MSE-Optimal Training for Linear Time-Varying Channels

Arun Kannu and Phil Schniter

Mar. 21, 2005

1

Pilot Aided Transmission:

- Assume that the transmitter and receiver both know the channel statistics but not the channel realization.
- Pilot-aided Transmission (PAT) defined as follows.
 - 1. The transmitter sends an N-block including both data and pilots.
 - 2. The receiver estimates the channel once using only the pilots.
 - 3. The receiver attempts coherent data detection using the estimated channel matrix.
- Key observations about our definition of PAT:
 - 1. Iterative channel/data estimation is prohibited.
 - 2. PAT is actually a form of "non-coherent communication."

MMSE-PAT:

- Many authors have suggested PAT with:
 - 1. Wiener channel estimation at the receiver.
 - 2. The pilot sequence chosen to minimize the MSE of channel estimates (subject to a pilot power constraint),
 - 3. The pilot power chosen via some other criterion.
- This problem has been investigated for various channel classes (e.g., time-selective, frequency-selective, doubly-selective).
- However, most investigations have assumed *non-superimposed* (NSI) pilot/data patterns.
 - \rightsquigarrow What about MMSE-PAT with superimposed pilot/data?

Problem Setup:

Observation:
$$\boldsymbol{y} = \boldsymbol{H}(\boldsymbol{p} + \boldsymbol{d}) + \boldsymbol{v}$$
 $\boldsymbol{p}, \boldsymbol{d} \in \mathbb{C}^N$
 $= (\boldsymbol{P} + \boldsymbol{D})\boldsymbol{h} + \boldsymbol{v}$

Channel estimate:
$$\hat{h} = f(y, P)$$

 $\tilde{h} := h - \hat{h}$

Detection:

$$y = P\hat{h} + P\tilde{h} + D\hat{h} + D\tilde{h} + v$$

 $\underbrace{y - P\hat{h}}_{y_{eff}} = D\hat{h} + \underbrace{P\tilde{h} + D\tilde{h} + v}_{v_{eff}}$
 $y_{eff} = \hat{H}d + v_{eff}$

The structures of H, P, D depend on the modulation scheme (e.g., CP-OFDM, SCCP) and the channel properties (e.g., TS, FS, DS).

IPS Lab

Generic Conditions for MMSE-PAT:

Say
$$oldsymbol{y} = (oldsymbol{P}+oldsymbol{D})oldsymbol{h}+oldsymbol{v}$$

where $oldsymbol{h} = oldsymbol{U}oldsymbol{\lambda}$

$$\begin{split} \boldsymbol{U}^{H}\boldsymbol{U} &= \boldsymbol{I}_{M}, \ \ \mathrm{E}[\boldsymbol{\lambda}] = \boldsymbol{0}, \ \ \mathrm{E}[\boldsymbol{\lambda}\boldsymbol{\lambda}^{H}] = \mathrm{diag}(\sigma_{\lambda_{0}}^{2},\ldots,\sigma_{\lambda_{M-1}}^{2}) \geq 0, \\ \mathrm{E}[\boldsymbol{D}] &= \boldsymbol{0}, \ \ \mathrm{E}[\boldsymbol{v}] = \boldsymbol{0}, \ \ \mathrm{E}[\boldsymbol{v}\boldsymbol{v}^{H}] = \sigma_{v}^{2}\boldsymbol{I}, \ \text{uncorrelated} \ \{\boldsymbol{D},\boldsymbol{\lambda},\boldsymbol{v}\}, \\ \mathrm{and} \ \|\boldsymbol{p}\|^{2} \leq E_{p}. \end{split}$$

Can show that $\mathrm{E}\{\| ilde{m{h}} \|^2\}$ is minimized if and only if

$$\forall \boldsymbol{D}, \ (\boldsymbol{P}\boldsymbol{U})^{H}\boldsymbol{D}\boldsymbol{U} = \boldsymbol{0} \tag{1}$$
$$(\boldsymbol{P}\boldsymbol{U})^{H}\boldsymbol{P}\boldsymbol{U} = \operatorname{diag}(\alpha_{0},\ldots,\alpha_{M-1}) \tag{2}$$

where the "water-filling" coefs $\{\alpha_m\}$ depend on $\{\sigma_{\lambda_m}^2\}$, σ_v^2 , and E_p .

Generic Conditions for MMSE-PAT (cont.):

Interpretation of (1)-(2):

```
1. \forall D, (PU)^H DU = 0:
```

Pilot/data subspaces remain orthogonal at channel output.

2. $(\boldsymbol{P}\boldsymbol{U})^{H}\boldsymbol{P}\boldsymbol{U} = \operatorname{diag}(\alpha_{0},\ldots,\alpha_{M-1})$:

Pilot excitation proportional to strength of channel mode.

Implication:

Pilot/data superposition is tolerated as long as pilot/data can be separated by a linear receiver,

a consequence of our not allowing iterative channel estimation.

Application: The Doubly-Dispersive Channel:

- Consider a SISO, WSSUS, Rayleigh fading channel.
- Assume N_t ISI coefficients, i.i.d. with uniform Doppler spectrum over $[-f_d, f_d]$ Hz, approximated by a basis expansion model:

$$h(n,\ell) = \frac{1}{\sqrt{N}} \sum_{k=-(N_f-1)/2}^{(N_f-1)/2} \lambda(k,\ell) e^{j\frac{2\pi}{N}kn}, \text{ for } 0 \le n < N.$$

where $N_f := \lfloor 2f_d T_s N \rfloor + 1$.

• For $\boldsymbol{y} = (\boldsymbol{P} + \boldsymbol{D})\boldsymbol{h} + \boldsymbol{v}$ with length- $(N_t - 1)$ CP, this implies

$$egin{array}{rcl} m{h} &=& m{U}m{\lambda} \ m{U} &=& m{I}_{N_t}\otimesm{F}_N^*ig(:,-rac{N_f-1}{2}:rac{N_f-1}{2}ig) \ m{\lambda} &\sim& \mathcal{CN}ig(m{0},rac{N_fN_t}{N_fN_t}m{I}_{N_fN_t}ig), \end{array}$$

where \boldsymbol{F}_N is the unitary N-DFT matrix. Note $\boldsymbol{U}^H \boldsymbol{U} = \boldsymbol{I}_{N_f N_t}$.

DS-Channel Conditions for MMSE-PAT:

With this N-block DS model, the necessary and sufficient conditions for MMSE-PAT become: $\forall k \in \mathcal{N}_t, \forall m \in \mathcal{N}_f$,

$$E_p \delta(k) \delta(m) = \sum_{n=0}^{N-1} p(n) p^*(n-k) e^{-j\frac{2\pi}{N}mn}$$
(3)

$$0 = \sum_{n=0}^{N-1} d(n) p^*(n-k) e^{-j\frac{2\pi}{N}mn}$$
(4)

$$\mathcal{N}_t := \{-N_t + 1, \dots, N_t - 1\}$$

 $\mathcal{N}_f := \{-N_f + 1, \dots, N_f - 1\}.$

To construct such a pilot/data pattern,

- 1. Find pilot sequence p satisfying (3).
- 2. Write (4) as $W_p d = 0$ and set d = Bs, where the N_s columns of B form an ON basis for null (W_p) .

We call this the $(\boldsymbol{p}, \boldsymbol{B})$ MMSE-PAT pattern.

The "Data Dimension" N_s :

- In MMSE-PAT, the data is represented by the N_s symbols in s.
- It is relatively easy to bound the data dimension ${\cal N}_s$ as

$$N - (2N_f - 1)(2N_t - 1) \leq N_s \leq N - N_f N_t.$$

• A more careful analysis, however, reveals the strict upper bound

$$N_s < N - N_f N_t$$

when $N_t > 1$ and $N_f > 1$ (i.e., the strictly-DS case).

Capacity of $(\boldsymbol{p}, \boldsymbol{B})$ MMSE-PAT:

Say
$$\|p\|^2 \leq E_p$$
, $\mathbb{E}[\|s\|^2] \leq E_s$, and define $\sigma_s^2 := \frac{E_s}{N_s}$, $\sigma_p^2 := \frac{E_p}{N_t N_f}$.
Then
 $\underline{C}_{mmse-pat} \leq C_{mmse-pat} \leq \overline{C}_{mmse-pat}$
 $\underline{C}_{mmse-pat} := \frac{1}{N} \mathbb{E} \log \det(\mathbf{I} + \rho_l \mathbf{B}^H \mathbf{H}^H \mathbf{H} \mathbf{B})$
 $\overline{C}_{mmse-pat} := \frac{1}{N} \mathbb{E} \log \det(\mathbf{I} + \rho_u \mathbf{B}^H \mathbf{H}^H \mathbf{H} \mathbf{B})$
where
 $\rho_l := \frac{\sigma_s^2}{\sigma_v^2} \left(\frac{\sigma_p^2}{\sigma_p^2 + \sigma_s^2 + \sigma_v^2}\right)$ and $\rho_u := \frac{\sigma_s^2}{\sigma_v^2}$.

(For the lower bound, we assumed the worst-case $ilde{h}$ via independent CWGN, and for the upper bound the best-case $ilde{h}$ via $ilde{h} = 0$.)

High-SNR Capacity of MMSE-PAT:

• With the <u>C_{mmse-pat}-maximizing power allocation</u>,

$$C_{\text{mmse-pat}}(\rho) = \frac{N_s}{N} \log(\rho) + O(1), \text{ as } \rho \to \infty$$

- Recall that N_s differed among the different MMSE-PAT examples.
- Note that, when $N_t > N_f$:
 - FDKD-PAT dominates TDKD-PAT and Chirp-PAT.
 - Superimposed PAT has advantages over non-superimposed PAT.

On the Non-Optimality of MMSE-PAT:

- Note that for TS and FS channels, C_{mmse-pat}(ρ) achieves the same slope as C_{ts}(ρ) and C_{fs}(ρ) as ρ → ∞.
- But, for DS channels (i.e., $N_f>1$ and $N_t>1$) as $ho
 ightarrow\infty$,

$$\begin{split} C_{\mathsf{ds}}(\rho) &= \frac{N - N_t N_f}{N} \log(\rho) + O(1), \\ C_{\mathsf{mmse-pat}}(\rho) &= \frac{N_s}{N} \log(\rho) + O(1) \text{ for } N_s < N - N_t N_f, \end{split}$$

and thus MMSE-PAT is strictly suboptimal.

• This motivates "non-PAT" schemes, e.g., schemes based on iterative channel/data estimation.

Summary:

- Derived nec/suff conditions for MMSE-PAT design in LTV channels.
- Derived nec/suff conditions for MMSE-PAT design in DS channels, yielding novel MMSE-PAT schemes.
- Established bounds on the capacity of MMSE-PAT over DS chans.
- Suggested data/pilot power allocation for MMSE-PAT via $\underline{C}_{mmse-pat}$ maximization.
- Showed advantages of superimposed over non-superimposed MMSE-PAT when time-spreading dominates frequency-spreading.
- Established high-SNR noncoherent capacity of the DS channel.
- Showed that MMSE-PAT is strictly suboptimal in DS channels.