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ABSTRACT

We consider the design of max-SINR pulse-shaped (PS) frequency
domain modulation (FDM), where signal to interference-plus-noise
ratio (SINR) is defined in accordance with inter-symbol and inter-
carrier interference (ISI/ICI) shaping rather than complete ISI/ICI
suppression. Because the transmitter is assumed to know thechan-
nel scattering function but not the channel realization, the resulting
max-SINR pulses are non-(bi)orthogonal. For this case, numeri-
cal results suggest that max-SINR systems designed for ISI/ICI-
shaping achieve higher outage capacity than those designedfor
ISI/ICI-suppression. An outage capacity analysis is also used to
obtain rough design guidelines for max-SINR non-(bi)orthogonal
PS-FDM, since the design paradigm differs from that of (bi)ortho-
gonal PS-FDM.

1. INTRODUCTION

The design of pulse-shaped (PS) frequency-domain modulation
(FDM) systems for doubly-selective channels has been consid-
ered by many authors (e.g., [1–8]). These works assume a lin-
ear modulation/demodulation structure in that finite-alphabet sym-
bols {sk,l} are modulated onto time-frequency translated pulses
{ak,l(t)} and demodulated using inner products between the (noisy,
spread) received signal and the time-frequency translatedpulses
{bk,l(t)}. Orthogonal systems havebk,l(t) = ak,l(t) and
〈ak,l(t), am,n(t)〉 = δk−mδl−n, while biorthogonal systems have
〈ak,l(t), bm,n(t)〉 = δk−mδl−n. (Bi)orthogonal systems have
the elegant property that inter-symbol interference (ISI)and inter-
carrier interference (ICI) are absent in non-dispersive environments,
though they suffer from ISI/ICI when used in dispersive environ-
ments. While some authors have assumed that this interference
is negligible (e.g., [5]), appealing to the existence of an “approxi-
mate” eigen-basis for underspread channels [9], others have inves-
tigated the design of pulse prototypesa0,0(t) and b0,0(t) which
minimize the interference energy for a given delay/Dopplerspread
under (bi)orthogonality constraints (e.g., [4, 6, 7]). (Bi)orthogonal
PS-FDM systems are, however, capable of significant interference
suppression only when designed with spectral efficiencies less1

than 0.8. (See, e.g., the discussion in [7].)
The PS-FDM system proposed by the author in [11] is a sig-

nificant departure from the previously cited literature in that the
pulses are designed toallow ISI/ICI within a target pattern. The
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1A different technique, OFDM-OQAM, is said to yield good ISI/ICI

suppression with unit spectral efficiency [10]. The implementation com-
plexity of these systems is substantially greater than thatof PS-FDM, how-
ever, and rises in proportional to their ISI/ICI suppression capabilities.

target pattern is chosen so that the residual ISI/ICI can be resolved
by a high-performance, yet low-complexity, soft interference can-
cellation (IC) algorithm. Pulse prototypes are then designed to
minimize out-of-target ISI/ICI given knowledge of the channel
fading statistics (i.e., the scattering function [12]). Clearly, this
system is non-(bi)orthogonal. Thus, [11] advocates ISI/ICI shap-
ing rather than ISI/ICI suppression.

When ISI/ICI is permitted, many of the standard OFDM sys-
tem design rules must be reconsidered. For example, it is no longer
the case that the cyclic prefix length must be greater than channel
delay spread. Similarly, the FDM symbol duration does not need
to be less than the channel coherence time. In addition, new ques-
tions arise. What is the optimal target ISI/ICI pattern? Should
we design for unit spectral efficiency? In an attempt to answer
these questions, we examine the outage capacity [13] of the non-
(bi)orthogonal PS-FDM system [11] for various design choices.

Notation: We use(·)t to denote transpose,(·)∗ conjugate,
and(·)H conjugate transpose.I denotes the identity matrix, and
[B]m,n denotes the element in themth row andnth column of
B, where row/column indices begin with zero.� denotes the
Hadamard product,E{·} expectation,δm the Kronecker delta, and
Z the set of integers.

2. SYSTEM MODEL

At eachi ∈ Z, a set ofN coded QAM symbols{s(i)

k } is collected
to form a FDM symbols(i) = [s(i)

0 , . . . , s(i)

N−1]
t. These symbols

are used to modulate pulsed carriers as follows:

tn =
∞

X

i=−∞

an−iNs

1√
N

N−1
X

k=0

s(i)

k ej 2π
N

(n−iNs−No)k (1)

In (1), {an} is the transmit pulse sequence,Ns is the FDM sym-
bol interval, andNo ∈ {0, . . . , N − 1} delays the carrier origin
relative to the pulse origin. The multipath channel is described by
its time-variant discrete impulse responsehtl(n, l), defined as the
time-n response to an impulse applied at timen − l. We assume a
causal impulse response of lengthNh. The observed signal is then

rn = νn +

Nh−1
X

l=0

htl(n, l)tn−l (2)

whereνn denotes samples of additive white circular Gaussian noise
(AWGN) with varianceσ2. Defining r(i)

n := riNs+n, ν(i)
n :=



νiNs+n, andh(i)

tl (n, l) := htl(iNs + n, l), we find

r(i)
n = ν(i)

n +

Nh−1
X
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N
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To estimate the FDM symbols(i), the receiver employs the pulse
{bn} as follows:

x(i)

d =
1√
N

X

n

r(i)
n bne−j 2π

N
d(n−No) (4)

Here againNo delays the carrier origin relative to the pulse origin.
Note that this system reduces to CP-OFDM withNo = Ns − N ,
{an}Ns−1

n=0 = 1, and{bn}Ns−1
n=No

= 1 (elsean = bn = 0). Note
also thatNg := Ns −N is analogous to CP-OFDM guard interval
length, though in PS-FDM we allowNg < 0.

Plugging (3) into (4), we find

x(i)

d = w(i)

d +
X

`
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X
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h̆(i,`)
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k (5)

where
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n

bnν(i)
n e−j 2π

N
d(n−No) (6)

h̆(i,`)
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1

N
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n
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X
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h(i)

tl (n, l)bna`Ns+n−l

× e−j 2π
N

d(n−No)e−j 2π
N
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Equation (5) indicates that̆h(i,`)

df (d, k) can be interpreted as the
response, at timei and subcarrierk + d, to a frequency-domain
impulse applied at timei − ` and subcarrierk. In practice we
implement finite-duration causal pulses{an} and{bn} of length
Na and Nb, respectively, implying that̆h(i,`)

df (d, k) is non-zero
only for ` ∈ {−Lpre, . . . , Lpst} whereLpre = −bNb−1

Ns
c and

Lpst = bNa+Nh−2
Ns

c. (See [11] for details.)

With the definitionsx
(i) := [x(i)

0 , . . . , x(i)

N−1]
t, w

(i) :=

[w(i)

0 , . . . , w(i)

N−1]
t, and [H(i,`)]d,k := h̆(i,`)

df (d − k, k), (5) im-
plies the linear time-varying (LTV) multiple-input multiple-output
(MIMO) system

x
(i) = w

(i) +

Lpst
X

`=−Lpre

H(i,`)
s

(i−`). (8)

In the sequel we assume wide-sense stationary uncorrelated
scattering (WSSUS) [12] so thatE{htl(n, l)h∗

tl (n − q, l − m)} =
rt(q)σ

2
l δm with rt(q) denoting normalized autocorrelation (i.e.,

rt(0) = 1) andσ2
l the variance of thelth lag. We also assume

zero-mean symbols such thatE{s(i)
s

(i−`)H} = Iδ`.

3. PULSE DESIGN

The choice of{an} and {bn} affect the ISI/ICI patterns of the
MIMO system (8). For example, it is well known that the CP-
OFDM choices yield a system for which ISI and ICI vanishif

the channel is LTI with delay spreadNh ≤ Ng + 1. The ab-
sence of ISI/ICI greatly simplifies detection; this is the classi-
cal motivation for CP-OFDM and, more generally, (bi)orthogonal
PS-FDM. When the channel is LTV or it is impractical to en-
forceNh ≤ Ns − N + 1, however, no choice of{an} and{bn}
is capable of completely suppressing both ISI and ICI. We ad-
vocate the design of pulses which impart a particular structure
on the effective channel responseH(i,`). A good target ISI/ICI
pattern should allow high-performance/low-complexity detection
while being nearly attainable for some choice of {an} and {bn};
when the channel is significantly dispersive, a target whichsup-
presses all ISI/ICI (e.g., [4, 7,8]) may not be attainable.

The lowpass nature of Doppler spectra typically encountered
in wireless communication implies that ICI will be strongest from
neighboring carriers. In other words, for smooth (or rectangular)
pulse shapes, the “cursor” coefficientH(i,0) will have large entries
near the main diagonal and smaller entries elsewhere. (See [14]
for an ICI analysis with CP-OFDM pulses.) With well designed
pulses, the ISI coefficients{H(i,`)}` 6=0 can be made small relative
to the ICI response when the delay spread is less2 than the FDM
symbol length [11]. These observations motivate an ICI/ISItarget
in which {H(i,`)}` 6=0 equal zero andH(i,0) has the banded struc-
ture illustrated by Fig. 1 for some integerD. The choice ofD is
discussed in the sequel.
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Fig. 1. Desired structure of MIMO cursor coefficientH(i,0).

In [11] we proposed pulse designs which maximized SINR:=
Es/Eni, where signal energyEs and noise-plus-interference en-
ergy Eni are defined relative to the target. If we defineEs,d to
be the energy contributed bys(i)

d to x(i)

d , and if we defineEni,d

to be the energy contributed tox(i)

d by additive noisew(i)

d , non-
cursor symbols{s(j)

d }j 6=i, and non-neighboring co-cursor symbols
{s(i)

k }d−D−1
k=0 ∪ {s(i)

k }N−1
k=d+D+1, thenEs =

P

d
Es,d andEni =

P

d
Eni,d. Note that the energy contributed tox(i)

d by neighboring
co-cursor symbols{s(i)

k }d−1
k=d−D ∪ {s(i)

k }d+D
k=d+1 is considered nei-

ther signal nor interference, but rather a “don’t care” quantity. In
choosinga := [a0, . . . , aNa−1]

t, we impose the average transmit-
ted power constraint‖a‖2 = Ns. Since the norm of the receive
pulseb := [b0, . . . , bNb−1]

t is inconsequential (i.e., signal, noise,
and interference scale together), we can choose‖b‖2 = Ns with-
out loss of generality.

3.1. Max-SINR Pulses

It was shown in [11] that alternating the pair (9)-(10) jointly opti-
mizes SINR with respect toa andb under the constraints‖a‖2 =

2If the delay spread is long compared to the FDM symbol interval,
block decision feedback detection may be applied, in which case the pulses
should be designed to allow arbitrary post-cursor ISI. For details see [11].



‖b‖2 = Ns. We usev?(M , N ) to denote the principle general-
ized eigenvector of the matrix pair(M , N ).

b?|a =
√

Ns · v?

`
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σ2
I + Rb � Cb � At − Rb � Db � As

´

(9)

a?|b =
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Ns · v?

`

Ra � Bs,

σ2
I + Ra � Ca � B t − Ra � Da � Bs

´

(10)

The matrices in (9) areNb × Nb and defined element-wise as
[Rb]m,n

:= rt(n − m), [As]m,n
:=

PNh−1
l=0 σ2

l an−la
∗
m−l,

[Cb]m,n
:= δ(〈n − m〉

N
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N
(n − m)), and [At]m,n
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PLpst
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l

a`Ns+n−la
∗
`Ns+m−l. The matrices in (10) areNa × Na and de-

fined element-wise as[Ra]
p,q

:= rt(q−p), [Bs]p,q
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PNh−1
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l

bq+lb
∗
p+l, [Da]

p,q
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N
sin( π

N
(2D+1)(q−p))/ sin( π

N
(q−p)),

[B t]p,q
:=

PLpst
`=−Lpre

PNh−1
l=0 σ2

l bq+l−`Nsb∗p+l−`Ns
, and

[Ca]p,q := δ(〈q − p〉N ). We note that (9)-(10) must be alternated
becauseAs andAt are functions ofa andBs andB t are functions
of b. In the case of Rayleigh fading, we note that the pulses de-
signs depend only on maximum Doppler frequency, power profile,
and noise variance.

While (9)-(10) is only guaranteed to converge to a local SINR
maximum, our experience leads us to believe that the global max-
imum is obtained from a properly chosen initialization (e.g., the
Gaussian pulses discussed below). In practice, (9)-(10) could be
carried out in advance for particular fading scenarios and the re-
sulting pulses stored at the terminals.

3.2. SINR-Maximizing Gaussian Pulses

It is well known that the Gaussian pulse has the best time-frequency
localization among all pulses. Thus, several authors have consid-
ered its use for PS-FDM (e.g., [8, 15,16]). Adapting the Gaussian
pulse to our system, we employ the SINR-maximizing parameters
{µa, σa, µb, σb} in the finite-length pulses (11)-(12) via numerical
optimization of (13) (which was derived in [11]).
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√

Ns(2πσ2
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1
4 e

−
(n−µa)2

4σ2
a , n ∈ {0...Na−1} (11)
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√

Ns(2πσ2
b )−

1
4 e

−
(n−µb)2

4σ2
b , n ∈ {0...Nb−1} (12)

SINR =
b

H
`

Rb � As
´

b

b
H

`

σ2I + Rb � Cb � At − Rb � Db � As
´

b
(13)

Note that (11)-(12) satisfy the constraint‖a‖2 = ‖b‖2 = Ns.

4. OUTAGE ANALYSIS

To predict PS-FDM performance with a practical coding scheme
(i.e., finite decoding delay), we examine outage capacity. It is as-
sumed that bits are coded across a block ofM FDM symbols and,
for simplicity, that the entries ins(i) are circular Gaussian. As an
example, considerM = 2, Lpre = 1, andLpst = 2. Equation (8)
implies the block system model (14) at block indexj = 0:
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Note that the last two terms in (14) constitute noise and pre/post-
cursor interference, respectively. More generally, we definex

(j) :=
[x(Mj+M−1)t, . . . , x(Mj)t]t ands

(j) := [s(Mj+M−1)t, . . . , s(Mj)t]t,
and we construct the matrixH(j) with M block rows andM block
columns, where the(k, l)th block equalsH(Mj+M−1−k,l−k). Fi-
nally, we collect the noise and pre/post-cursor contributions into
the Gaussian vectorv(j) ∈ C

MN , yielding the block system model
x

(j) = H(j)
s

(j) + v
(j). We denoteRv := E{v(j)

v
(j)H}.

The mutual information betweens(j) and x
(j), in bits per

channel use, conditioned onH(j) , is given by

I(j)

M =
1

MNs

log2 det
`

IMN + H(j)H
R

−1
v H(j)

´

, (15)

SinceH(j) is random, so isI(j)

M . The Po-outage capacityCo

is defined through the relationshipPo = Pr
˘

I(j)

M < Co

¯

. Our
experiments indicate thatI(j)

M is well modeled by the normal r.v.
N (µ, σ2), in which case it is straightforward to show that

Co = µ + σ erfinv(2Po − 1). (16)

To computeCo for the plots in Sec. 5, we use (16) with{µ, σ}
estimated from 1000 realizations ofI(j)

M .
Recall that the pulses in Sec. 3.1 and Sec. 3.2 were designed

for efficient detection—not for maximumCo. However, outage
analysis can be used to choose the values{N, D, Ng} used in
pulse construction and to predict overall performance.

5. NUMERICAL RESULTS AND DISCUSSION

All experiments employ SNR−1-variance circular AWGN{νn}, a
WSSUS Rayleigh-fading channel withσ2

l = N−1
h (for 0 ≤ l ≤

Nh) and Nh = 8, and pulse lengthsNa = 1.5Ns and Nb =
Na + dNh/2e. Bits are coded across 64 scalar symbols{s(i)

k },
so thatM = 64/N , allowing a fair comparison among different
choices ofN . “PS-FDM” refers to the power-constrained max-
SINR pulses of Sec. 3.1, while “GP-FDM” refers to the
power/Gaussian-constrained max-SINR pulses of Sec. 3.2. Recall
thatfd is the Doppler frequency normalized to thechannel-use in-
terval rather than the FDM-symbol interval.

Figure 2 shows typical traces ofCo versusNfd for various
D. Here we use GP-FDM with unit spectral efficiency (i.e.,0 =
Ns − N = Ng). Notice thatCo-maximization occurs atD ≈
Nfd. SinceD = 0 is optimum only for relatively smallNfd, we
conclude that,for roughly Nfd > 1, target responses allowing ICI
are advantageous from an outage capacity standpoint.

Figure 3 plotsCo versusfd for various SNRs and FFT sizes
N . In all cases theCo-maximizing choice ofD was employed.
PS-FDM performs equivalently to GP-FDM at the shortest FFT
size (N = 8). As N increases, the capacity of PS-FDM increases
slightly while the capacity of GP-FDM decreases slightly (and sig-
nificantly atN = 64.). We attribute this to the lack of freedom in
GP-FDM, relative to PS-FDM, pulse design. Note that, whenD
andN are well chosen, capacity increases withfd (a consequence
of Doppler diversity).

Figure 4 plotsCo versusfd for various values ofN and “equiv-
alent guard interval”Ng . Note Ng = {−N

4
, 0, N

4
} correspond

to spectral efficiencies{ 4
3
, 1, 4

5
}, respectively;Ng < 0 yields an

overloaded system which transmits> 1 symbol per channel use
(on average). The results suggest a smallCo gain from overload-
ing and a more significantCo loss for spectral efficiencies< 1
(irrespective ofN andfd). Clearly, overloading is possible only
with non-(bi)orthogonal signaling.
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6. CONCLUSIONS

The outage capacityCo of max-SINR PS-FDM was examined,
where SINR was defined according to a target pattern which allows
ICI from 2D adjacent subcarriers. Numerical results suggest that
capacity is maximized forD ≈ Nfd, implying that ICI/ISI-free
designs (i.e.,D = 0) are appropriate for small values ofNfd,
while ICI-tolerating designs (i.e.,D > 0) are more appropriate
for larger values ofNfd. The choice of FFT size and spectral
efficiency were also examined.
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