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ABSTRACT

The generalized approximate message passing (GAMP) algorithm is

an efficient method of MAP or approximate-MMSE estimation of x

observed from a noisy version of the transform coefficients z = Ax.

In fact, for large zero-mean i.i.d sub-Gaussian A, GAMP is char-

acterized by a state evolution whose fixed points, when unique, are

optimal. For generic A, however, GAMP may diverge. In this

paper, we propose adaptive-damping and mean-removal strategies

that aim to prevent divergence. Numerical results demonstrate sig-

nificantly enhanced robustness to non-zero-mean, rank-deficient,

column-correlated, and ill-conditioned A.

Index Terms— Approximate message passing, belief propaga-

tion, compressed sensing.

1. INTRODUCTION

Consider estimating a realization x ∈ R
N of a random vector x

with statistically independent components xn ∼ pxn from observa-

tions y = [ym] ∈ R
M that are conditionally independent given the

transform outputs

z = Ax (1)

for some known matrix A = [amn] ∈ R
M×N . Here, the likeli-

hood function can be written as py|z(y|Ax) with separable py|z ,

i.e., py|z(y|z) =
∏M

m=1 pym|zm(ym|zm). Such problems arise in

a range of applications including statistical regression, inverse prob-

lems, and compressive sensing. Note that, for clarity, we use san-

serif fonts (e.g., x , xn) to denote random quantities and serif fonts

(e.g., x, xn) to denote deterministic ones.

Assuming knowledge of the prior px(x) =
∏N

n=1 pxn(xn)
and likelihood py|z(y|z), typical estimation goals are to compute

the minimum mean-squared error (MMSE) estimate x̂MMSE ,∫
RN xpx|y(x|y)dx or the maximum a posteriori (MAP) estimate

x̂MAP , argmax
x
px|y (x|y) = argmin

x
JMAP(x) for the MAP

cost

JMAP(x̂) , − ln py|z(y|Ax̂)− ln px(x̂). (2)

Recently, the generalized approximate message passing (GAMP) al-

gorithm [1] has been proposed as a means of tackling these two

problems in the case that M and N are large. Essentially, GAMP

uses a high-dimensional approximation of loopy belief propagation
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Supercomputer Center, and by European Unions 7th Framework Programme
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to convert the MMSE or MAP inference problems into a sequence

of tractable scalar inference problems.

GAMP is well motivated in the case that A is a realization of

a large random matrix with i.i.d zero-mean sub-Gaussian entries.

For such A, in the large-system limit (i.e., M,N → ∞ for fixed

M/N ∈ R+), GAMP is characterized by a state evolution whose

fixed points, when unique, are MMSE or MAP optimal [1–3]. Fur-

thermore, for generic A, it has been shown [4] that MAP-GAMP’s

fixed points coincide with the critical points of the cost function (2)

and that MMSE-GAMP’s fixed points coincide with those of a Bethe

free entropy [5], as discussed in detail in Section 2.2.

For generic A, however, GAMP may not reach its fixed points,

i.e., it may diverge (e.g., [6]). The convergence of GAMP has been

fully characterized in [7] for the simple case that pxn and pym|zm are

Gaussian. There, it was shown that Gaussian-GAMP converges if

and only if the peak-to-average ratio of the squared singular values of

A is sufficiently small. A damping modification was then proposed

in [7] that guarantees the convergence of Gaussian-GAMP with arbi-

trary A, at the expense of a slower convergence rate. For strictly log-

concave pxn and pym|zm , the local convergence of GAMP was also

characterized in [7]. However, the global convergence of GAMP

under generic A, pxn , and pym|zm is not yet understood.

Because of its practical importance, prior work has attempted to

robustify the convergence of GAMP in the face of “difficult” A (e.g.,

high peak-to-average singular values) for generic pxn and pym|zm .

For example, “swept” GAMP (SwAMP) [8] updates the estimates

of {xn}
N
n=1 and {zm}Mm=1 sequentially, in contrast to GAMP, which

updates them in parallel. Relative to GAMP, experiments in [8] show

that SwAMP is much more robust to difficult A, but it is slower and

cannot facilitate fast implementations of A like an FFT. As another

example, the public-domain GAMPmatlab implementation [9] has

included “adaptive damping” and “mean removal” mechanisms for

some time, but they have never been described in the literature.

In this paper, we detail the most recent versions of GAMP-

matlab’s adaptive damping and mean-removal mechanisms, and we

experimentally characterize their performance on non-zero-mean,

rank-deficient, column-correlated, and ill-conditioned A matrices.

Our results show improved robustness relative to SwAMP and en-

hanced convergence speed.

2. ADAPTIVELY DAMPED GAMP

Damping is commonly used in loopy belief propagation to “slow

down” the updates in an effort to promote convergence. (See, e.g.,

[10] for damping applied to the sum-product algorithm and [7,9,11]

for damping applied to GAMP.) However, since not enough damping



definitions for MMSE-GAMP:

gzm (p̂, νp),
∫
z fzm(z; p̂, νp)dz (D1)

for fzm(z; p̂, νp) ,
pym|zm

(ym|z)N (z;p̂,νp)

Bm(p̂,νp)

and Bm(p̂, νp) ,
∫
pym|zm(ym|z)N (z; p̂, νp)dz

gxn(r̂, ν
r),

∫
x fxn(x; r̂, ν

r)dx (D2)

for fxn(x; r̂, ν
r) ,

pxn(x)N (x;r̂,νr)

Cn(r̂,νr)

and Cn(r̂, νr) ,
∫
pxn(x)N (x; r̂, νr)dx

definitions for MAP-GAMP:

gzm(p̂, νp), argmaxz ln pym|zm(ym|z) + 1
2νp |z − p̂|2 (D3)

gxn(r̂, ν
r), argmaxx ln pxn(x) +

1
2νr |x− r̂|2 (D4)

inputs:
∀m,n : gzm, gxn, x̂n(1), νxn(1), amn, Tmax ≥ 1, ǫ ≥ 0
Tβ ≥ 0, βmax ∈ (0, 1], βmin ∈ [0, βmax], Gpass ≥ 1, Gfail < 1

initialize:

∀m : νpm(1)=
∑N

n=1 |amn|2νxn(1), p̂m(1)=
∑N

n=1 amnx̂n(1) (I2)

J(1)=∞, β(1) = 1, t = 1 (I3)

while t ≤ Tmax,
∀m : νzm(t)= νpm(t) g′zm(p̂m(t), νpm(t)) (R1)

∀m : ẑm(t)= gzm(p̂m(t), νpm(t)) (R2)

∀m : νsm(t)=β(t)
(
1−

νz
m(t)

ν
p
m(t)

)
1

ν
p
m(t)

+
(
1−β(t)

)
νsm(t−1) (R3)

∀m : ŝm(t)=β(t)
ẑm(t)−p̂m(t)

ν
p
m(t)

+
(
1−β(t)

)
ŝm(t−1) (R4)

∀n : x̃n(t)=β(t)x̂n(t) +
(
1−β(t)

)
x̃n(t−1) (R5)

∀n : νrn(t)=β(t) 1∑
M
m=1

|amn|2νs
m(t)

+
(
1−β(t)

)
νrn(t−1) (R6)

∀n : r̂n(t)= x̃n(t) + νrn(t)
∑M

m=1a
H
mnŝm(t) (R7)

∀n : νxn(t+1)= νrn(t) g
′
xn
(r̂n(t), νrn(t)) (R8)

∀n : x̂n(t+1)= gxn(r̂n(t), ν
r
n(t)) (R9)

∀m : νpm(t+1)=β(t)
∑N

n=1 |amn|2νxn(t+1) + (1−β(t)
)
νpm(t) (R10)

∀m : p̂m(t+1)=
∑N

n=1 amnx̂n(t+1)− νpm(t+1) ŝm(t) (R11)

J(t+1)= eqn (2) for MAP-GAMP or eqn (11) for MMSE-GAMP (R12)

if J(t+1) ≤ maxτ=max{t−Tβ ,1},...,t J(τ) or β(t) = βmin (R13)

then if ‖x̂(t)− x̂(t+1)‖/‖x̂(t+1)‖ < ǫ, (R14)

then stop (R15)

else β(t+1) = min{βmax, Gpassβ(t)} (R16)

t = t+1 (R17)

else β(t) = max{βmin, Gfailβ(t)}, (R18)

end

outputs: ∀m,n : r̂n(t), νrn(t), p̂m(t+1), νpm(t+1), x̂n(t+1), νxn(t+1)

Table 1. The adaptively damped GAMP algorithm. In lines (R1)

and (R8), g′zm and g′xn denote the derivatives of gzm and gxn w.r.t

their first arguments.

allows divergence while too much damping unnecessarily slows con-

vergence, we are motivated to develop an adaptive damping scheme

that applies just the right amount of damping at each iteration.

Table 1 details the proposed adaptively damped GAMP (AD-

GAMP) algorithm. Lines (R3)-(R6) and (R10) use an iteration-t-
dependent damping parameter β(t) ∈ (0, 1] to slow the updates,1

and lines (R12)-(R18) adapt the parameter β(t). When β(t) = 1 ∀t,
AD-GAMP reduces to the original GAMP from [1]. Due to lack of

space, we refer readers to [1, 4] for further details on GAMP.

2.1. Damping Adaptation

The damping adaptation mechanism in AD-GAMP works as fol-

lows. Line (R12) computes the current cost J(t+1), as described

in the sequel. Line (R13) then checks evaluates whether the current

iteration “passes” or “fails”: it passes if the current cost is at least

as good as the worst cost over the last Tβ ≥ 0 iterations or if β(t)

1The GAMPmatlab implementation [9] allows one to disable damping in
(R6) and/or (R10).

is already at its minimum allowed value βmin, else it fails. If the it-

eration passes, (R14)-(R15) implement a stopping condition, (R16)

increases β(t) by a factor Gpass ≥1 (up to the maximum value βmax),

and (R17) increments the counter t. If the iteration fails, (R18) de-

creases β(t) by a factor Gfail <1 (down to the minimum value βmin)

and the counter t is not advanced, causing AD-GAMP to re-try the

tth iteration with the new value of β(t).
In the MAP case, line (R12) simply computes the cost J(t+1) =

JMAP(x̂(t+1)) for JMAP from (2). The MMSE case, which is more

involved, will be described next.

2.2. MMSE-GAMP Cost Evaluation

As proven in [4] and interpreted in the context of Bethe free entropy

in [5], the fixed points of MMSE-GAMP are critical points of the

optimization problem

(fx , fz) = argmin
bx ,bz

JBethe(bx , bz) s.t. E{z|bz}=AE{x |bx}(3)

JBethe(bx , bz) , D
(
bx‖px

)
+D

(
bz‖py|zZ

−1)+H
(
bz ,ν

p)
(4)

H
(
bz ,ν

p)
,

1

2

M∑

m=1

(
var{zm|bzm}

νp
m

+ ln 2πνp
m

)
, (5)

where bx and bz are separable pdfs, Z−1 ,
∫
py|z(y|z)dz is the

scaling factor that renders py|z(y|z)Z
−1 a valid pdf over z ∈R

M ,

D(·‖·) denotes Kullback-Leibler (KL) divergence, and H(bz) is

an upper bound on the entropy of bz that is tight when bz is in-

dependent Gaussian with variances in νp. In other words, the

pdfs fx(x; r̂,ν
r) =

∏N
n=1 fxn(xn; r̂n, ν

r
n) and fz(z; p̂,ν

p) =∏M
m=1 fzm(zm; p̂m, νp

m) given in lines (D1) and (D2) of Table 1 are

critical points of (3) for fixed-point versions of r̂,νr, p̂,νp.

Since fx and fz are functions of r̂,νr, p̂,νp, the cost JBethe can

be written in terms of these quantities as well. For this, we first note

D
(
fxn

∥∥pxn

)
=

∫
fxn(x; r̂n, ν

r
n) ln

pxn(x)N (x; r̂n, ν
r
n)

pxn(x)Cn(r̂n, νr
n)

dx (6)

= − lnCn(r̂n, ν
r
n)−

ln 2πνr
n

2
−

∫
fxn(x; r̂n, ν

r
n)

|x− r̂n|
2

2νr
n

dx (7)

= − lnCn(r̂n, ν
r
n)−

ln 2πνr
n

2
−

|x̂n − r̂n|
2 + νx

n

2νr
n

, (8)

where x̂n and νx
n are the mean and variance of fxn(·; r̂n, ν

r
n) from

(R9) and (R8). Following a similar procedure,

D
(
fzm‖pym|zmZ

−1
m

)

= − ln
Bm(p̂m, νp

m)

Zm
−

ln 2πνp
m

2
−

|ẑm−p̂m|2 + νz
m

2νp
m

, (9)

where ẑm and νz
m are the mean and variance of fzm(·; p̂m, νp

m) from

(R2) and (R1). Then, since D(fx‖px) =
∑N

n=1 D
(
fxn‖pxn

)
and

D(fz‖py|zZ
−1) =

∑M
m=1 D

(
fzm‖pym|zmZ−1

m

)
, (4) and (5) imply

JBethe(r̂,ν
r, p̂,νp) = −

M∑

m=1

(
lnBm(p̂m, νp

m) +
|ẑm−p̂m|2

2νp
m

)

−
N∑

n=1

(
lnCn(r̂n, ν

r
n) +

ln νr
n

2
+

νx
n+|x̂n−r̂n|

2

2νr
n

)
+const, (10)

where we have written JBethe(fx , fz) as “JBethe(r̂,ν
r, p̂,νp)” to

make the (r̂,νr, p̂,νp)-dependence clear, and where const collects

terms invariant to (r̂,νr, p̂,νp).



inputs:
gzm, [Ax̂]m, νpm, p̃m(1), Imax ≥ 1, ǫinv ≥ 0, α ∈(0, 1], φ ≥ 0

for i = 1 : Imax,
em(i)= [Ax̂]m − gzm

(
p̃m(i), νpm

)
(F1)

if
∣∣em(i)/gzm

(
p̃m(i), νpm

)∣∣ < ǫinv, stop (F2)

∇m(i)= g′zm
(
p̃m(i), νpm

)
(F3)

p̃m(i+1)= p̃m(i) + α
em(i)∇m(i)

∇2
m(i)+φ

(F4)

end

outputs: p̃m(i)

Table 2. A regularized Newton’s method to find the value of p̃m that

solves [Ax̂]m = gzm(p̃m, νp
m) for a given [Ax̂]m and νp

m.

Note that the iteration-t MMSE-GAMP cost is not obtained

simply by plugging (r̂(t),νr(t), p̂(t+1),νp(t+1)) into (10), be-

cause the latter quantities do not necessarily yield (fx , fz) satisfying

the moment-matching constraint E{z|fz} = AE{x |fx} from (3).

Thus, it was suggested in [5] to compute the cost as

JMSE(r̂(t),ν
r(t)) = JBethe(r̂(t),ν

r(t), p̃,νp(t+1)), (11)

for p̃ chosen to match the moment-matching constraint, i.e., for

[Ax̂(t+1)]m = gzm

(
p̃m, νp

m(t+1)
)

for m = 1, . . . ,M (12)

where x̂n(t+1) = gxn

(
r̂n(t), µ

r
n(t)

)
for n = 1, . . . , N from (R9).

Note that, since νp(t+1) can be computed from (r̂(t),νr(t)) via

(R8) and (R10), the left side of (11) uses only (r̂(t),νr(t)).
In the case of an additive white Gaussian noise (AWGN), i.e.,

pym|zm(ym|zm) = N (zm; ym, νw) with νw > 0, the function

gzm(p̃m, νp
m) is linear in p̃m. In this case, [5] showed that (12) can

be solved in closed-form, yielding the solution

p̃m =
(
(νp

m(t+1) + νw)[Ax̂(t+1)]m − νp
m(t+1)ym

)
/νw. (13)

For general pym|zm, however, the function gzm(p̃m, νp
m) is non-

linear in p̃m and difficult to invert in closed-form. Thus, we propose

to solve (12) numerically using the regularized Newton’s method

detailed in Table 2. There, α ∈ (0, 1] is a stepsize, φ ≥ 0 is a reg-

ularization parameter that keeps the update’s denominator positive,

and Imax is a maximum number of iterations, all of which should be

tuned in accordance with pym|zm. Meanwhile, p̃m(1) is an initializa-

tion that can be set at p̂m(t+1) or [Ax̂(t+1)]m and ǫinv is a stopping

tolerance. Note that the functions gzm and g′zm employed in Table 2

are readily available from Table 1.

2.3. Mean Removal

To mitigate the difficulties caused by A with non-zero mean entries,

we propose to rewrite the linear system “z = Ax” in (1) as




z

zM+1

zM+2




︸ ︷︷ ︸
, z

=




Ã b12γ b131M

b211
H
N −b21b12 0

b31c
H 0 −b31b13




︸ ︷︷ ︸
, A




x

xN+1

xN+2




︸ ︷︷ ︸
, x

(14)

where (·)H is conjugate transpose, 1P , [1, . . . , 1]H ∈ R
P , and

µ , 1
MN

1
H
MA1N (15)

γ , 1
N
A1N (16)

c
H
, 1

M
1

H
M

(
A− µ1M1

H
N

)
(17)

Ã , A− γ1
H
N − 1Mc

H. (18)

The advantage of (14) is that the rows and columns of A are ap-

proximately zero-mean. This can be seen by first verifying, via the

definitions above, that cH
1N = 0, Ã1N = 0, and 1

H
MÃ = 0

H,

which implies that the elements in every row and column of Ã are

zero-mean. Thus, for large N and M , the elements in all but a van-

ishing fraction of the rows and columns in A will also be zero-mean.

The mean-square coefficient size in the last two rows and columns

of A can be made to match that in Ã via choice of b12, b13, b21, b31.

To understand the construction of (14), note that (18) implies

z = Ax = Ãx+ b12γ 1
H
Nx/b12︸ ︷︷ ︸
, xN+1

+b131M c
H
x/b13︸ ︷︷ ︸

, xN+2

, (19)

which explains the first M rows of (14). To satisfy the definitions in

(19), we then require that zM+1 = 0 and zM+2 = 0 in (14), which

can be ensured through the Dirac-delta likelihood

pym|zm(ym|zm) , δ(zm) for m∈{M+1,M+2}. (20)

Meanwhile, we make no assumption about the newly added elements

xN+1 and xN+2, and thus adopt the improper uniform prior

pxn(xn) ∝ 1 for n ∈ {N+1, N+2}. (21)

In summary, the mean-removal approach suggested here runs

GAMP or AD-GAMP (as in Table 1) with A in place of A and with

the likelihoods and priors augmented by (20) and (21). It is impor-

tant to note that, if multiplication by A and AH can be implemented

using a fast transform (e.g., FFT), then multiplication by A and A
H

can too; for details, see the GAMPmatlab implementation [9].

3. NUMERICAL RESULTS

We numerically studied the recovery NMSE , ‖x̂ − x‖2/‖x‖2

of SwAMP [8] and the MMSE version of the original GAMP

from [1] relative to the proposed mean-removed (M-GAMP) and

adaptively damped (AD-GAMP) modifications, as well as their

combination (MAD-GAMP). In all experiments, the signal x was

drawn Bernoulli-Gaussian (BG) with sparsity rate τ and length

N = 1000, and performance was averaged over 100 realizations.

Average NMSE was clipped to 0 dB for plotting purposes. The

matrix A was drawn in one of four ways:

(a) Non-zero mean: i.i.d amn ∼ N (µ, 1
N
) for a specified µ 6= 0.

(b) Low-rank product: A = 1
N

UV with U ∈R
M×R, V ∈R

R×N ,

and i.i.d umr, vrn∼N (0, 1), for a specified R. Note A is rank

deficient when R<min{M,N}.

(c) Column-correlated: the rows of A are independent zero-mean

stationary Gauss-Markov processes with a specified correlation

coefficient ρ = E{amnaH
m,n+1}/E{|amn|

2}.

(d) Ill-conditioned: A = UΣV
H where U and V

H are the left and

right singular vector matrices of an i.i.d N (0, 1) matrix and

Σ is a singular value matrix such that [Σ]i,i/[Σ]i+1,i+1 =

(κ)1/min{M,N} for i = 1, . . . ,min{M,N}−1, with a spec-

ified condition number κ > 1.

For all algorithms, we used Tmax = 1000 and ǫ = 10−5. Unless

otherwise noted, for adaptive damping, we used Tβ=0, Gpass =1.1,

Gfail = 0.5, βmax = 1, and βmin = 0.01. For SwAMP, we used the

authors’ publicly available code [12].

First we experiment with compressive sensing (CS) in AWGN

at SNR , E{‖z‖2}/E{‖y − z‖2} = 60 dB. For this, we used
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M =500=N/2 measurements and sparsity rate τ =0.2. As a ref-

erence, we compute a lower-bound on the achievable NMSE using

a genie who knows the support of x. For non-zero-mean matrices,

Fig. 1(a) shows that the proposed M-GAMP and MAD-GAMP pro-

vided near-genie performance for all tested means µ. In contrast,

GAMP only worked with zero-mean A and SwAMP with small-

mean A. For low-rank product, correlated, and ill-conditioned ma-

trices, Figs. 1(b)-(d) show that AD-GAMP is slightly more robust

than SwAMP and significantly more robust than GAMP.

Next, we tried “robust” CS by repeating the previous experi-

ment with sparsity rate τ = 0.15 and with 10% of the observations

(selected uniformly at random) replaced by “outliers” corrupted by

AWGN at SNR=0 dB. For (M)AD-GAMP, we set βmax=0.1 and

Tmax = 2000. With non-zero-mean A, Fig. 2(a) shows increasing

performance as we move from GAMP to M-GAMP to SwAMP to

MAD-GAMP. For low-rank product, correlated, and ill-conditioned

matrices, Fig. 2(b)-(d) show that SwAMP was slightly more robust

than AD-GAMP, and both where much more robust than GAMP.

Finally, we experimented with noiseless 1-bit CS [13], where

y = sgn(Ax), using M = 3000 measurements and sparsity ratio

τ = 0.125. In each realization, the empirical mean was subtracted
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(b) Rank Ratio R/N(a) Mean µ
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Fig. 3. 1-bit compressive sensing under (a) non-zero-mean, (b) low-

rank product, (c) column-correlated, and (d) ill-conditioned A.

µ = 0.021 R/N = 0.64 ρ = 0.8 log
10

κ = 1

MAD-GAMP SwAMP AD-GAMP SwAMP AD-GAMP SwAMP AD-GAMP SwAMP

se
co

n
d
s AWGN 1.06 1.90 0.88 2.74 1.36 3.84 0.81 1.49

1-bit 53.34 83.21 49.22 137.46 42.32 149.40 50.25 117.62

Robust 3.47 8.81 2.66 11.13 3.33 15.70 2.38 12.22
#

it
er

s AWGN 42.9 39.2 130.0 109.5 221.9 153.2 121.4 58.8

1-bit 947.8 97.4 942.7 160.8 866.2 175.8 927.3 136.3

Robust 187.3 42.2 208.7 56.1 269.1 79.2 187.7 61.7

Table 3. Average runtime (in seconds) and # iterations of MAD-

GAMP and SwAMP for various problem types and matrix types.

from the non-zero entries of x to prevent ym =1 ∀m. For (M)AD-

GAMP, we used βmax = 0.5. For SwAMP, we increased the stop-

ping tolerance to ǫ = 5× 10−5, as it significantly improved runtime

without degrading accuracy. For non-zero-mean A, Fig. 3(a) shows

that M-GAMP and MAD-GAMP were more robust than SwAMP,

which was in turn much more robust than GAMP. For low-rank

product, correlated, and ill-conditioned matrices, Figs. 3(b)-(d) show

that MAD-GAMP and SwAMP gave similarly robust performance,

while the original GAMP was very fragile.

Finally, we compare the convergence speed of MAD-GAMP to

SwAMP. For each problem, we chose a setting that allowed MAD-

GAMP and SwAMP to converge for each matrix type. Table 3

shows that, on the whole, MAD-GAMP ran several times faster than

SwAMP but used more iterations. Thus, it may be possible to re-

duce SwAMP’s runtime to below that of MAD-GAMP using a more

efficient (e.g., BLAS-based) implementation, at least for explicit A.

When A has a fast O(N logN) implementation (e.g., FFT), only

(M)AD-GAMP will be able to exploit the reduced complexity.

4. CONCLUSIONS

We proposed adaptive damping and mean-removal modifications

of GAMP that help prevent divergence in the case of “difficult” A

matrices. We then numerically demonstrated that the resulting mod-

ifications significantly increase GAMP’s robustness to non-zero-

mean, low-rank product, column-correlated, and ill-conditioned A

matrices. Moreover, they provide robustness similar to the recently

proposed SwAMP algorithm, whilerunning faster than the current

SwAMP implementation. For future work, we note that the se-

quential update of SwAMP could in principle be combined with the

proposed mean-removal and/or adaptive damping to perhaps achieve

a level robustness greater than either SwAMP or (M)AD-GAMP.
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