
Generalized Approximate Message Passing for Cosparse Analysis Compressive Sensing (GrAMPA)

Mark Borgerding, Philip Schniter, Jeremy Vila: Ohio State Sundeep Rangan, NYU Poly (Supported by NSF CCF-1218754, CCF-1018368, and 3dB Labs, Inc.)

Problem Statement
Goal: Recover signal x, given y = Φx +w

unknown signal x ∈ C
N (orRN )

known linear measurement operator Φ ∈ C
M×N (orRM×N )

noise w ∈ C
M (orRN )

Challenge: Underdetermined linear system M ≪ N

x cannot be uniquely determined even if w = 0

prior information about x can help us navigate the measurement nullspace ker(Φ)

Synthesis CS

Vector x is assumed to be sparse in an orthonormal dictionary Ψ: x = Ψu for K-sparse u ∈ C
N .

The goal is then to find

û = argmin
u

‖u‖0 s.t. ‖y −ΦΨu‖22 ≤ ǫ, after which x̂ = Ψû. (1)

If the K non-zeros in u can be found and K ≤ M , the system becomes overdetermined:

y = (ΦΨ)ΛuΛ +w , where (ΦΨ)Λ is square or tall

Solving (1) is NP-hard. Practical approaches include
ℓ1 convex relaxation: LASSO or BPDN
Greedy approaches: OMP, CoSaMP, Subspace Pursuit (SP), IHT
Bayesian: Sparse Bayesian Learning (SBL), Approximate Message Passing (AMP)

The ℓ1 approach works when ΦΨ satisfies the Restricted Isometry Property (RIP), which requires
M & O(K logN/K) when x is K-sparse.

Analysis CS

Vector x is assumed to be sparse in an overcomplete dictionary Ψ ∈ C
N×D for D≫ N .

Problem: ΦΨ does not satisfy RIP ⇒ synthesis-CS fails!

Instead, try “analysis CS” with analysis operator Ω = Ψ†:

x̂ = argmin
x

‖Ωx‖0 s.t. ‖y −Φx‖22 ≤ ǫ (2)

If enough zeros in Ωx can be found, the augmented system becomes overdetermined:
[
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]
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x+w , where

[

Φ
ΩΛ

]

is square or tall

Solving (2) is NP-hard. Practical approaches include
ℓ1 convex relaxation: Generalized LASSO
Greedy approaches: Greedy Analysis Pursuit (GAP), Analysis versions of CoSaMP, SP, IHT
Bayesian: TV-AMP, SS-AMP

Some popular choices of Ω are finite-difference operator and Wavelet transform (concatentations of many).

AMP and GAMP
Approximate Message Passing [Donoho, Maleki, Montanari 10]

Approximation of loopy belief propagation applied to synthesis CS

Compute approximate MMSE or MAP estimate of x ∼
∏

n pX(xn) from AWGN corrupted z = Φx

For i.i.d. sub-Gaussian ΦΨ, as M,N → ∞ for fixed ratio M/N , state evolution characterizes performance.

Manifests as an iterative thresholding algorithm with pX-dependent soft threshold

Generalized AMP [Rangan 11]

Extension of AMP that handles arbitrary separable likelihood p(y|z) =
∏

m pYm|Zm
(ym|zm)

Applicable to non-Gaussian/non-additive noise: quantization, phase retrieval, Poisson corruption
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Generalized AMP for Analysis-CS (GrAMPA)

Formulates analysis-CS via
[

y

v

]

=

[

Φ
Ω

]

x+

[

w

0

]

(3)

Sparse analysis output v modeled via sparsifying prior p(v) =
∏

i pV (vi), e.g.,
ℓ1 based prior (Laplacian MAP)
Bernoulli-Gaussian prior
ℓ0 mimicking priors (SNIPE...)

Leverages GAMP’s ability to handle non-AWGN likelihood

Signal x is unconstrained or, depending on application, possibly real or positive

Sparse Non-Informative Parameter Estimator (SNIPE)

Novel form of soft-thresholding that successfully mimics the desired ℓ0 minimization
Consider a Bernoulli-Something random variable V , observed in AWGN

prior: pV (v) = (1− λ)δ(v) + λ
p0(vσ)
σ

AWGN corruption: q = v + e for e ∼ N (0, τ ) in Real case

We define SNIPE as the scale-invariant approximation of the MMSE estimator for arbitrarily large σ

v̂SNIPE(q; τ, ω) , lim
σ→∞,λ→1

E (V |Q = q) =
q

exp
(

ω − q2

2τ

)

+ 1
(4)

where ω is a tuning parameter (that controls the relative rate at which σ and λ converge).

Since SNIPE is scale-invariant, ω has a wide "sweet spot".

Phase Transition Curves : Comparison to GAP

The Phase Transition Curve (PTC) partitions the problem space into solvable vs unsolveable.

Combinations of (sampling,uncertainty) below the curve succeed with high probabililty, and those above the
curve fail.

The higher the curve, the better the algorithm!
GrAMPA+SNIPE versus GAP under i.i.d Gaussian Φ and random
tight frame Ω.
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GrAMPA

overcompleteness D/N = 2.0

GAP

sampling ratio δ = M/N

M : number of measurements

N : signal dimension

D: number of atoms(rows) in Ω

L: number of zeros in Ωx

δ = M/N : sampling ratio

ρ = (N−L)/M : uncertainty ratio
ρ → 0 is easy; ρ > 1 is impossible

Piecewise Constant Signal Recovery: 1D Difference Dictionary

Others have considered AMP to solve the special case of 1D finite-difference Ω.

[Donoho, Johnstone, and Montanari 2011] proposed a "TV-AMP" for this application that alternates
MAP-AMP with an external TV denoising package like TV-DIP or FLSA

[Kang, Jung, Lee, and Kim 2014] created a “Spike-and-Slab” (Bernoulli-Gaussian) MMSE-AMP solver.
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GrAMPA wins in recovery, but not runtime.

Synthetic Image Recovery: 4x Finite-Difference Dictionary

radially sampled 2D Fourier measurements

4× overcomplete Ω: horizontal, vertical, diagonal, antidiagonal differences
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Figure: Shepp-Logan Phantom

GrAMPA ℓ1 RW-ℓ1 GAP
runtime: 0.28s 1.8s 9.7s 30.1s

GrAMPA wins in both runtime and recovery.

Natural Image Recovery: Overcomplete Wavelet Dictionary

spread-spectrum Fourier measurements

8× overcomplete Ω = [ΩT
1 , . . . ,Ω

T
8 ]

T with Ωi = Daubechies-i
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GrAMPA ℓ1 RW-ℓ1
runtime: 149s 177s 1994s

GrAMPA wins in both runtime and recovery.

Performance versus Overcompleteness

sampling ratio fixed at M/N = 0.5

Q× overcomplete with varying Q using Ω = [ΩT
1 , . . . ,Ω

T
Q]

T with Ωi = Daubechies-i
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Figure: Knee MRI

Runtime:

Q : 1 2 3 4 5 6 7 8
GrAMPA(SNIPE) 327s 358s 488s 1205s 1386s 1610s 1902s 2366s

RW-ℓ1 3929s 3336s 3199s 3970s 4535s 6855s 9861s 6642s
GAP 254s 730s 829s 1442s 1984s 1540s 2959s 2787s


