
Binary Classification and Feature Selection via

Generalized Approximate Message Passing

Phil Schniter

Collaborators: Justin Ziniel (OSU-ECE) and Per Sederberg (OSU-Psych)

Supported in part by NSF grant CCF-1018368, NSF grant CCF-1218754
and DARPA/ONR grant N66001-10-1-4090.

CISS (Princeton) — March’14

Binary Linear Classification

Observe m training examples {(yi,ai)}
m
i=1, each comprised of a

binary label yi ∈ {−1, 1} and a feature vector ai ∈ R
n.

Assume that data follows a generalized linear model:

Pr{yi = 1 |ai;xtrue} = pY |Z(1 | a
T
i xtrue

︸ ︷︷ ︸

, zi,true

)

for some “true” weight vector xtrue ∈ R
n and some activation

function pY |Z(1 | ·) : R → [0, 1].

Goal 1: estimate x̂train ≈ xtrue from training data, so to be able to
predict the unknown label ytest associated with a test vector atest:

compute Pr{ytest = 1 |atest; x̂train} = pY |Z(1 |a
T
testx̂train)

Phil Schniter (OSU) Classification GAMP CISS (Princeton) — March’14 2 / 18

Binary Feature Selection

Operating regimes:

m ≫ n: Plenty of training examples: feasible to learn x̂train ≈ xtrue.
m ≪ n: Training-starved: feasible if xtrue is sufficiently sparse!

The training-starved case motivates. . .

Goal 2: Identify salient features (i.e., recover support of xtrue).

Example: From fMRI, learn which parts of the brain are responsible for
discriminating two classes of object (e.g., cats vs. houses):

n = 31398 ↔ fMRI voxels
m = 216 ↔ 2 classes × 9 examples × 12 subjects

Can interpret as support recovery in noisy one-bit compressed sensing:

y = sgn(Axtrue+w) with i.i.d noise w.

Phil Schniter (OSU) Classification GAMP CISS (Princeton) — March’14 3 / 18

Bring out the GAMP

Zed: Bring out the Gimp.

Maynard: Gimp’s sleeping.

Zed: Well, I guess you’re gonna have to go wake him up now, won’t you?

—Pulp Fiction, 1994.

We propose a new approach to binary linear classification and feature
selection based on generalized approximate message passing (GAMP).

Advantages of GAMP include

flexibility in choosing activation pY |Z & weight prior pX

excellent accuracy & runtime

state-evolution governing behavior in large-system limit

can tune without cross-validation (via EM extension [Vila & S. ’11])

can learn & exploit structured sparsity (via turbo extension [S. ’10])

Phil Schniter (OSU) Classification GAMP CISS (Princeton) — March’14 4 / 18

Approximate Message Passing

AMP is derived from a simplification of message passing
(sum-product or max-sum) that holds in the large-system limit.

AMP manifests as a sophisticated form of iterative thresholding,
requiring only two applications of A per iteration and few iterations.

The evolution of AMP:

The original AMP [Donoho, Maleki, Montanari ’09] solved the LASSO
problem argmin

x
‖y −Ax‖2

2
+ λ‖x‖1 assuming i.i.d sub-Gaussian A.

The Bayesian AMP [Donoho, Maleki, Montanari ’10] extended to
MMSE inference in AWGN for any factorizable signal prior

∏

j pX(xj).

The generalized AMP [Rangan ’10] framework extends to MAP or
MMSE inference under any factorizable signal prior & likelihood.

Phil Schniter (OSU) Classification GAMP CISS (Princeton) — March’14 5 / 18

GAMP Theory

In the large-system limit with i.i.d sub-Gaussian A, GAMP follows a
state-evolution trajectory whose fixed points are MAP/MMSE optimal
solutions when unique [Rangan ’10], [Javanmard, Montanari ’12]

With arbitrary finite-dimensional A,

the fixed-points of max-product GAMP coincide with the critical points
of the MAP optimization objective

argmax
x

{
∑m

i=1
log pYi|Zi

(yi|[Ax]i) +
∑n

j=1
log pXj

(xj)
}

the fixed-points of sum-product GAMP coincide with the critical points
of a certain free-energy optimization objective [Rangan, S., et al’13]

and damping can be used to ensure that GAMP converges to its fixed
points. [Rangan,S.,Fletcher’14]

Phil Schniter (OSU) Classification GAMP CISS (Princeton) — March’14 6 / 18

GAMP for Binary Classification and Feature Selection

So, how do we use GAMP to design the weight vector x̂?

1 Choose GAMP’s linear transform A:

Linear classification: the rows of A are the feature vectors {aT
i }∀i.

Kernel-based classification: [A]i,j = K(ai,aj) with appropriate K(·, ·).

2 Choose inference mode:

max-sum: finds x̂ that minimizes regularized loss, i.e.,

x̂ = argmin
x

{
∑m

i=1
f([Ax]i; yi) +

∑n

j=1
g(xj)

}

for chosen f and g

sum-product: computes the marginal weight posteriors pXj |Y (·|y)
under the assumed statistical model:

Pr{y|A,x} =
∏m

i=1
pY |Z(yi|a

T
i x) and p(x) =

∏n

j=1
pX(xj).

3 Choose activation fxn pY |Z(yi|·) ∝ e−f(·;yi) and prior pX(·) ∝ e−g(·)

Phil Schniter (OSU) Classification GAMP CISS (Princeton) — March’14 7 / 18

GAMPmatlab: Implemented Activations and Priors

For given pY |Z and pX , GAMP needs to compute the mean and variance
(sum-product), or the max and sensitivity (max-sum), of the scalar pdfs

pZ|Y (z|y;µQ, vQ) ∝ pY |Z(y|z)N (z;µQ, vQ)

pX|Q(x|q;µR, vR) ∝ pX(x)N (x;µR, vR)

Our http://sourceforge.net/projects/gampmatlab/ implementation
handles these computations for various common choices of pY |Z and pX :

activation: pY |Z
sum-
prod

max-
prod

logit VI RF
probit CF RF
hinge CF RF

robust-* CF RF

prior: pX
sum-
prod

max-
prod

Gaussian CF CF
Laplace CF CF

Elastic Net CF CF

Bernoulli-* CF –

CF=closed-form, NI=numerical integration, VI=variational inference, RF=root-finding.

Phil Schniter (OSU) Classification GAMP CISS (Princeton) — March’14 8 / 18

http://sourceforge.net/projects/gampmatlab/

Beyond GAMP: The EM & turbo Extensions

The basic GAMP algorithm requires
1 separable priors p(y|z) =

∏

i pYi|Zi
(yi|zi) and p(x) =

∏

j pXj
(xj)

2 that are perfectly known.

The EM-turbo-GAMP framework circumvents these limitations by
learning possibly non-separable priors:

GAMP

EM
turbo

it
er
at
io
n
s

local {pYi|Zi
(yi|zi)}∀i

local {pXj
(xj)}∀j

linear transform A

global p(y|z;θY |Z)

global p(x;θX)

parameters θY |Z

parameters θX

Phil Schniter (OSU) Classification GAMP CISS (Princeton) — March’14 9 / 18

Test-Error Probability via GAMP State Evolution

Recall that GAMP obeys a state evolution that characterizes the
quality of x̂ at each iteration t (with i.i.d sub-Gaussian A in the
large-system limit).

We can use this to
predict the classification
test-error rate.

For example, with
A ∼ i.i.d N (0, 1),
pX Bernoulli-Gaussian,

pY |Z probit, we get. . .

Notice close agreement
between SE (solid) and
empirical (dashed).

K
/N

 (
M

or
e

ac
tiv

e
fe

at
ur

es
)

 →

M/N (More training samples) →

0.025
0.025

0.025

0.05

0.05

0.05

0.075

0.075

0.075

0.
07

5

0.1

0.1

0.
1

0.
1

0.125

0.
12

5

0.
12

5

0.
15

0.
15

0.
15

0.
17

5

0.
17

5
0.

17
5

0.
2

0.
2

0.
2

0.
22

5

0.
22

5
0.

22
5

0.
25

0.
250.
27

5
0.

3
0.

32
5

0.
35

1 2 3 4 5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Empirical (dashed)
State Evolution (solid)

Phil Schniter (OSU) Classification GAMP CISS (Princeton) — March’14 10 / 18

Robust Classification

Some training sets contain corrupted labels (e.g., randomly flipped).

In response, one can “robustify” any given activation fxn pY |Z via

p̃Y |Z(y|z) = (1− ε)pY |Z(y|z) + ε pY |Z(1− y|z),

where ε ∈ [0, 1] models the flip probability.

The example shows test-error rate
for standard (upper) and
robust (lower) activation fxns with
genie-tuned and EM-tuned ǫ:

Details: xj ∼ iid N (0, 1),
aT
i |{yi=±1} ∼ iid N (±µ, I),

ǫ-flipped logistic pY |Z ,
m=8192, n=512.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Robust Logistic (Genie)
Standard Logistic (Genie)
Robust Logistic (EM)
Standard Logistic (EM)

T
es
t-
er
ro
r
ra
te

(Bayes error rate = 0.05)

flip probability ε

Phil Schniter (OSU) Classification GAMP CISS (Princeton) — March’14 11 / 18

Text Classification Example

Reuter’s Corpus Volume 1 (RCV1) dataset

n = 47 236 features, m = 677 399 training examples

0.0016-sparse features (far from i.i.d sub-Gaussian A!)

Classifier Tuning Accuracy Runtime (s) Density

spGAMP:BG-PR EM 97.6% 317 / 57 11.1%
spGAMP:BG-HL EM 97.7% 468 / 93 8.0%
msGAMP: L1-LR EM 97.6% 684 / 123 9.8%

CDN xval 97.7% 1298 / 112 10.9%
TRON xval 97.7% 1682 / 133 10.8%

TFOCS: L1-LR xval 97.6% 1086 / 94 19.2%

⇒ EM-GAMP yields fast, accurate, and sparse classifiers.

Phil Schniter (OSU) Classification GAMP CISS (Princeton) — March’14 12 / 18

Haxby Example

We now return to the problem of learning, from
fMRI measurements, which parts of the brain
are responsible for discriminating two classes of
object.

Note that the main problem here is feature
selection, not classification. The observed
classification error rate is used only to judge
the validity of the support estimate.

For this we use the famous Haxby data, with

n = 31398 ↔ fMRI voxels

m = 216 ↔ 2 classes × 9 examples × 12 subjects

Haxby et al., “Distributed and Overlapping Representations of Faces and Objects in Ventral

Temporal Cortex” Science, 2001.

Phil Schniter (OSU) Classification GAMP CISS (Princeton) — March’14 13 / 18

Haxby: Cats vs. Houses

algorithm setup error rate runtime

EM-GAMP sum-prod logit/B-Laplace 0.9% 9 sec
EM-GAMP sum-prod probit/B-Laplace 1.9% 13 sec

EM-turbo-GAMP sum-prod probit/B-Laplace 3D-MRF 2.8% 14 sec

without 3D MRF with 3D MRF

Phil Schniter (OSU) Classification GAMP CISS (Princeton) — March’14 14 / 18

Conclusions

We presented a novel application of GAMP to binary linear
classification & feature selection.

Some nice properties of classification-GAMP include

flexibility in choice of activation function and weight prior
runtime (e.g., 3-4× faster than recent methods)
state-evolution can be used to predict test error-rate
can handle corrupted labels (via robust prior)
can tune without cross-validation (via EM extension)
can exploit and learn structured sparsity (via turbo extension)

All of the above also applies to one-bit compressive sensing.

Phil Schniter (OSU) Classification GAMP CISS (Princeton) — March’14 15 / 18

All these methods are integrated into GAMPmatlab:
http://sourceforge.net/projects/gampmatlab/

Thanks!

Phil Schniter (OSU) Classification GAMP CISS (Princeton) — March’14 16 / 18

http://sourceforge.net/projects/gampmatlab/

GAMP Heuristics (Sum-Product)
pX(x1)

pX(x2)

pX(xn)

x1

x2

xn

p1→1(x1)

pm←n(xn)

pY |Z(y1|[Ax]1)

pY |Z(y2|[Ax]2)

pY |Z(ym|[Ax]m)

...
...

...

1 Message from yi node to xj node:

pi→j(xj) ∝

∫

{xr}r 6=j

pY |Z
(
yi;

≈ N via CLT
︷ ︸︸ ︷∑

r
airxr

)∏

r 6=j
pi←r(xr)

≈

∫

zi

pY |Z(yi; zi)N
(
zi; ẑi(xj), ν

z
i (xj)

)
≈N

To compute ẑi(xj), ν
z
i (xj), the means and variances of {pi←r}r 6=j suffice,

thus Gaussian message passing!

Remaining problem: we have 2mn messages to compute (too many!).

2 Exploiting similarity among the messages
{pi←j}

m
i=1

, GAMP employs a Taylor-series
approximation of their difference, whose
error vanishes as m→∞ for dense A

(and similar for {pi→j}nj=1
as n→∞).

Finally, need to compute only O(m+n)
messages!

pX(x1)

pX(x2)

pX(xn)

x1

x2

xn

p1→1(x1)

pm←n(xn)

pY |Z(y1; [Ax]1)

pY |Z(y2; [Ax]2)

pY |Z(ym; [Ax]m)

...
...

...

Phil Schniter (OSU) Classification GAMP CISS (Princeton) — March’14 17 / 18

The GAMP Algorithm

Require: Matrix A, sum-prod ∈ {true,false}, initializations x̂0, ν0
x

t = 0, ŝ−1 = 0, ∀ij : Sij = |Aij |
2

repeat
νt
p = Sνt

x, p̂t = Ax̂t − ŝt−1.νt
p (gradient step)

if sum-prod then
∀i : νt

zi
= var(Z|P ; p̂ti, ν

t
pi
), ẑti = E(Z|P ; p̂ti, ν

t
pi
),

else
∀i : νt

zi
= νt

pi
prox′−νt

pi
log pY |Z(yi,.)

(p̂ti) ẑti = prox−νt
pi

log pY |Z(yi,.)
(p̂ti),

end if
νt
s = (1− νt

z./ν
t
p)./ν

t
p, ŝt = (ẑt − p̂t)./νt

p (dual update)
νt
r = 1./(STνt

s), r̂t = x̂t + νt
r.A

T ŝt (gradient step)
if sum-prod then
∀j : νt+1

xj
= var(X|R; r̂tj , ν

t
rj
), x̂t+1

j = E(X|R; r̂tj , ν
t
rj
),

else
∀j : νt+1

xj
= νt

rj
prox′−νt

rj
log pX (.)(r̂

t
j) x̂t+1

j = prox−νt
rj

log pX (.)(r̂
t
j),

end if
t← t+1

until Terminated

Note connections to Arrow-Hurwicz, primal-dual, ADMM, proximal FB splitting,. . .
Phil Schniter (OSU) Classification GAMP CISS (Princeton) — March’14 18 / 18

