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Multicarrier Modulation:
s(i) x(i)

bits code mod demod
LTV

channel

noise

equalize/
decode b̂its+

x(i) =

Lpst∑

j=−Lpre

H(i, j)s(i − j) + w(i)

“LTV MIMO channel”

• Modulator: multicarrier symbols {s(i)} → waveforms,

• Demodulator: waveforms → multicarrier observations {x(i)}.

How should we design modulator/demodulator?
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Doubly Dispersive Channel:

• Without dispersion, Nyquist theory specifies a maximum of

1 symbol/sec/Hz for interference-free mod/demod.

• We focus on doubly (i.e., time-frequency) dispersive channels.

• No fixed eigenbasis for these channels, so ISI/ICI is unavoidable in

the absence of transmitter channel knowledge.

• Roughly, as symbol/carrier spacings are increased,

– ISI/ICI decreases (good!), but

– modulation efficiency decreases (bad!).

;What is the best tradeoff between modulation efficiency and

interference suppression?
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(Bi)Orthogonal Signaling

• The traditional solution.

• Main idea:

– Constrain waveforms for interference-free operation in

non-dispersive (i.e., trivial) channels.

– Design waveforms to minimize the ISI/ICI that results from

channel dispersion.

• Appeals to the notion of an “approximate eigenbasis” for

underspread LTV channels.

• Good interference suppression requires low modulation efficiency

(in symbols/sec/Hz).
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Non-(Bi)Orthogonal Signaling

The rational:

• We don’t expect trivial channels, so why design for them?

• We do expect to have an equalizer, so why not leverage it?

Main ideas:

• Shape, rather than suppress, ISI/ICI.

• Design waveforms to yield a target ISI/ICI response that

– is reachable (i.e., suited to the typical channel),

– allows low-complexity equalization/decoding.

• An outage capacity analysis suggests that shaping has advantages

over suppression. (More later. . . )
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Example: Pulse-Shaped FDM:

• Say we tolerate ±D subcarriers of neighboring ICI. Target MIMO

channel coefs {H(i,−Lpre), . . . , H(i, Lpst)} look like:

· · ·· · ·

· · · · · ·

pre-cursor post-cursor

interference
don’t care
signal

without
block DFE

with
block DFE

• For transmitter and receiver waveforms that are uniformly

modulated versions of pulses a(t) and b(t), respectively, can obtain

SINR-maximizing pulses by alternating between two generalized

eigenvalue problems. (Requires knowledge of Doppler spectrum,

power-delay profile, and SNR.) Allows efficient FFT-based

modulation and demodulation, i.e., OFDM complexity.
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Typical Max-SINR Pulse Shapes:

BWtotal = B Hz, N = 64 carriers, Ts = N
B

→ 1 sym/sec/Hz.

TISI =
Ts

2
, SNR=20dB,

fd

B
=0.03:
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TISI =
Ts

4
, SNR=5dB,

fd

B
=0.1:
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System Design:

• Traditionally, symbol interval Ts and carrier spacing B/N chosen to

minimize ISI/ICI (at the cost of modulation efficiency).

• Now we tolerate ISI/ICI. So how do we choose the following?

◦ D: target ICI radius.

◦ N : number of subcarriers.

◦
N

BTs

: modulation efficiency (symbols/sec/Hz).

• Assuming the use of powerful coding, with delay constraints at the

decoder, outage capacity is an appropriate performance measure.
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Outage Capacity:

• Definition of outage capacity Co via probability Po:

Po := Pr
{
I (j) < Co

}

• Example setup with M = 2, Lpre = 1, Lpst = 1:
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• Mutual info (bits/sec/Hz) between Gaussian s
(j) and x

(j)

I (j) =
1

MNs

log2 det
(
IMN + H

(j)H
R

−1
v H

(j)
)

where Ns = BTs and M is # of m.c. symbols in a code block.
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Outage Capacity vs fdTs for various D:
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⇒ Max-SINR pulse designs based on an ICI radius of ≈ fdTs have a

capacity advantage at higher Dopplers!
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Capacity vs fd/B for various {N, N
BTs

}:
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Relative to ηmod = 1. . .

• small gain from overloading (N/BTs = 1.3),

• larger penalty from redundancy (N/BTs = 0.8).

for (almost) all {N, fd/B, SNR}.

11



Phil Schniter The Ohio State University'

&

$

%

Capacity vs fd/B for various {SNR, N}:
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Suggests. . .

• PS-FDM and GP-FDM similar for N = 8,

• capacity slightly increases with N for PS-FDM,

• capacity decreases with N for GP-FDM.
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Conclusions:

• Considered interference shaping, rather than interference

suppression, to design multicarrier signaling waveforms for doubly

dispersive channels.

• Neighboring-ICI can be mitigated using low-complexity iterative

equalization/decoding (described elsewhere).

• Postcursor-ISI mitigated using block decision feedback.

• Used to design max-SINR pulse shapes for FDM system, allowing

FFT-based transmitter/receiver.

• Outage-capacity analysis suggests performance advantages over

interference-suppressing designs in coded systems.
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