
Chapter 1

Recovering Signals with Unknown Sparsity in
Multiple Dictionaries

Rizwan Ahmad and Philip Schniter

Abstract Motivated by the observation that a given signal x may admit sparse rep-

resentations in multiple dictionaries Ψd , but with varying levels of sparsity across

dictionaries, we propose two new algorithms for signal reconstruction from noisy

linear measurements. Our first algorithm, extends the well-known basis-pursuit-

denoising algorithm from the L1 regularizer ‖Ψx‖1 to composite regularizers of

the form ∑d λd‖Ψdx‖1 while self-adjusting the regularization weights λd . Our sec-

ond algorithm extends the well-known iteratively reweighted L1 algorithm to the

same family of composite regularizers. For each algorithm, we provide several in-

terpretations: i) majorization-minimization (MM) applied to a non-convex log-sum-

type penalty, ii) MM applied to an approximate ℓ0-type penalty, iii) MM applied

to Bayesian MAP inference under a particular hierarchical prior, and iv) variational

expectation-maximization (VEM) under a particular prior with deterministic un-

known parameters.A detailed numerical study suggests that, when compared to their

non-composite counterparts, our composite algorithms yield significantly improve-

ments in accuracy with only modest increases in computational complexity.

1.1 Introduction

Consider the problem of recovering a signal or image x ∈ C
n from noisy linear

measurements

y = Φx+ e ∈ C
m, (1.1)
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where the measurement operator Φ ∈ C
m×n is known and e ∈ C

m is additive noise.

Such problems arise in imaging, communications, speech, radar, machine learning,

and many other applications. We are particularly interested in the case where m≪ n,

under which x cannot be uniquely determined from the measurements y, even in the

absence of noise. This latter situation arises in many of the applications mentioned

earlier, and it has recently been popularized under the framework of compressive

sensing (CS) [12, 22, 27].

1.1.1 ℓ2-Constrained Regularization

By incorporating (partial) prior knowledge about the signal and noise power, it may

be possible to accurately recover x from m≪ n measurements y. In this work, we

consider signal recovery based on optimization problems of the form

argmin
x

R(x) s.t. ‖y−Φx‖2 ≤ ε , (1.2)

where ε ≥ 0 a data-fidelity tolerance that reflects prior knowledge of the noise power

and R(x) is a penalty, or regularization, that reflects prior knowledge about the signal

x [35]. We briefly summarize several common instances of R(x) below.

1. If x is known to be sparse (i.e., contains sufficiently few non-zero coefficients)

or approximately sparse, then one would ideally like to use the ℓ0 penalty (i.e.,

counting “norm”) R(x) = ‖x‖0 , |supp(x)|. However, since this choice makes

(1.2) NP-hard, it is rarely considered in practice.

2. The ℓ1 penalty, R(x)=‖x‖1 =∑n
j=1 |x j|, is a commonly used surrogate to ℓ0 that

makes (1.2) convex and thus solvable in polynomial time. Under this penalty,

(1.2) is known as basis pursuit denoising [17] or as the lasso [44]. It is commonly

used in synthesis-based CS [12, 22, 27].

3. Non-convex surrogates to the ℓ0 penalty have also been proposed. Well-known

varieties include the ℓp penalty R(x)=‖x‖p
p=∑n

j=1 |x j|p with p ∈ (0,1), and the

log-sum penalty R(x)=∑n
j=1 log(δ + |x j|) with δ ≥ 0. Although (1.2) becomes

difficult to solve exactly in a guaranteed manner, it can be approximated, leading

to excellent empirical performance. Further details will be given below.

4. The choice R(x) = ‖Ψx‖1, with known matrix Ψ ∈ C
L×n, is familiar from

analysis-based CS [21]. Penalties of this form are appropriate when prior knowl-

edge suggests that the transform coefficients Ψx are (approximately) sparse, as

opposed to the signal x itself being sparse. In this case, (1.2) can be solved by

the generalized lasso [45]. When Ψ is a finite-difference operator, ‖Ψx‖1 yields

anisotropic total variation regularization [42].

5. Non-convex penalties can also be placed on the transform coefficients Ψx, lead-

ing to, e.g., R(x)=‖Ψx‖p
p =∑L

l=1 |ψT
l x|p with p ∈ (0,1) or R(x)=∑L

l=1 log(δ +
|ψT

l x|) with δ ≥ 0, where ψT
l denotes the lth row of Ψ .
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With a non-convex penalty R(x), a popular approach to solving (1.2) is through

iteratively reweighted ℓ! (IRW-L1) [13, 46]. There, (1.2) with a fixed non-convex

R(x) is approximated by a sequence of convex problems

x(t) = argmin
x

R(t)(x) s.t. ‖y−Φx‖2
2 ≤ ε (1.3)

with R(t)(x) = ∑n
j=1 w

(t)
j |x j| a weighted ℓ1 norm, where the weights w(t) are com-

puted from the previous estimate x(t−1). When w
(t)
j =(δ + |x(t−1)

j |)−1 for a small

constant δ ≥ 0, the IRW-L1 algorithm can be interpreted [13] as a majorization-

minimization (MM) [29] approach to (1.2) under the log-sum penalty R(x) =

∑n
j=1 log(δ + |x j|), which can be considered as a non-convex surrogate to the ℓ0

penalty. Various empirical and theoretical studies [13, 46, 30] of this latter case have

shown performance surpassing that of the ℓ1 penalty. Unconstrained formulations of

IRW-L1 based on “argminx R(t)(x)+ γ‖y−Φx‖2
2” have also been considered, such

as in the seminal work [25]. Likewise, constrained and unconstrained versions of it-

eratively reweighted ℓ2 were considered in [23, 25, 16, 19, 46]. See [35] for further

discussion.

1.1.2 Sparsity-Inducing Composite Regularizers

In this work, we focus on sparsity-inducing composite regularizers of the form

R1(x),
D

∑
d=1

λd‖Ψdx‖1, (1.4)

where each Ψd ∈CLd×n is a known analysis operator and λd ≥ 0 is its regularization

weight. Our goal is to recover the signal x from measurements (1.1) using a con-

strained optimization (1.2) under the composite regularizer (1.4). Doing so requires

an optimization of the weights λ , [λ1, . . . ,λD]
T in (1.4). We are also interested in

iteratively re-weighted extensions of this problem that, at iteration t, use composite

regularizers of the form1

R(t)(x) =
D

∑
d=1

λ
(t)
d ‖W

(t)
d Ψdx‖1, (1.5)

where W
(t)
d are diagonal matrices. This latter approach requires the optimization of

both λ
(t)
d and W

(t)
d for all d.

As a motivating example, suppose that {Ψd} is a collection of orthonormal bases

that includes, e.g., spikes, sines, and various wavelet bases. The signal x may be

sparse in some of these bases, but not all. Thus, we would like to adjust each λd

1 Although (1.5) is over-parameterized, the form of (1.5) is convenient for algorithm development.
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in (1.4) to appropriately weight the contribution from each basis. But it is not clear

how to do this when x is unknown. As another example, suppose that x contains a

(rasterized) sequence of images and that ‖Ψ1x‖1 measures temporal total-variation

while ‖Ψ2x‖1 measures spatial total-variation. Intuitively, we would like to weight

these two regularizations differently, depending on whether the image varies more

in the temporal or spatial dimensions. But it is not clear how to do this when x is

unknown.

1.1.3 Contributions

In this work, we propose novel iteratively reweighted approaches to sparse recon-

struction based on composite regularizations of the form (1.4)-(1.5) with automatic

tuning of the regularization weights λ and Wd . For each of our proposed algorithms,

we will provide four interpretations:

1. MM applied to a non-convex log-sum-type penalty,

2. MM applied to an approximate ℓ0-type penalty,

3. MM applied to Bayesian MAP inference based on Gamma and Jeffrey’s hyper-

priors [7, 24, 37], and

4. variational expectation maximization (VEM) [36, 8] applied to a Laplacian or

generalized-Pareto prior with deterministic unknown parameters.

We show that the MM interpretation guarantees convergence in the sense of sat-

isfying an asymptotic stationary point condition [34]. Moreover, we establish con-

nections between our proposed approaches and existing IRW-L1 algorithms, and

we provide novel VEM-based and Bayesian MAP interpretations of those existing

algorithms.

Finally, through the detailed numerical study in Sec. 1.4, we establish that our

proposed algorithms yield significant gains in recovery accuracy relative to existing

methods with only modest increases in runtime. In particular, when {Ψd} are chosen

so that the sparsity of Ψdx varies with d, this structure can be exploited for improved

recovery. The more disparate the sparsity, the greater the improvement.

1.1.4 Related Work

As discussed above, the generalized lasso [45] is one of the most common ap-

proaches to L1-regularized analysis-CS [21], i.e., the optimization (1.2) under the

regularizer R(x) = ‖Ψx‖1. The Co-L1 algorithm that we present in Sec. 1.2 can

be interpreted as a generalization of this L1 method to composite regularizers of the

form (1.4). Meanwhile, the iteratively reweighted extension of the generalized lasso,

IRW-L1 [13], often yields significantly better reconstruction accuracy with a modest

increase in complexity (e.g., [13, 14]). The Co-IRW-L1 algorithm that we present in
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Sec. 1.3 can then be interpreted as a generalization of this IRW-L1 method to com-

posite regularizers of the form (1.5). The existing non-composite L1 and IRW-L1

approaches essentially place an identical weight λd = 1 on every term in (1.4)-(1.5),

and thus make no attempt to leverage differences in the sparsity of the transform co-

efficients Ψdx across the sub-dictionary index d. However, the numerical results that

we present in Sec. 1.4 suggest that there can be significant advantages to optimizing

λd , which is precisely what our methods do.

The problem of optimizing the weights λd of composite regularizers R(x;λ ) =

∑d λdRd(x) is a long-standing problem with a rich literature (see, e.g., the recent

book [33]). However, the vast majority of that literature focuses on the Tikhonov

case where Rd(x) are quadratic (see, e.g., [11, 47, 28, 26]). One notable exception

is [6], which assumes continuously differentiable Rd(x) and thus does not cover our

composite ℓ1 prior (1.4). Another notable exception is [32], which assumes i) the

availability of a noiseless training example of x to help tune the L1 regularization

weights λ in (1.4), and ii) the trivial measurement matrix Φ = I. In contrast, our

proposed methods operate without any training and support generic measurement

matrices Φ .

In the special case that each Ψd is composed of a subset of rows from the n× n

identity matrix, the regularizers (1.4)-(1.5) can induce group sparsity in the recov-

ery of x, in that certain sub-vectors xd , Ψdx of x are driven to zero while others

are not. The paper [40] develops an IRW-L1-based approach to group-sparse sig-

nal recovery for equal-sized non-overlapping groups that can be considered as a

special case of the Co-L1 algorithm that we develop in Sec. 1.2. However, our ap-

proach is more general in that it handles possibly non-equal and/or overlapping

groups, not to mention sparsity in a generic set of sub-dictionaries Ψd . Recently,

Bayesian MAP group-sparse recovery was considered in [4]. However, the tech-

nique described there uses Gaussian scale mixtures or, equivalently, weighted-ℓ2

regularizers R(x;λ ) = ∑d λd‖xd‖2, while our methods use weighted-ℓ1 regularizers

(1.4)-(1.5).

A recent work [2] considered the unconstrained version of the problem consid-

ered in this chapter, where the aim is to solve a non-convex optimization problem of

the form

argmin
x

R(x)+ γ‖y−Φx‖2, (1.6)

for some γ > 0, through a sequence of convex problems

x(t) = argmin
x

D

∑
d=1

λ
(t)
d ‖W

(t)
d Ψdx‖1 + γ‖y−Φx‖2

2, (1.7)

where {λ (t)
d ,W

(t)
d }D

d=1 are set using x(t−1). Although the unconstrained case bears

some similarity to the constrained case considered in this chapter, each case leads

to a distinct set of algorithms, interpretations, and analyses.
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1.1.5 Notation

We use capital letters like Ψ for matrices, small letters like x for vectors, and (·)T

for transposition. We use ‖x‖p , (∑ j |x j|p)1/p for the ℓp norm of vector x, with x j

representing the nth coefficient in x. When referring to the “mixed ℓp,q norm” of a

matrix X , we mean (∑d(∑l |xd,l |p)q/p)1/q as in [31], where xd,l is the dth row and

lth column of X . We adopt the index-set abbreviation [D] , {1, . . . ,D} and use I

to denote the identity matrix. We use ∇g(x) for the gradient of a functional g(x)
with respect to x, and 1A for the indicator function that returns the value 1 when A

is true and 0 when A is false. We use p(x;λ ) for the pdf of random vector x under

deterministic parameters λ , and p(x|λ ) for the pdf of x conditioned on the random

vector λ . We use DKL(q‖p) to denote the Kullback-Leibler (KL) divergence of the

pdf p from the pdf q, and we use R and C to denote the real and complex fields,

respectively.

1.2 The Co-L1 Algorithm

We first propose the Composite-L1 (Co-L1) algorithm, which is summarized in Al-

gorithm 1. There, Ld denotes the number of rows in Ψd .

Algorithm 1 The Co-L1 Algorithm

1: input: {Ψd}D
d=1, Φ , y, ε ≥ 0, δ ≥ 0

2: initialization: λ
(1)
d = 1 ∀d

3: for t = 1,2,3, . . .

4: x(t)← argmin
x

D

∑
d=1

λ
(t)
d ‖Ψdx‖1 s.t. ‖y−Φx‖2 ≤ ε

5: λ
(t+1)
d ← Ld

δ +‖Ψdx(t)‖1

, d ∈ [D]

6: end

7: output: x(t)

The main computational step of Co-L1 is the constrained ℓ1 minimization in

line 4, which can be recognized as (1.2) under the composite regularizer R1 from

(1.4). This is a convex optimization problem that can be readily solved by existing

techniques (e.g., Douglas-Rachford splitting [18], ADMM [10, 1], NESTA-UP [5],

MFISTA via smoothing and decomposition [43], etc.), the specific choice of which

is immaterial to this paper.

Note that Co-L1 requires the user to set a small regularization term δ ≥ 0 whose

role is to prevent the denominator in line 5 from reaching zero. For typical choices

of the analysis operators Ψd and ε , the vector Ψdx(t) will almost never be exactly

zero, in which case it suffices to set δ = 0. Also, Co-L1 requires the user to set the
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measurement fidelity constraint ε ≥ 0. For additive white Gaussian noise (AWGN)

of variance σ2 > 0, the choice ε = 0.8
√

σ2m works empirically well, and we used

this setting for all numerical results in Sec. 1.4.

Co-L1’s update of the weights λ , defined by line 5 of Algorithm 1, can be in-

terpreted in various ways, as we detail below. For ease of explanation, we first con-

sider the case where the signal x is real-valued, and later discuss the complex-valued

case in Sec. 1.2.6. As we will see, the steps in Algorithm 1 apply to both real- and

complex-valued x.

Theorem 1 (Co-L1). The Co-L1 algorithm in Algorithm 1 has the following inter-

pretations:

1. MM applied to (1.2) under the log-sum penalty

RD
ls
(x;δ ),

D

∑
d=1

Ld log(δ +‖Ψdx‖1), (1.8)

2. as δ → 0, an approximate solution to the weighted ℓ1,0 [31] problem

argmin
x

D

∑
d=1

Ld 1‖Ψdx‖1>0 s.t. ‖y−Φx‖2 ≤ ε , (1.9)

3. for ε = 0, MM applied to Bayesian MAP estimation under a noiseless likelihood

and the hierarchical prior

p(x|λ ) =
D

∏
d=1

(
λd

2

)Ld

exp
(
−λd‖Ψdx‖1

)
(1.10)

λ ∼ i.i.d. Γ (0,δ−1) (1.11)

where zd ,Ψdx ∈ R
Ld is i.i.d. Laplacian given λd , and λd is Gamma distributed

with scale parameter δ−1 and shape parameter zero, which becomes Jeffrey’s

non-informative hyperprior p(λd) ∝ 1λd>0/λd when δ = 0.

4. for ε = 0, variational EM under a noiseless likelihood and the prior

p(x;λ ) ∝
D

∏
d=1

(
λd

2

)Ld

exp
(
−λd(‖Ψdx‖1 +δ )

)
, (1.12)

which, when δ = 0, is i.i.d. Laplacian on zd =Ψdx ∈RLd with deterministic scale

parameter λd > 0.

Proof. See Sections 1.2.1 to 1.2.5 below.

Importantly, the MM interpretation implies convergence (in the sense of an

asymptotic stationary point condition) when δ > 0, as detailed in Sec. 1.2.2.
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1.2.1 Log-Sum MM Interpretation of Co-L1

Consider the optimization problem

argmin
x

RD
ls(x;δ ) s.t. ‖y−Φx‖2 ≤ ε (1.13)

with RD
ls from (1.8). Inspired by [13, §2.3], we write (1.13) as

argmin
x,u

D

∑
d=1

Ld log

(
δ +

Ld

∑
l=1

ud,l

)
s.t.

{
‖y−Φx‖2 ≤ ε

|ψT
d,lx| ≤ ud,l ∀d, l,

(1.14)

where ψT
d,l is the lth row of Ψd . Problem (1.14) is of the form

argmin
v

g(v) s.t. v ∈C, (1.15)

where v = [uT ,xT ]T , C is a convex set,

g(v) =
D

∑
d=1

Ld log

(
δ + ∑

k∈Kd

vk

)
(1.16)

is a concave penalty, and the set Kd , {k : ∑d−1
d′=1

Ld′ < k ≤ ∑d
d′=1 Ld′} contains the

indices k such that vk ∈ {ud,l}Ld

l=1.

Majorization-minimization (MM) [29, 34] is a popular method to attack non-

convex problems of this form. In particular, MM iterates the following two steps:

(i) construct a surrogate g(v;v(t)) that majorizes g(v) at v(t), and (ii) update v(t+1) =
argminv∈C g(v;v(t)). By “majorize,” we mean that g(v;v(t)) ≥ g(v) for all v with

equality when v = v(t).

Due to the concavity of our g, we can construct a majorizing surrogate using the

tangent of g at v(t). In particular, let ∇g denote the gradient of g w.r.t. v. Then

g(v;v(t)) = g(v(t))+∇g(v(t))T [v− v(t)] (1.17)

majorizes g(v) at v(t), and so the MM iterations become

v(t+1) = argmin
v∈C

∇g(v(t))T v (1.18)

after neglecting the v-invariant terms. From (1.16), we see that

[∇g(v(t))]k =





Ld(k)

δ +∑i∈Kd(k)
v
(t)
i

if d(k) 6= 0

0 else,

(1.19)

where d(k) is the index d ∈ [D] of the set Kd containing k, or 0 if no such set exists.

Thus MM prescribes
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v(t+1) = argmin
v∈C

D

∑
d=1

∑
k∈Kd

Ldvk

δ +∑i∈Kd
v
(t)
i

, (1.20)

or equivalently

x(t+1) = argmin
x

D

∑
d=1

Ld ∑
Ld

l=1 |ψT
d,lx|

δ +∑
Ld

l=1 |ψT
d,lx

(t)|
s.t. ‖y−Φx‖2 ≤ ε (1.21)

= argmin
x

D

∑
d=1

λ
(t+1)
d ‖Ψdx‖1 s.t. ‖y−Φx‖2 ≤ ε (1.22)

for

λ
(t+1)
d =

Ld

δ +‖Ψdx(t)‖1

, (1.23)

which coincides with Algorithm 1. This establishes Part 1 of Theorem 1.

1.2.2 Convergence of Co-L1

The recent paper [34] studies the convergence of MM algorithms. In particular, it

establishes that when the optimization objective g(v) is differentiable in v ∈C with

a Lipschitz continuous gradient, the MM sequence {v(t)}t≥1 satisfies an asymptotic

stationary point (ASP) condition. Although it falls short of establishing convergence

to a local minimum (which is very difficult for general non-convex optimization

problems), the ASP condition is based on a classical necessary condition for a lo-

cal minimum. In particular, using ∇g(v;d) to denote the directional derivative of g

at v in the direction d, it is known [9] that v⋆ locally minimizes g over C only if

∇g(v⋆;v− v⋆) ≥ 0 for all v ∈ C. Thus, in [34], it is said that {v(t)}t≥1 satisfies an

ASC condition if

liminf
t→+∞

inf
v∈C

∇g(v(t);v− v(t))

‖v− v(t)‖2

≥ 0. (1.24)

In our case, g from (1.16) is indeed differentiable, with gradient given in (1.19).

Moreover, [2, App. A] shows that the gradient is Lipschitz continuous when δ > 0.

Thus, the sequence of estimates produced by Algorithm 1 satisfies the ASP condi-

tion (1.24).

1.2.3 Approximate ℓ1,0 Interpretation of Co-L1

In the limit of δ → 0, the log-sum minimization
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argmin
x

n

∑
j=1

log(δ + |x j|) s.t. ‖y−Φx‖2 ≤ ε (1.25)

is known [41] to be equivalent to ℓ0 minimization

argmin
x
‖x‖0 s.t. ‖y−Φx‖2 ≤ ε . (1.26)

(See [2, App. B] for a proof.) This equivalence can be seen intuitively as follows. As

δ → 0, the contribution to the regularization term ∑n
j=1 log(δ + |x j|) from each non-

zero x j remains finite, while that from each zero-valued x j approaches −∞. Since

we are interested in minimizing the regularization term, we get a huge reward for

each zero-valued x j, or—equivalently—a huge penalty for each non-zero x j.

To arrive at an ℓ0 interpretation of the Co-L1 algorithm, we consider the corre-

sponding optimization problem (1.13) in the limit that δ → 0. There we see that the

regularization term RD
ls(x;0) from (1.8) yields Ld huge rewards when ‖Ψdx‖1=0, or

equivalently Ld huge penalties when ‖Ψdx‖1 6= 0, for each d ∈ [D]. Thus, we can

interpret Co-L1 as attempting to solve the optimization problem (1.9), which is a

weighted version of the “ℓp,q mixed norm” problem from [31] for p=1 and q→ 0.

This establishes Part 2 of Theorem 1.

1.2.4 Bayesian MAP Interpretation of Co-L1

The MAP estimate [38] of x from y is

xMAP , argmax
x

p(x|y) = argmin
x

{
− log p(x|y)

}
(1.27)

= argmin
x

{
− log p(x)− log p(y|x)

}
, (1.28)

where (1.27) used the monotonicity of log and (1.28) used Bayes rule. In the case

of a noiseless likelihood (e.g., AWGN with variance σ2 → 0), the second term in

(1.28) is +∞ unless y = Φx, and so

xMAP = argmin
x

{
− log p(x)

}
s.t. y = Φx. (1.29)

Recall that, with shape parameter κ and scale parameter θ , the Gamma pdf

is Γ (λd ;κ ,θ) = 1λd>0λ κ−1
d θ−κ exp(−λd/θ)/Γ (κ) where Γ (κ) is the Gamma

function. Since Γ (λd ;κ ,θ) ∝ 1λd>0λ κ−1
d exp(−λd/θ), we see that Γ (λd ;0,∞) ∝

1λd>0/λd , which is Jeffrey’s non-informative hyperprior [7, 24, 37] for the Laplace

scale parameter λd . Then, according to (1.10)-(1.11), the prior equals
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p(x) =
∫

RD
p(x|λ )p(λ )dλ (1.30)

∝
D

∏
d=1

∫ ∞

0

(
λd

2

)Ld

exp(−λd‖Ψdx‖1)
exp(−λdδ )

λd

dλd (1.31)

=
D

∏
d=1

(Ld−1)!
(
2(‖Ψdx‖1 +δ )

)Ld
, (1.32)

which implies that

− log p(x) = const+
D

∑
d=1

Ld log
(
‖Ψdx‖1 +δ

)
. (1.33)

Thus (1.29), (1.33), and (1.8) imply

xMAP = argmin
x

RD
ls(x;0) s.t. y = Φx. (1.34)

Finally, applying the MM algorithm to this optimization problem (as detailed in

Sec. 1.2.1), we arrive at the ε = 0 version of Algorithm 1. This establishes Part 3 of

Theorem 1.

1.2.5 Variational EM Interpretation of Co-L1

The variational expectation-maximization (VEM) algorithm [36, 8] is an iterative

approach to maximum-likelihood (ML) estimation that generalizes the EM algo-

rithm from [20]. We now provide a brief review of the VEM algorithm and describe

how it can be applied to estimate λ in (1.12).

First, note that the log-likelihood can be written as

log p(y;λ ) =
∫

q(x) log p(y;λ )dx (1.35)

=
∫

q(x) log

[
p(x,y;λ )

q(x)

q(x)

p(x|y;λ )

]
dx (1.36)

=
∫

q(x) log
p(x,y;λ )

q(x)
dx

︸ ︷︷ ︸
, F

(
q(x);λ

)

+
∫

q(x) log
q(x)

p(x|y;λ )
dx

︸ ︷︷ ︸
, DKL

(
q(x)

∥∥p(x|y;λ )
)

, (1.37)

for an arbitrary pdf q(x), where DKL(q‖p) denotes the KL divergence of p from q.

Because DKL(q‖p)≥ 0 for any q and p, we see that F(q(x);λ ) is a lower bound on

log p(y;λ ). The EM algorithm performs ML estimation by iterating
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q(t)(x) = argmin
q

DKL

(
q(x)

∥∥p(x|y;λ (t))
)

(1.38)

λ (t+1) = argmax
λ

F(q(t)(x);λ ), (1.39)

where the “E” step (1.38) tightens the lower bound and the “M” step (1.39) maxi-

mizes the lower bound.

The EM algorithm places no constraints on q(x), in which case the solution to

(1.38) is simply q(t)(x) = p(x|y;λ (t)), i.e., the posterior pdf of x under λ = λ (t).

In many applications, however, this posterior is too difficult to compute and/or use

in (1.39). To circumvent this problem, the VEM algorithm constrains q(x) to some

family of distributions Q that makes (1.38)-(1.39) tractable.

For our application of the VEM algorithm, we constrain to distributions of the

form

q(x) ∝ lim
τ→0

exp
(

1
τ log p(x|y;λ )

)
, (1.40)

which has the effect of concentrating the mass in q(x) at its mode. Plugging this q(x)
and p(x,y;λ ) = p(y|x)p(x;λ ) into (1.37), we see that the M step (1.39) reduces to

λ (t+1) = argmax
λ

log p(x;λ )
∣∣
x=x

(t)
MAP

(1.41)

for x
(t)
MAP , argmax

x
p(x|y;λ (t)), (1.42)

where (1.42) can be interpreted as the E step. For the particular p(x;λ ) in (1.12), we

have that

log p(x;λ ) = const+
D

∑
d=1

[
Ld log(λd)−λd(‖Ψdx‖1 +δ )

]
, (1.43)

and by zeroing the gradient w.r.t. λ , we find that (1.41) becomes

λ
(t+1)
d =

Ld∥∥Ψdx
(t)
MAP

∥∥
1
+δ

, d ∈ [D]. (1.44)

Meanwhile, from the noiseless MAP expression (1.29) and (1.43), we find that

(1.42) becomes

x
(t)
MAP = argmin

x

D

∑
d=1

λ
(t)
d ‖Ψdx‖1 s.t. y = Φx. (1.45)

In conclusion, our VEM algorithm iterates the steps (1.44)-(1.45), which match

the steps in Algorithm 1 for ε = 0. This establishes Part 4 of Theorem 1.
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1.2.6 Co-L1 for Complex-Valued x

In Theorem 1 and Sections 1.2.1-1.2.5, real-valued x was assumed for ease of ex-

planation. However, real-valuedness was employed only in defining the Laplacian

pdfs (1.10) and (1.12). As we now show, the Co-L1 algorithm in Algorithm 1 can

also be justified based on a complex-valued Laplacian pdf. For this, we focus on the

VEM interpretation (recall Part 4 of Theorem 1), noting that a similar justification

can be made based on the Bayesian MAP interpretation. In particular, we show that,

for ε = 0, Algorithm 1 results from VEM inference under an noiseless likelihood

and the signal prior

p(x;λ ) ∝
D

∏
d=1

(
λd

2π

)2Ld

exp
(
−λd(‖Ψdx‖1 +δ )

)
, (1.46)

which, when δ = 0, is i.i.d. Laplacian on zd =Ψdx ∈ C
Ld with deterministic scale

parameter λd > 0. To show this, we follow the steps in Sec. 1.2.5 up to the log-prior

in (1.43), which now becomes

log p(x;λ ) = const+
D

∑
d=1

[
2Ld log(λd)−λd(‖Ψdx‖1 +δ )

]
. (1.47)

Zeroing the gradient w.r.t. λ , we find that the VEM update in (1.41) becomes

λ
(t+1)
d =

2Ld∥∥Ψdx
(t)
MAP

∥∥
1
+δ

, d ∈ [D], (1.48)

which differs from its real-valued counterpart (1.44) in a constant scaling of 2. How-

ever, this scaling does not affect x
(t+1)
MAP in (1.45) and thus does not affect the output

x(t) of Algorithm 1, and thus can be ignored.

1.2.7 New Interpretations of the IRW-L1 Algorithm

The proposed Co-L1 algorithm is related to the analysis-CS formulation of the well-

known IRW-L1 algorithm from [13]. For clarity, and for later use in Sec. 1.3, we

summarize this latter algorithm in Algorithm 2, and note that the synthesis-CS for-

mulation follows from the special case that Ψ = I.

Comparing Algorithm 2 to Algorithm 1, we see that IRW-L1 coincides with Co-

L1 in the case that every sub-dictionary Ψd has dimension one, i.e., Ld =1 ∀d and

D=L, where L , ∑D
d=1 Ld denotes the total number of analysis coefficients. Thus,

the Co-L1 interpretations from Theorem 1 can be directly translated to IRW-L1 as

follows.
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Algorithm 2 The IRW-L1 Algorithm

1: input: Ψ = [ψ1, . . . ,ψL]
T , Φ , y, ε ≥ 0, δ ≥ 0

2: initialization: W (1) = I

3: for t = 1,2,3, . . .

4: x(t)← argmin
x
‖W (t)Ψx‖1 s.t. ‖y−Φx‖2 ≤ ε

5: W (t+1)← diag

{
1

δ + |ψT
1 x(t)| , · · · ,

1

δ + |ψT
L x(t)|

}

6: end

7: output: x(t)

Corollary 1 (IRW-L1). The IRW-L1 algorithm from Algorithm 2 has the following

interpretations:

1. MM applied to (1.2) under the log-sum penalty

RL
ls
(x;δ ) =

L

∑
l=1

log(δ + |ψT
l x|), (1.49)

recalling the definition of RL
ls

from (1.8),

2. as δ → 0, an approximate solution to the ℓ0 problem

argmin
x

L

∑
l=1

1|ψT
l

x|>0 s.t. ‖y−Φx‖2 ≤ ε , (1.50)

3. for ε = 0, MM applied to Bayesian MAP estimation under a noiseless likelihood

and the hierarchical prior

p(x|λ ) =
L

∏
l=1

λl

2
exp
(
−λl |ψT

l x|
)

(1.51)

λ ∼ i.i.d. Γ (0,δ−1), (1.52)

where zl=ψT
l x is Laplacian given λl , and λl is Gamma distributed with scale pa-

rameter δ−1 and shape parameter zero, which becomes Jeffrey’s non-informative

hyperprior p(λl) ∝ 1λl>0/λl when δ = 0.

4. for ε = 0, variational EM under a noiseless likelihood and the prior

p(x;λ ) ∝
L

∏
l=1

λl

2
exp
(
−λl(|ψT

l x|+δ )
)
, (1.53)

which, when δ = 0, is independent Laplacian on z=Ψx ∈ R
L under the positive

deterministic scale parameters in λ .
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While Part 1 and Part 2 of Corollary 1 were established for the synthesis-CS

formulation of IRW-L1 in [13], we believe that Part 3 and Part 4 are novel interpre-

tations of IRW-L1.

1.3 The Co-IRW-L1 algorithm

We now propose the Co-IRW-L1-δ algorithm, which is summarized in Algorithm 3.

Co-IRW-L1-δ can be thought of as a hybrid of the Co-L1 and IRW-L1 approaches

from Algorithms 1 and 2, respectively. Like with Co-L1, the Co-IRW-L1-δ algo-

rithm uses sub-dictionary dependent weights λd that are updated at each iteration t

using a sparsity metric on Ψdx(t). But, like with IRW-L1, the Co-IRW-L1-δ algo-

rithm also uses diagonal weight matrices W
(t)
d that are updated at each iteration. As

with both Co-L1 and IRW-L1, the computational burden of Co-IRW-L1-δ is dom-

inated by the constrained ℓ1 minimization problem in line 4 of Algorithm 3, which

is readily solved by existing techniques like Douglas-Rachford splitting.

Algorithm 3 The Real-Valued Co-IRW-L1-δ Algorithm

1: input: {Ψd}D
d=1, Φ , y, ε ≥ 0, δd > 0 ∀d, ρ ≥ 0,

2: initialization: λ
(1)
d = 1,W

(1)
d = I, ∀d ∈ [D]

3: for t = 1,2,3, . . .

4: x(t)← argmin
x

D

∑
d=1

λ
(t)
d ‖W

(t)
d Ψdx‖1 s.t. ‖y−Φx‖2 ≤ ε

5: λ
(t+1)
d ←

[
1

Ld

Ld

∑
l=1

log

(
1+ρ +

|ψT
d,lx

(t)|
δd

)]−1

+1, ∀d ∈ [D]

6: W
(t+1)
d ← diag

{
1

δd(1+ρ)+ |ψT
d,1x(t)| , · · · ,

1

δd(1+ρ)+ |ψT
d,Ld

x(t)|

}
, ∀d ∈ [D]

7: end

8: output: x(t)

THE Co-IRW-L1-δ algorithm can be interpreted in various ways, as we detail

below. For clarity, we first consider fixed regularization parameters δ and later, in

Sec. 1.3.6, we describe how they can be adapted at each iteration, leading to the

Co-IRW-L1 algorithm. Also, to simplify the development, we first consider the case

where x is real-valued and later, in Sec. 1.3.7, discuss the complex-valued case.

Theorem 2 (Co-IRW-L1-δ ). The real-valued Co-IRW-L1-δ algorithm in Algo-

rithm 3 has the following interpretations:

1. MM applied to (1.2) under the log-sum-log penalty
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Rlsl(x;δ ,ρ),
D

∑
d=1

Ld

∑
l=1

log

[(
δd(1+ρ)+ |ψT

d,lx|
) Ld

∑
i=1

log

(
1+ρ +

|ψT
d,ix|
δd

)]
,

(1.54)

2. as ρ → 0 and δd → 0 ∀d, an approximate solution to the ℓ0 + ℓ0,0 problem

argmin
x
‖Ψx‖0 +

D

∑
d=1

Ld 1‖Ψdx‖0>0 s.t. ‖y−Φx‖2 ≤ ε , (1.55)

3. for ε = 0, MM applied to Bayesian MAP estimation under a noiseless likelihood

and the hierarchical prior

p(x|λ ;δ ) =
D

∏
d=1

Ld

∏
l=1

λd

2δd

(
1+ρ +

|ψT
d,lx|
δd

)−(λd+1)

(1.56)

p(λ ) =
D

∏
d=1

p(λd), p(λd) ∝

{
1

λd
λd > 0

0 else
, (1.57)

where, when ρ = 0, the variables zd =Ψdx ∈ R
Ld are i.i.d. generalized-Pareto

[15] given λd , and p(λd) is Jeffrey’s non-informative hyperprior [7, 24, 37] for

the random shape parameter λd .

4. for ε = 0, variational EM under a noiseless likelihood and the prior

p(x;λ ,δ ) =
D

∏
d=1

Ld

∏
l=1

λd−1

2δd

(
1+ρ +

|ψT
d,lx|
δd

)−λd

, (1.58)

where, when ρ = 0, the variables zd =Ψdx ∈ R
Ld are i.i.d. generalized-Pareto

with deterministic shape parameter λd > 1 and scale parameter δd > 0.

Proof. See Sections 1.3.1 to 1.3.5 below.

As with Co-L1, the MM interpretation implies convergence (in the sense of an

asymptotic stationary point condition) when ρ > 0, as detailed in Sec. 1.3.2.

1.3.1 Log-Sum-Log MM Interpretation of Co-IRW-L1-δ

Consider the optimization problem

argmin
x

Rlsl(x;δ ,ρ) s.t. ‖y−Φx‖2 ≤ ε , (1.59)

with Rlsl defined in (1.54). We attack this optimization problem using the MM ap-

proach detailed in Sec. 1.2.1. The difference is that now the function g is defined

as
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g(v) =
D

∑
d=1

∑
k∈Kd

log

[(
δd(1+ρ)+ vk

)
∑

i∈Kd

log

(
1+ρ +

vi

δd

)]
(1.60)

=
D

∑
d=1

[
Ld log ∑

i∈Kd

log

(
1+ρ +

vi

δd

)
+ ∑

k∈Kd

log
(
δd(1+ρ)+ vk

)
]
, (1.61)

which has a gradient of

[∇g(v(t))]k =




Ld(k)

∑
i∈Kd(k)

log
(

1+ρ+
v
(t)
i

δd(k)

) +1




1

δd(k)(1+ρ)+ v
(t)
k

(1.62)

when d(k) 6= 0 and otherwise [∇g(v(t))]k = 0. Thus, recalling (1.18), MM prescribes

v(t+1) = argmin
v∈C

D

∑
d=1

∑
k∈Kd




Ld

∑
i∈Kd

log
(

1+ρ +
v
(t)
i

δd

) +1




(
vk

δd(1+ρ)+ v
(t)
k

)

(1.63)

or equivalently

x(t+1) = argmin
x

D

∑
d=1

Ld

∑
l=1

λ
(t+1)
d

(
|ψT

d,lx|
δd(1+ρ)+ |ψT

d,lx
(t)|

)
s.t. ‖y−Φx‖2 ≤ ε

(1.64)

for

λ
(t+1)
d =

[
1

Ld

Ld

∑
l=1

log

(
1+ρ +

|ψT
d,lx

(t)|
δd

)]−1

+1, (1.65)

which coincides with Algorithm 3. This establishes Part 1 of Theorem 2.

1.3.2 Convergence of Co-IRW-L1-δ

The convergence of Co-IRW-L1-δ (in the sense of an asymptotic stationary point

condition) for ρ > 0 can be shown using the same procedure as in Sec. 1.2.2. To do

this, we only need to verify that the gradient ∇g in (1.62) is Lipschitz continuous

when ρ > 0, which was done in [2, App. C].
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1.3.3 Approximate ℓ0 + ℓ0,0 Interpretation of Co-IRW-L1-δ

Recalling the discussion in Sec. 1.2.3, we now consider the behavior of the Rlsl(x;δ ,ρ)
regularizer in (1.54) as ρ → 0 and δd → 0 ∀d. For this, it helps to decouple (1.54)

into two terms:

Rlsl(x;δ ,ρ) (1.66)

=
D

∑
d=1

Ld

∑
l=1

log
(
δd(1+ρ)+ |ψT

d,lx|
)
+

D

∑
d=1

Ld

∑
l=1

log

[ Ld

∑
i=1

log

(
1+ρ +

|ψT
d,ix|
δd

)]
.

As δd → 0 ∀d, the first term in (1.66) contributes an infinite valued “reward” for

each pair (d, l) such that |ψT
d,lx| = 0, or a finite valued cost otherwise. As for the

second term, we see that limρ→0,δd→0 ∑
Ld
i=1 log

(
1+ |ψT

d,ix|/δd +ρ
)
= 0 if and only

if |ψT
d,ix| = 0 ∀i ∈ [Ld ], i.e., if and only if ‖Ψdx‖0 = 0. And when ‖Ψdx‖0 = 0, the

second term in (1.66) contributes Ld infinite valued rewards. In summary, as ρ → 0

and δd → 0 ∀d, the first term in (1.66) behaves like ‖Ψx‖0 and the second term like

the weighted ℓ0,0 quasi-norm ∑D
d=1 Ld1‖Ψdx‖0>0, as stated in (1.55). This establishes

Part 2 of Theorem 2.

1.3.4 Bayesian MAP Interpretation of Co-IRW-L1-δ

To show that Co-IRW-L1-δ can be interpreted as Bayesian MAP estimation under

the hierarchical prior (1.56)-(1.57), we first compute the prior p(x). To start,

p(x) =
∫

RD
p(λ )p(x|λ )dλ (1.67)

∝
D

∏
d=1

∫ ∞

0

1

λd

Ld

∏
l=1

λd

2δd

(
1+ρ +

|ψT
d,lx|
δd

)−(λd+1)

dλd . (1.68)

Writing (1+ρ + |ψT
d,lx|/δd)

−(λd+1) = exp(−(λd + 1)Qd,l) for Qd,l , log(1+ρ +

|ψT
d,lx|/δd), we get

p(x) ∝
D

∏
d=1

1

(2δd)Ld

∫ ∞

0
λ

Ld−1
d e−(λd+1)∑

Ld
l=1

Qd,l dλd . (1.69)

Defining Qd , ∑
Ld

l=1 Qd,l and changing the variable of integration to τd , λdQd , we

find
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p(x) ∝
D

∏
d=1

e−Qd

(2δdQd)Ld

∫ ∞

0
τ

Ld−1
d e−τd dτd

︸ ︷︷ ︸
(Ld−1)!

(1.70)

∝
D

∏
d=1

[
1

δd ∑
Ld
i=1 log(1+ρ +

|ψT
d,ix|
δd

)

]Ld Ld

∏
l=1

1

1+ρ +
|ψT

d,lx|
δd

(1.71)

=
D

∏
d=1

Ld

∏
l=1

[(
δd(1+ρ)+ |ψT

d,lx|
) Ld

∑
i=1

log

(
1+ρ +

|ψT
d,ix|
δd

)]−1

, (1.72)

which implies that

− log p(x) = const+Rlsl(x;δ ,ρ) (1.73)

for Rlsl(x;δ ,ρ) defined in (1.54).

Plugging (1.73) into noiseless MAP expression (1.29), we have

xMAP = argmin
x

Rlsl(x;δ ,ρ) s.t. y = Φx, (1.74)

which is equivalent to the optimization problem in (1.59) when ε = 0. We showed in

Sec. 1.3.1 that, by applying the MM algorithm to (1.59), we arrive at Algorithm 3.

This establishes Part 3 of Theorem 2.

1.3.5 Variational EM Interpretation of Co-IRW-L1-δ

To justify the variational EM (VEM) interpretation of Co-IRW-L1-δ , we closely

follow the approach used for Co-L1 in Sec. 1.2.5. The main difference is that now

the prior takes the form of p(x;λ ,δ ) from (1.58). Thus, (1.43) becomes

log p(x;λ ,δ ) =
D

∑
d=1

Ld

∑
l=1

[
log

(
λd−1

δd

)
−λd log

(
1+ρ +

|ψT
d,lx|
δd

)]
+ const

(1.75)

and by zeroing the gradient w.r.t. λ we see that the M step (1.44) becomes

1

λ
(t+1)
d −1

=
1

Ld

log

(
1+ρ +

|ψT
d,lx

(t)
MAP|

δd

)
, d ∈ [D], (1.76)

where again x
(t)
MAP denotes the MAP estimate of x under λ = λ (t). From (1.29) and

(1.58), we see that
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x
(t)
MAP = argmin

x

D

∑
d=1

λ
(t)
d

Ld

∑
l=1

log
(
|ψT

d,lx|+δd(1+ρ)
)

s.t. y = Φx, (1.77)

which (for ρ = 0) is a λ (t)-weighted version of the IRW-L1 log-sum optimization

problem (recall Part 1 of Corollary 1). To solve (1.77), we apply MM with inner

iteration i. With a small modification of the MM derivation from Sec. 1.2.1, we

obtain the 2-step iteration

x
(i)
MAP = argmin

x

D

∑
d=1

λ
(t)
d ‖W

(i)
d Ψdx‖1 s.t. y = Φx (1.78)

W
(i+1)
d = diag

{
1

δd(1+ρ)+ |ψT
d,1x(i)| , · · · ,

1

δd(1+ρ)+ |ψT
d,Ld

x(i)|

}
, (1.79)

with λ
(t)
d fixed at the value appearing in (1.77). Next, by using only a single MM

iteration per VEM iteration, the MM index “i” can be equated with the VEM index

“t,” in which case the VEM algorithm becomes

x(t) = argmin
x

D

∑
d=1

λ
(t)
d ‖W

(t)
d Ψdx‖1 s.t. y = Φx (1.80)

W
(t+1)
d = diag

{
1

δd(1+ρ)+ |ψT
d,1x(t)| , · · · ,

1

δd(1+ρ)+ |ψT
d,Ld

x(t)|

}
,∀d (1.81)

λ
(t+1)
d =

[
1

Ld

log

(
1+ρ +

|ψT
d,lx

(t)|
δd

)]−1

+1, ∀d, (1.82)

which matches the steps in Algorithm 3 under ε = 0. This establishes Part 4 of

Theorem 2.

1.3.6 Co-IRW-L1

Until now, we have considered the Co-IRW-L1-δ parameters δ to be fixed and

known. But it is not clear how to set these parameters in practice. Thus, in this

section, we describe an extension of Co-IRW-L1-δ that adapts the δ vector at every

iteration. The resulting procedure, which we will refer to as Co-IRW-L1, is summa-

rized in Algorithm 4.

In the case of real-valued x, the expression for log p(x;λ ,δ ) in line 6 of Algo-

rithm 4 is given in (1.75) for λd > 1 and δd > 0. Although there does not appear to be

a closed-form solution to the joint maximization problem in line 6, it is over two real

parameters and thus can be solved numerically without a significant computational

burden.
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Algorithm 4 The Co-IRW-L1 Algorithm

1: input: {Ψd}D
d=1, Φ , y, ε ≥ 0,ρ ≥ 0

2: if x ∈ R
n, use Λ = (1,∞) and log p(x;λ ,δ ) from (1.75);

if x ∈ C
n, use Λ = (2,∞) and log p(x;λ ,δ ) from (1.84).

3: initialization: λ
(1)
d = 1,W

(1)
d = I, ∀d ∈ [D]

4: for t = 1,2,3, . . .

5: x(t)← argmin
x

D

∑
d=1

λ
(t)
d ‖W

(t)
d Ψdx‖1 s.t. ‖y−Φx‖2 ≤ ε

6: (λ
(t+1)
d ,δ

(t+1)
d )← arg max

λd∈Λ ,δd>0
log p(x(t);λ ,δ ), d ∈ [D]

7: W
(t+1)
d ← diag

{
1

δ
(t+1)
d (1+ρ)+ |ψT

d,1x(t)|
, · · · , 1

δ
(t+1)
d (1+ρ)+ |ψT

d,Ld
x(t)|

}
, d ∈ [D]

8: end

9: output: x(t)

Algorithm 4 can be interpreted as a generalization of the VEM approach to Co-

IRW-L1-δ that is summarized in Part 4 of Theorem 2 and detailed in Sec. 1.3.5.

Whereas Co-IRW-L1-δ used VEM to estimate the λ parameters in the prior (1.58)

for a fixed value of δ , Co-IRW-L1 uses VEM to jointly estimate (λ ,δ ) in (1.58).

Thus, Co-IRW-L1 can be derived by repeating the steps in Sec. 1.3.5, except that

now the maximization of log p(x;λ ,δ ) in (1.75) is performed jointly over (λ ,δ ), as

reflected by line 6 of Algorithm 4.

1.3.7 Co-IRW-L1 for Complex-Valued x

In Sections 1.3.1-1.3.6, the signal x was assumed to be real-valued. We now extend

the previous results to the case of complex-valued x. For this, we focus on the Co-

IRW-L1 algorithm, since Co-IRW-L1-δ follows as the special case where δ is fixed

at a user-supplied value.

Recalling that Co-IRW-L1 was constructed by generalizing the VEM interpre-

tation of Co-IRW-L1-δ , we reconsider this VEM interpretation for the case of

complex-valued x. In particular, we assume an AWGN likelihood and the follow-

ing complex-valued extension of the prior (1.58):

p(x;λ ,δ ) ∝
D

∏
d=1

Ld

∏
l=1

(λd−1)(λd−2)

2πδ 2
d

(
1+ρ +

|ψT
d,lx|
δd

)−λd

, (1.83)

which is now i.i.d. generalized-Pareto on zd =Ψdx ∈ C
Ld with deterministic shape

parameter λd > 2 and deterministic scale parameter δd > 0. In this case, the log-prior

(1.75) changes to
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log p(x;λ ,δ )

= const+
D

∑
d=1

Ld

∑
l=1

[
log

(
(λd−1)(λd−2)

δ 2
d

)
−λd log

(
1+ρ +

|ψT
d,lx|
δd

)]
, (1.84)

which is then maximized over (λ ,δ ) in line 6 of Algorithm 4.

1.4 Numerical Results

We now present results from a numerical study into the performance of the pro-

posed Co-L1 and Co-IRW-L1 methods, given as Algorithm 1 and Algorithm 4, re-

spectively. Three experiments are discussed below, all of which focus on the prob-

lem of recovering an n-pixel image (or image sequence) x from m-sample noisy

compressed measurements y = Φx+ e, with m≪ n. In the first experiment, we re-

cover synthetic 2D finite-difference signals; in the second experiment, we recover

the Shepp-Logan phantom and the Cameraman image; and in the third experiment,

we recover dynamic MRI sequences, also known as “cines.”

As discussed in Sec. 1.1.4, Co-L1 can be considered as the composite extension

of the standard L1-regularized L2-constrained approach to analysis CS, i.e., (1.2)

under the non-composite L1 regularizer R(x) = ‖Ψx‖1. Similarly, Co-IRW-L1 can

be considered as the composite extension of the standard IRW approach to the same

L1 problem. Thus, we compare our proposed composite methods against these two

non-composite methods, referring to them simply as “L1” and “IRW-L1” in the

sequel.

1.4.1 Experimental Setup

For the dynamic MRI experiment, we constructed Φ using randomly sub-sampled

Fourier measurements at each time instant with a varying sampling pattern across

time. More details are given in Sec. 1.4.4. For the other experiments, we used a

“spread spectrum” operator [39] of the form Φ = DFC, where C ∈Rn×n is diagonal

matrix with i.i.d equiprobable±1 entries, F ∈Cn×n is the discrete Fourier transform

(DFT), and D ∈ R
m×n is a row-selection operator that selects m rows of FC ∈ C

n×n

uniformly at random.

In all cases, the noise e was zero-mean, white, and circular Gaussian (i.e., inde-

pendent real and imaginary components of equal variance). Denoting the noise vari-

ance by σ2, we define the measurement signal-to-noise ratio (SNR) as ‖y‖2
2/(mσ2)

and the recovery SNR of signal estimate x̂ as ‖x‖2
2/‖x− x̂‖2

2.

Note that, when x is real-valued, the measurements y will be complex-valued

due to the construction of Φ . Thus, to allow the use of real-valued L1 solvers, we

split each complex-valued element of y (and the corresponding rows of Φ and e)
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into real and imaginary components, resulting in a real-only model. However, to

avoid possible redundancy issues caused by the conjugate symmetry of the noiseless

Fourier measurements FCx, we ensured that D selected at most one sample from

each complex-conjugate pair.

To implement the existing non-composite L1 and IRW-L1 methods, we used

the Matlab codes linked2 to the paper [14], which are based on Douglas-Rachford

splitting [18]. All default settings were retained except that the maximum num-

ber of reweighting iterations was increased from 10 to 25, which resulted in im-

proved recovery SNR. Then, to implement the weighted-ℓ1 minimization step in

Co-L1 and Co-IRW-L1, we used a similar Douglas-Rachford splitting technique.

The maximum number of reweighting iterations for Co-L1 and Co-IRW-L1 was

set at 25. For Co-L1, IRW-L1, and Co-IRW-L1, the t-indexed iterations in Al-

gorithm 1, Algorithm 2, and Algorithm 4, respectively, were terminated when

‖x(t)− x(t−1)‖2/‖x(t)‖2 < 1× 10−8. In all experiments we used ε = 0.8
√

σ2m and

δ = 0 = ρ .

1.4.2 Synthetic 2D Finite-Difference Signals

Our first experiment aims to answer the following question. If we know that the

sparsity of Ψ1x differs from the sparsity of Ψ2x, then can we exploit this knowledge

for signal recovery, even if we don’t know how the sparsities are different? This is

precisely the goal of composite regularizations like (1.4).

To investigate this question, we constructed 2D signals with finite-difference

structure in both the vertical and horizontal domains. In particular, we constructed

X = x11T +1xT
2 , where both x1 ∈R

48 and x2 ∈R
48 are finite-difference signals and

1 ∈ R
48 contains only ones. The locations of the transitions in x1 and x2 were se-

lected uniformly at random and the amplitudes of the transitions were drawn i.i.d.

zero-mean Gaussian. The total number of transitions in x1 and x2 was fixed at 28,

but the ratio of the number of transitions in x1 to the number in x2, denoted by α ,

was varied from 1 to 27. The case α = 1 corresponds to X having 14 vertical transi-

tions and 14 horizontal transitions, while the case α = 27 corresponds to X having

27 vertical transitions and a single horizontal transition. (See Fig. 1.1 for examples.)

Finally, the signal x ∈ R
n appearing in our model (1.1) was created by vectorizing

X , yielding a total of n = 482 = 2304 pixels.

Given x, noisy observations y = Φx+e were generated using the random “spread

spectrum” measurement operator Φ described earlier at a sampling ratio of m/n =
0.3, with additive white Gaussian noise (AWGN) e scaled to achieve a measurement

SNR of 40 dB. All recovery algorithms used vertical and horizontal finite-difference

operators Ψ1 and Ψ2, respectively, with Ψ = [Ψ T
1 ,Ψ T

2 ]T in the non-composite case.

Figure 1.2 shows recovery SNR versus α for the non-composite L1 and IRW-L1

techniques and our proposed Co-L1 and Co-IRW-L1 techniques. Each SNR in the

2 Matlab codes for [14] are provided at https://github.com/basp-group/sopt
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Fig. 1.1: Examples of the 2D finite-difference signal X used in the first experiment. On the left is

a realization generated under a transition ratio of α = 14/14 = 1, and on the right is a realization

generated under α = 27/1 = 27.
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Fig. 1.2: Recovery SNR versus transition ratio α for the first experiment, which used 2D finite-

difference signals, spread-spectrum measurements at m/n = 0.3, AWGN at 40 dB, and finite-

difference operators for Ψd . Each recovery SNR represents the median value from 45 independent

trials.

figure represents the median value from 45 trials, each using an independent realiza-

tion of the triple (Φ ,x,e). The figure shows that the recovery SNR of both L1 and

IRW-L1 is roughly invariant to the transition ratio α , which makes sense because

the overall sparsity of Ψx is fixed at 28 transitions by construction. In contrast, the

recovery SNRs of Co-L1 and Co-IRW-L1 vary with α , with higher values of α
yielding a more structured signal and thus higher recovery SNR when this structure

is properly exploited.
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Fig. 1.3: Left: the Shepp-Logan phantom of size n = 96× 96. Right: the cropped Cameraman

image of size n = 96×104.

1.4.3 Shepp-Logan and Cameraman Recovery

For our second experiment, we investigate algorithm performance versus sampling

ratio m/n when recovering the well-known Shepp-Logan phantom and Camera-

man images. In particular, we used the n = 96×96 Shepp-Logan phantom and the

n = 96× 104 cropped Cameraman image shown in Fig. 1.3, and we constructed

compressed noisy measurements y using spread-spectrum Φ and AWGN e at a mea-

surement SNR of 30 dB in the Shepp-Logan case and 40 dB in the Cameraman case.

All algorithms used analysis operator Ψ ∈ R
7n×n constructed from the undeci-

mated Daubechies-1 2D wavelet transform (UWT-db1) with two levels of decom-

position. However, the Co-L1 and Co-IRW-L1 algorithms treated each of the seven

subbands of UWT-db1 as a separate sub-dictionary Ψd ∈ R
n×n in their composite

regularizers.

Fig. 1.4 shows recovery SNR versus sampling ratio m/n for the Shepp-Logan

phantom, while Fig. 1.5 shows the same for the Cameraman image. Each recovery

SNR represents the median value from 7 independent realizations of (Φ ,e). Both

figures show that Co-L1 and Co-IRW-L1 outperform their non-composite counter-

parts, especially at low sampling ratios; the gap between Co-IRW-L1 and and IRW-

L1 closes at m/n ≥ 0.4. Although not shown, similar results were observed with a

level-three decomposition of UWT-db1, and at higher (50 dB) and lower (25 dB)

measurement SNRs.

1.4.4 Dynamic MRI

For our third experiment, we investigate a simplified version of the “dynamic MRI”

(dMRI) problem. In dMRI, one attempts to recover a sequence of MRI images,

known as an MRI cine, from highly under-sampled “k-t-domain” measurements

{yt}T
t=1 constructed as

yt = Φtxt + et , (1.85)
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Fig. 1.4: Recovery SNR versus sampling ratio m/n for the Shepp-Logan phantom. Measurements

were constructed using a spread-spectrum operator and AWGN at 30 dB SNR, and recovery used

the UWT-db1 2D wavelet transform at two levels of decomposition. Each recovery SNR represents

the median value from 7 independent trials.
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Fig. 1.5: Recovery SNR versus sampling ratio m/n for the cropped Cameraman image. Measure-

ments were constructed using a spread-spectrum operator and AWGN at 40 dB SNR, and recovery

used the UWT-db1 2D wavelet transform at two levels of decomposition. Each SNR value repre-

sents the median value from 7 independent trials.

where xt ∈ R
n1n2 is a vectorized (n1×n2)-pixel image at time t, Φt ∈ R

m1×n1n2 is a

sub-sampled Fourier operator at time t, and et ∈ R
m
1 is AWGN. This real-valued Φt

is constructed from the complex-valued n1n2× n1n2 2D DFT matrix by randomly

selecting 0.5m1 rows and then splitting each of those rows into its real and imaginary

components. Here, it is usually advantageous to vary the sampling pattern with time
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Fig. 1.6: Left: A 144×85 spatial slice from the 144×85×48 dMRI dataset. Middle: The 144×48

spatio-temporal slice used for the dMRI experiment. Right: a realization of the variable-density k-

space sampling pattern, versus time, at m/n = 0.15.

and to sample more densely at low frequencies, where most of the signal energy lies

(e.g., [3]). Putting (1.85) into the form of our measurement model (1.1), we get




y1
...

yT




︸ ︷︷ ︸
y

=




Φ1
. . .

ΦT




︸ ︷︷ ︸
Φ




x1
...

xT




︸ ︷︷ ︸
x

+




e1
...

eT




︸ ︷︷ ︸
e

, (1.86)

with total measurement dimension m = m1T and total signal dimension n = n1n2T .

As ground truth, we used a high-quality dMRI cardiac cine x of dimensions n1 =
144, n2 = 85, and T = 48. The left pane in Fig. 1.6 shows a 144× 85 image from

this cine extracted at a single time t, while the middle pane shows a 144×48 spatio-

temporal profile from this cine extracted at a single horizontal location. This middle

pane shows that the temporal dimension is much more structured than the spatial

dimension, suggesting that there may be an advantage to weighting the spatial and

temporal dimensions differently in a composite regularizer.

To test this hypothesis, we constructed an experiment where the goal was to

recover the 144× 48 spatio-temporal profile shown in the middle pane of Fig. 1.6,

as opposed to the full 3D cine, from subsampled k-t-domain measurements. For this

purpose, we constructed measurements {y}T
t=1 as described above, but with n2 = 1

(and thus a 1D DFT), and used a variable density random sampling method. The

right pane of Fig. 1.6 shows a typical realization of the sampling pattern versus time.

Finally, we selected the AWGN variance that yielded measurement SNR = 30 dB.

For the non-composite L1 and IRW-L1 algorithms, we constructed the analysis

operator Ψ ∈ R
3n×n from a vertical concatenation of the db1-db3 Daubechies or-
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Fig. 1.7: Recovery SNR versus sampling ratio m/n for the dMRI experiment. Each SNR value

represents the median value from 7 independent trials. Measurements were constructed using

variable-density sub-sampled Fourier operator and AWGN at 30 dB measurement SNR, and recov-

ery used a concatenation of db1-db3 orthogonal 2D wavelet bases at three levels of decomposition.

thogonal 2D discrete wavelet bases, each with three levels of decomposition. For

the Co-L1 and Co-IRW-L1 algorithms, we assigned each of the 30 sub-bands in Ψ
to a separate sub-dictionary Ψd ∈ R

Ld×n. Note that the sub-dictionary size Ld de-

creases with the level in the decomposition. By weighting certain sub-dictionaries

differently than others, the composite regularizers can exploit differences in spatial

versus temporal structure.

Fig. 1.7 shows recovery SNR versus sampling ratio m/n for the four algorithms

under test. Each reported SNR represents the median SNR from 7 independent re-

alizations of (Φ ,e). The figure shows that Co-L1 and Co-IRW-L1 outperform their

non-composite counterparts by ≥ 2 dB at all tested values of m/n, with larger gains

at small m/n. Interestingly, Co-L1 and Co-IRW-L1 gave nearly identical recovery

SNR in this experiment, which suggests that—for each d—the analysis coefficients

within Ψdx were of a similar magnitude. Although not shown here, we obtained sim-

ilar results with other cine datasets and with an UWT-db1-based analysis operator.

For qualitative comparison, Fig. 1.8 shows the spatio-temporal profile recovered

by each of the four algorithms under test at m/n = 0.15 for a typical realization of

(Φ ,e). Compared to the ground-truth profile shown in the middle pane of Fig. 1.6,

the profiles recovered by L1 and IRW-L1 show visible artifacts that appear as ver-

tical streaks. In contrast, the profiles recovered by Co-L1 and Co-IRW-L1 preserve

most of the features present in the ground-truth profile.
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(a) L1 (b) Co-L1 (c) IRW-L1 (d) Co-IRW-L1

Fig. 1.8: Recovered dMRI spatio-temporal profiles at m/n = 0.15

Shepp-Logan Cameraman MRI

L1 20.8 23.1 29.3

Co-L1 32.7 34.2 86.4

IRW-L1 45.9 48.4 54.1

Co-IRW-L1 72.1 96.4 131

Table 1.1: Computation times (in seconds) for the presented experimental studies. The times are

averaged over trial runs and different sampling ratios.

1.4.5 Algorithm Runtime

Table 1.1 reports the average runtimes of the L1, Co-L1, IRW-L1, and Co-IRW-

L1 algorithms for the experiments in Sections 1.4.3 and 1.4.4. There we see that

the runtime of Co-L1 ranged between 1.5× to 3× that of L1, and the runtime of

Co-IRW-L1 ranged between 1.5× to 3× the runtime of IRW-L1.

1.5 Conclusions

Motivated by the observation that a given signal x admits sparse representations

in multiple dictionaries Ψd but with varying levels of sparsity across dictionaries,

we proposed two new algorithms for the reconstruction of (approximately) sparse

signals from noisy linear measurements. Our first algorithm, Co-L1, extends the

well-known lasso algorithm [44, 17, 45] from the L1 penalty ‖Ψx‖1 to composite

L1 penalties of the form (1.4) while self-adjusting the regularization weights λd . Our

second algorithm, Co-IRW-L1, extends the well-known IRW-L1 algorithm [13, 14]
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to the same family of composite penalties while self-adjusting the regularization

weights λd and the regularization parameters δd .

We provided several interpretations of both algorithms: i) majorization-minimization

(MM) applied to a non-convex log-sum-type penalty, ii) MM applied to an approx-

imate ℓ0-type penalty, iii) MM applied to Bayesian MAP inference under a partic-

ular hierarchical prior, and iv) variational expectation-maximization (VEM) under

a particular prior with deterministic unknown parameters. Also, we leveraged the

MM interpretation to establish convergence in the form of an asymptotic station-

ary point condition [34]. Furthermore, we noted that the Bayesian MAP and VEM

viewpoints yield novel interpretations of the original IRW-L1 algorithm. Finally, we

present a detailed numerical study that suggests that our proposed algorithms yield

significantly improved recovery SNR when compared to their non-composite L1

and IRW-L1 counterparts with a modest (e.g., 1.5×-3×) increase in runtime.
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