ E\{f(\boldsymbol{x}) \mid \boldsymbol{r}_2, v_2, \theta_2\} \triangleq \int f(\boldsymbol{x}) \frac{\mathcal{L}(\boldsymbol{x}, v_2) \mathcal{L}(\boldsymbol{x}, v_2, v_2)}{\int \ell(\boldsymbol{x}'; \theta_2) \mathcal{N}(\boldsymbol{x}'; \boldsymbol{r}_2, v_2)} $ and similar for the covariances.
s provably convergent under either ve prior $p({m x}; {m heta}_1)$ and arbitrary ${m A}$ (after damping), and large, right-rotationally invariant ${m A}$.	If the SVD $\boldsymbol{A} = \boldsymbol{U} \operatorname{Diag}(\boldsymbol{s}) \boldsymbol{V}^{T}$ is precomputed, then $\widehat{\boldsymbol{x}}_2 \leftarrow \boldsymbol{V} \left(v_2 \operatorname{Diag}(\boldsymbol{s})^2 + \theta_2 \boldsymbol{I} \right)^{-1} \left(v_2 \operatorname{Diag}(\boldsymbol{s}) \boldsymbol{U}^{H} \boldsymbol{y} + \theta_2 \boldsymbol{V}^{H} \boldsymbol{r}_2 \right)$
s said to be "right-rotationally invariant" when V is on the set of unitary matrices. ties, U and S , are deterministic and arbitrary.	$\widehat{v}_2 \leftarrow \frac{1}{N} \sum_{n=0}^{N-1} \frac{1}{s_n^2 / \theta_2 + 1/v_2}, \widehat{\theta}_2 \leftarrow \frac{1}{N} \left[\ \boldsymbol{y} - \boldsymbol{A} \boldsymbol{r}_2 \ ^2 + \sum_n \frac{1}{s_n^2 / \theta_2 + 1/v_2} \right]$

so EM-VAMP requires only two matrix-vector mults per iteration. • Other algorithmic variants result when θ_1 and/or θ_2 are updated more or less

often than once per VAMP iteration.

roximate Message Passing ke iiD

ICASSP 2017 – New Orleans

Supported by NSF grants 1527162 and 1254204.

Theorem: Fixed Points of EM-VAMP

At any fixed point of EM-VAMP we have

$$\widehat{v}_1 = \widehat{v}_2 = rac{v_1 v_2}{v_1 + v_2} riangleq \widehat{v}$$

 $\widehat{oldsymbol{x}}_1 = \widehat{oldsymbol{x}}_2 = \Big(rac{oldsymbol{r}_1}{v_1} + rac{oldsymbol{r}_2}{v_2}\Big) \widehat{v} riangleq \widehat{oldsymbol{x}}.$

Also, EM-VAMP's fixed-points are stationary points of the EM-EC optimization

$$\min_{\boldsymbol{\theta}} \min_{b_1, b_2} \max_{q} J(b_1, b_2, q; \boldsymbol{\theta})$$

such that $\begin{cases} E\{\boldsymbol{x}|b_1\} = E\{\boldsymbol{x}|b_2\} = E\{\boldsymbol{x}|q\} \\ tr[Cov\{\boldsymbol{x}|b_1\}] = tr[Cov\{\boldsymbol{x}|b_2\}] = tr[Cov\{\boldsymbol{x}|q\}]. \end{cases}$

Numerical Experiments

Goal recover N = 1024-length i.i.d. Bernoulli-Gaussian \boldsymbol{x} $p(x_n; \theta_1) = (1 - \theta_{11})\delta(x_n) + \theta_{11}\mathcal{N}(x_n; \theta_{12}, \theta_{13})$ with $\theta_1 = [0.1, 0, 1]$ from M = 512 measurements

 $\boldsymbol{y} = \boldsymbol{A}\boldsymbol{x} + \mathcal{N}(\boldsymbol{0}, \theta_2 \boldsymbol{I})$ with θ_2 giving SNR=40 dB. Here, $A = U \operatorname{Diag}(s)V^{\mathsf{T}}$ with random orthogonal U, V and $s_n/s_{n-1} = \phi \forall n$, where ϕ determines the condition number $\kappa(\mathbf{A})$.

References

- **1** M. Opper and O. Winther, "Expectation consistent approximate inference," *J. Mach. Learning Res.*, 2005. 2 M. Opper and O. Winther, "Adaptive and self-averaging Thouless-Anderson-Palmer mean-field theory for probabilistic modeling," Phy. Rev. E, 2001.
- **3** B. Çakmak, O. Winther, and B.H. Fleury, "S-AMP: Approximate Message Passing for General Matrix Ensembles," ISIT 2014.
- 4 S. Rangan, P. Schniter, and A. K. Fletcher, "Vector Approximate Message Passing," *arXiv:1610.03082*.
- 5 A. M. Tulino, G. Caire, S. Verdú, and S. Shamai (Shitz), "Support recovery with sparsely sampled free random matrices," IEEE Trans. Info. Thy., 2013.
- 6 R. Neal and G. Hinton, "A view of the EM algorithm that justifies incremental, sparse, and other variants," in Learning in Graphical Models, 1998.
- **7** J. P. Vila and P. Schniter, "Expectation-maximization Gaussian-mixture approximate message passing," *IEEE TSP*, 2013.

minimize a tight

an also be

 $H(b^k(\boldsymbol{x}))$

ation $b^k(oldsymbol{x})$ by known $\boldsymbol{\theta}$. $b^k; \boldsymbol{\theta})$ assuming

EM update

ior variance denoising nce update correction

EM update

ior variance estimation ance update correction

$$\frac{I}{I} \frac{\mathbf{I}}{\mathbf{I}} d\mathbf{x}' d\mathbf{x}$$
$$\frac{I}{I} \frac{\mathbf{I}}{\mathbf{I}} d\mathbf{x}' d\mathbf{x}$$

 s_n^2 $s_n^2/\theta_2 + 1/v_2$

