Generalized Approximate Message Passing for Cosparse Analysis Compressive Sensing (GrAMPA)

Mark Borgerding, Philip Schniter, Jeremy Vila: Ohio State

Problem Statement

- Goal: Recover signal $oldsymbol{x}$, given $oldsymbol{y} = oldsymbol{\Phi} oldsymbol{x} + oldsymbol{w}$
- unknown signal $oldsymbol{x} \in \mathbb{C}^N(or\mathbb{R}^N)$
- known linear measurement operator $\mathbf{\Phi} \in \mathbb{C}^{M imes N}(or \mathbb{R}^{M imes N})$
- noise $\boldsymbol{w} \in \mathbb{C}^{M}(or\mathbb{R}^{N})$

Challenge: Underdetermined linear system $M \ll N$

- **x** cannot be uniquely determined even if $oldsymbol{w}=oldsymbol{0}$
- \blacksquare prior information about \boldsymbol{x} can help us navigate the measurement nullspace ker $(\boldsymbol{\Phi})$

Synthesis CS

- Vector $m{x}$ is assumed to be sparse in an orthonormal dictionary $m{\Psi}$: $m{x}=m{\Psi}m{u}$ for K-sparse $m{u}\in\mathbb{C}^N$.
- The goal is then to find

 $\hat{\boldsymbol{u}} = rgmin \|\boldsymbol{u}\|_0$ s.t. $\|\boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{\Psi} \boldsymbol{u}\|_2^2 \leq \epsilon$, after which $\hat{\boldsymbol{x}} = \boldsymbol{\Psi} \hat{\boldsymbol{u}}$.

If the K non-zeros in \boldsymbol{u} can be found and $K \leq M$, the system becomes *overdetermined*:

 $m{y} = (\Phi \Psi)_{\Lambda} m{u}_{\Lambda} + m{w} \;, \;$ where $(\Phi \Psi)_{\Lambda}$ is square or tall

- Solving (1) is NP-hard. Practical approaches include
- ℓ_1 convex relaxation: LASSO or BPDN

■ Greedy approaches: OMP, CoSaMP, Subspace Pursuit (SP), IHT Bayesian: Sparse Bayesian Learning (SBL), Approximate Message Passing (AMP)

The ℓ_1 approach works when $\Phi\Psi$ satisfies the Restricted Isometry Property (RIP), which requires $M \gtrsim O(K \log N/K)$ when \boldsymbol{x} is K-sparse.

Analysis CS

- Vector \boldsymbol{x} is assumed to be sparse in an overcomplete dictionary $\boldsymbol{\Psi} \in \mathbb{C}^{N \times D}$ for $D \gg N$.
- Problem: $\Phi\Psi$ does not satisfy RIP \Rightarrow synthesis-CS fails!
- \blacksquare Instead, try "analysis CS" with analysis operator $\Omega=\Psi^{\dagger}$:

 $\hat{oldsymbol{x}} = rgmin_{oldsymbol{x}} \| oldsymbol{\Omega} oldsymbol{x} \|_0$ s.t. $\|oldsymbol{y} - oldsymbol{\Phi} oldsymbol{x} \|_2^2 \leq \epsilon$

If enough zeros in Ωx can be found, the augmented system becomes *overdetermined*:

$$\begin{bmatrix} \boldsymbol{y} \\ \boldsymbol{0} \end{bmatrix} = \begin{bmatrix} \boldsymbol{\Phi} \\ \boldsymbol{\Omega}_{\Lambda} \end{bmatrix} \boldsymbol{x} + \boldsymbol{w} \ , \ \text{where} \ \begin{bmatrix} \boldsymbol{\Phi} \\ \boldsymbol{\Omega}_{\Lambda} \end{bmatrix} \text{ is square or tall}$$

Solving (2) is NP-hard. Practical approaches include

- ℓ_1 convex relaxation: Generalized LASSO
- Greedy approaches: Greedy Analysis Pursuit (GAP), Analysis versions of CoSaMP, SP, IHT
- Bayesian: TV-AMP, SS-AMP
- Some popular choices of Ω are finite-difference operator and Wavelet transform (concatentations of many).

AMP and GAMP

Approximate Message Passing [Donoho, Maleki, Montanari 10]

- Approximation of loopy belief propagation applied to synthesis CS
- Compute approximate MMSE or MAP estimate of $m{x} \sim \prod_n p_X(x_n)$ from AWGN corrupted $m{z} = m{\Phi}m{x}$
- For i.i.d. sub-Gaussian $\Phi\Psi$, as $M, N \to \infty$ for fixed ratio M/N, state evolution characterizes performance.
- Manifests as an iterative thresholding algorithm with p_X -dependent soft threshold

Generalized AMP [Rangan 11]

- Extension of AMP that handles arbitrary separable likelihood $p(\boldsymbol{y}|\boldsymbol{z}) = \prod_m p_{Y_m|Z_m}(y_m|z_m)$
- Applicable to non-Gaussian/non-additive noise: quantization, phase retrieval, Poisson corruption

Related Publications

- **1** D.L. Donoho, A. Maleki, and A. Montanari, "Message passing algorithms for compressed sensing: I. Motivation and construction," ITW, 2010. 2 S. Rangan, "Generalized approximate message passing for estimation with random linear mixing," in *Proc. IEEE Int. Symp. Inform. Thy.*, (Saint Petersburg, Russia), pp. 2168-2172, Aug. 2011.
- **3** M. Borgerding and P. Schniter, "Generalized Approximate Message Passing for the Cosparse Analysis Model," *arXiv:1312.3968*,Dec 2013. 4 D. L. Donoho, I. M. Johnstone, and A. Montanari, "Accurate prediction of phase transitions in compressed sensing via a connection to minimax denoising," *arXiv:1111.1041*, Nov. 2011.
- 5 S. Nam, M. E. Davies, M. Elad, and R. Gribonval, "Recovery of cosparse signals with greedy analysis pursuit in the presence of noise," *Proc. IEEE* Workshop Comp. Adv. Multi-Sensor Adaptive Process., (Puerto Rico), Dec. 2011
- 6 R. E. Carrillo, J. D. McEwen, D. V. D. Ville, J.-P. Thiran, and Y. Wiaux, "Sparsity averaging for compressive imaging," IEEE Signal Process. Lett., vol. 20, 2013
- **7** E. J. Candes, M. B. Wakin, and S. Boyd, "Enhancing sparsity by reweighted ℓ_1 minimization," J. Fourier Anal. App., Dec. 2008 8 J.W. Kang, H. Jung, H.N. Lee, and K. Kim, "One-dimensional piecewise-constant signal recovery via spike-and-slab approximate message-passing," 48th Asilomar Conf, Nov. 2014

· x x x x x x x 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 sampling ratio M/NGrAMPA wins in recovery, but not runtime.

THE OHIO STATE UNIVERSITY

$$=\frac{q}{\exp\left(\omega-\frac{q^2}{2\tau}\right)+1}$$
(4)

----- GrAMPA

 \triangle ssAMP

	GrAMPA	ssAMP	TV-AMP
runtime:	2.1s	.3s	.8s

Synthetic Image Recovery: 4x Finite-Difference Dictionary

- radially sampled 2D Fourier measurements

radial lines GrAMPA wins in both runtime and recovery.

Natural Image Recovery: Overcomplete Wavelet Dictionary

spread-spectrum Fourier measurements

GrAMPA wins in both runtime and recovery.

Performance versus Overcompleteness

- sampling ratio fixed at M/N = 0.5

(Supported by NSF CCF-1218754, CCF-1018368, and 3dB Labs, Inc.)

 $\blacksquare 4 \times$ overcomplete Ω : horizontal, vertical, diagonal, antidiagonal differences

Figure: Shepp-Logan Phantom

	GrAMPA	ℓ_1	$RW\text{-}\ell_1$	GAP
runtime:	0.28s	1.8s	9.7s	30.1s

	GrAMPA	ℓ_1	$RW\text{-}\ell_1$
runtime:	149s	177s	1994s

2	3	4	5	6	7	8
358s	488s	1205s	1386s	1610s	1902s	2366s
3336s	3199s	3970s	4535s	6855s	9861s	6642s
730s	829s	1442s	1984s	1540s	2959s	2787s