Expectation-Maximization Gaussian-Mixture Approximate Message Passing

Philip Schniter and Jeremy Vila

Supported in part by NSF-I/UCRC grant IIP-0968910, by NSF grant CCF-1018368, and by DARPA/ONR grant N66001-10-1-4090.

CISS @ Princeton - 3/23/12

Compressive Sensing

ullet Goal: recover signal x from noisy sub-Nyquist measurements

$$\boldsymbol{y} = \boldsymbol{A}\boldsymbol{x} + \boldsymbol{w} \quad \ \boldsymbol{x} \in \mathbb{R}^N \quad \ \boldsymbol{y}, \boldsymbol{w} \in \mathbb{R}^M \quad \ M < N.$$

where \boldsymbol{x} is K-sparse with K < M, or compressible.

- With sufficient sparsity and appropriate conditions on the mixing matrix A (e.g. RIP, nullspace), accurate recovery of x is possible using polynomial-complexity algorithms.
- A common approach (LASSO) is to solve the convex problem

$$\min_{\boldsymbol{x}} \|\boldsymbol{y} - \boldsymbol{A}\boldsymbol{x}\|_2^2 + \alpha \|\boldsymbol{x}\|_1$$

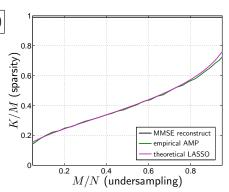
where α can be tuned in accordance with sparsity and SNR.

Phase Transition Curves (PTC)

- The PTC identifies ratios $(\frac{M}{N}, \frac{K}{M})$ for which perfect noiseless recovery of K-sparse x occurs (as $M, N, K \to \infty$ under i.i.d Gaussian A).
- Suppose $\{x_n\}$ are drawn i.i.d.

$$p_X(x_n) = \lambda f(x_n) + (1 - \lambda)\delta(x_n)$$
 with known $\lambda \triangleq K/N$.

- LASSO's PTC is invariant to $f(\cdot)$. Thus, LASSO is robust in the face of unknown $f(\cdot)$.
- MMSE-reconstruction's PTC is far better than Lasso's, but requires knowing $f(\cdot)$.



Wu and Verdú, "Optimal phase transitions in compressed sensing," arXiv Nov. 2011.

Motivations

For practical compressive sensing. . .

- want minimal MSE
 - distributions are unknown ⇒ can't formulate MMSE estimator
 - but there is hope:
 various algs seen to outperform Lasso for specific signal classes
 - really, we want a universal algorithm: good for all signal classes
- want fast runtime
 - especially for large signal-length N (i.e., scalable).
- want to avoid algorithmic tuning parameters,
 - who has the patience to tweak yet another CS algorithm!

Proposed Approach: "EM-GM-GAMP"

- Model the signal and noise using flexible distributions:
 - i.i.d Bernoulli Gaussian-mixture (GM) signal

$$p(x_n) = \lambda \sum_{l=1}^{L} \omega_l \mathcal{N}(x_n; \theta_l, \phi_l) + (1 - \lambda)\delta(x_n) \ \forall n$$

- i.i.d Gaussian noise with variance ψ
- Learn the prior parameters $m{q} \triangleq \{\lambda, \omega_l, \theta_l, \phi_l, \psi\}_{l=1}^L$
 - treat as deterministic and use expectation-maximization (EM)
- Exploit the learned priors in near-MMSE signal reconstruction
 - use generalized approximate message passing (GAMP)

Approximate Message Passing (AMP)

- AMP methods infer x from y = Ax + w using loopy belief propagation with carefully constructed approximations.
 - The original AMP [Donoho, Maleki, Montanari '09] solves the LASSO problem (i.e., Laplacian MAP) assuming i.i.d matrix **A**.
 - The Bayesian AMP [Donoho, Maleki, Montanari '10] framework tackles MMSE inference under generic signal priors.
 - The generalized AMP [Rangan '10] framework tackles MAP or MMSE inference under generic signal & noise priors and generic A.
- ullet AMP is a form of iterative thresholding, requiring only two applications of $m{A}$ per iteration and pprox 25 iterations. Very fast!
- Rigorous large-system analyses (under i.i.d Gaussian *A*) have established that (G)AMP follows a state-evolution trajectory with optimal properties [Bayati, Montanari '10], [Rangan '10].

AMP Heuristics (Sum-Product)

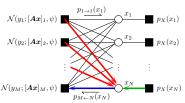
1 Message from y_i node to x_j node:

$\mathcal{N}(y_1; [Ax]_1, \psi)$ $p_X(x_1)$ $\mathcal{N}(y_2; [Ax]_2, \psi)$ $p_X(x_2)$ $p_{i o j}(x_j) \propto \int_{\{x_r\}_{r eq i}} \mathcal{N}ig(y_i; \widehat{\sum_r a_{ir} x_r}, \psiig) \prod_{r eq j} p_{i \leftarrow r}(x_r) \mathcal{N}ig(y_M; [Ax]_M, \psi) \, \mathbb{I}$ $p_X(x_N)$ $p_{M \leftarrow N}(x_N)$ $\approx \int_{z_i} \mathcal{N}(y_i; z_i, \psi) \mathcal{N}(z_i; \hat{z}_i(x_j), \nu_i^z(x_j)) \sim \mathcal{N}$

To compute $\hat{z}_i(x_j), \nu_i^z(x_j)$, the means and variances of $\{p_{i\leftarrow r}\}_{r\neq j}$ suffice, thus Gaussian message passing!

Remaining problem: we have 2MN messages to compute (too many!).

Exploiting similarity among the messages $\{p_{i\leftarrow i}\}_{i=1}^{M}$, AMP employs a Taylor-series approximation of their difference whose error vanishes as $M \rightarrow \infty$ for dense A (and similar for $\{p_{i\leftarrow i}\}_{i=1}^N$ as $N\to\infty$). Finally, need to compute only $\mathcal{O}(M+N)$ messages!



Expectation-Maximization

- We use expectation-maximization (EM) to learn the signal and noise prior parameters $q \triangleq \{\lambda, \omega, \theta, \phi, \psi\}$
 - ullet The missing data is chosen to be the signal and noise vectors $(oldsymbol{x}, oldsymbol{w}).$
 - The updates are performed coordinate-wise.
 - ullet For example, updating λ at the i^{th} EM iteration involves

$$\begin{array}{ll} (\mathsf{E}\text{-step}) & Q(\lambda|\boldsymbol{q}^i) = \sum_{n=1}^N \mathrm{E}\left\{\ln p(x_n;\lambda,\boldsymbol{\omega}^i,\boldsymbol{\theta}^i,\boldsymbol{\phi}^i)\big|\boldsymbol{y};\boldsymbol{q}^i\right\} \\ (\mathsf{M}\text{-step}) & \lambda^{i+1} = \argmax_{\lambda \in (0,1)} Q(\lambda|\boldsymbol{q}^i). \end{array}$$

The updates of $(\boldsymbol{\omega}, \boldsymbol{\theta}, \boldsymbol{\phi}, \psi)$ are similar (details in paper).

• All quantities needed for the EM updates are provided by GAMP!

Parameter Initialization

Initialization matters; EM can get stuck in a local max. We suggest...

- ullet initializing the sparsity λ according to the theoretical LASSO PTC.
- initializing the noise and active-signal variances using known energies $\|y\|_2^2$, $\|A\|_F^2$ and user-supplied SNR⁰ (which defaults to 20 dB):

$$\psi^0 = \frac{\|\boldsymbol{y}\|_2^2}{(\mathsf{SNR}^0 + 1)M}, \quad (\sigma^2)^0 = \frac{\|\boldsymbol{y}\|_2^2 - M\psi^0}{\lambda^0 \|\boldsymbol{A}\|_F^2}$$

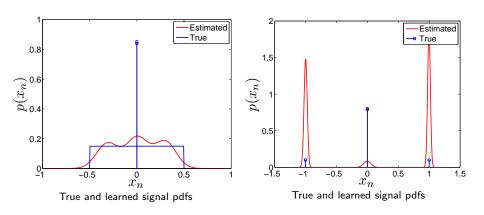
• fixing L (e.g., L=3) and initializing the GM parameters (ω, θ, ϕ) as the best fit to a uniform distribution with variance σ^2 .

We have also developed

- a "splitting" mode that adds one GM component at a time.
- a "heavy tailed" mode that forces zero-mean GM components.

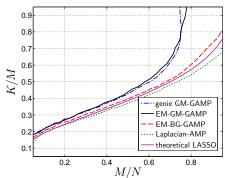
Examples of Learned Signal-pdfs

The following shows the Gaussian-mixture pdf learned by EM-GM-GAMP when the true active-signal pdf was uniform (left) and ± 1 (right):



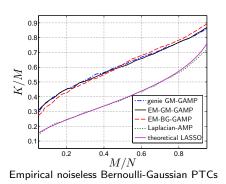
Empirical PTCs: Bernoulli-Rademacher (± 1) signals

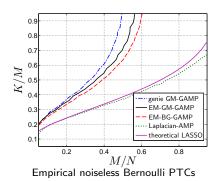
- We now evaluate noiseless reconstruction performance via phase-transition curves constructed using $N\!=\!1000$ -length signals, i.i.d Gaussian \boldsymbol{A} , and 100 realizations.
- We see EM-GM-GAMP performing significantly better than LASSO for this signal class.
- We also see EM-GM-GAMP performing nearly as well as GM-GAMP under genie-aided parameter settings.



Empirical noiseless Bernoulli-Rademacher PTCs

PTCs for Bernoulli-Gaussian and Bernoulli signals



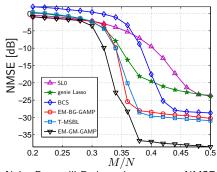


For these signals, we see EM-GM-GAMP performing. . .

- significantly better than LASSO,
- nearly as well as genie-aided GM-GAMP,
- on par with our previous "EM-BG-GAMP" algorithm.

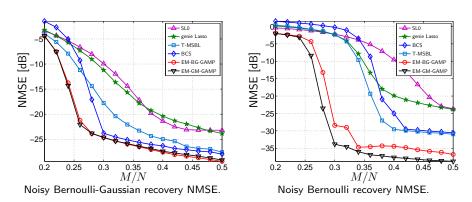
Noisy Recovery: Bernoulli-Rademacher (± 1) signals

- We now compare the normalized MSE of EM-GM-GAMP to several state-of-the-art algorithms (SL0, T-MSBL, BCS, Lasso via SPGL1) for the task of noisy signal recovery under i.i.d Gaussian A.
- For this, we fixed N = 1000, K = 100, SNR = 25dB and varied M.
- ullet For these Bernoulli-Rademacher signals, we see EM-GM-GAMP outperforming the other algorithms for all undersampling ratios M/N.
- Notice that our previous EM-BG-GAMP algorithm cannot accurately model the Bernoulli-Rademacher prior.



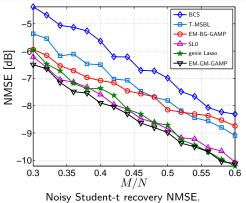
Noisy Bernoulli-Rademacher recovery NMSE.

Noisy Recovery: Bernoulli-Gaussian and Bernoulli signals



- For Bernoulli-Gaussian and Bernoulli signals, EM-GM-GAMP again dominates the other algorithms.
- We attribute the excellent performance of EM-GM-GAMP to its ability to learn and exploit the true signal prior.

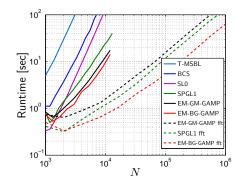
Noisy Recovery of Heavy-tailed (Student's-t) signals

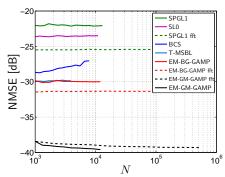


- Algorithm rankings on heavy-tailed signals are often the reverse of those for sparse signals!
- In its "heavy tailed" mode, EM-GM-GAMP performs on par with the best algorithms for all M/N.

Runtime versus signal-length N

• We fix M/N = 0.5, K/N = 0.1, SNR = 25dB, and average 50 trials.





Noisy Bernoulli-Rademacher recovery time.

Noisy Bernoulli-Rademacher recovery NMSE.

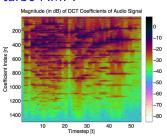
- For all N > 1000, EM-GM-GAMP has the fastest runtime!
- \bullet EM-GM-GAMP can also leverage fast operators for A (e.g., FFT).

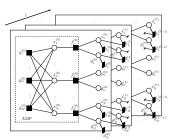
Extension to structured sparsity (Justin Ziniel)

ullet Recovery of an audio signal sparsified via DCT Ψ and compressively sampled via i.i.d Gaussian Φ (so that $A=\Phi\Psi$).

• Exploit persistence of support across time via discrete Markov chains

and turbo AMP.





	algorithm	M/N = 1/5		M/N = 1/3		M/N = 1/2	
Γ	EM-GM-AMP	-9.04 dB	8.77 s	-12.72 dB	10.26 s	-17.17 dB	11.92 s
	turbo EM-GM-AMP	-12.34 dB	9.37 s	-16.07 dB	11.05 s	-20.94 dB	12.96 s

Conclusions

- We proposed a sparse reconstruction alg that uses EM to learn GM-signal and AWGN-noise priors, and that uses GAMP to exploit these priors for near-MMSE signal recovery.
- Advantages of EM-GM-GAMP:
 - State-of-the-art NMSE performance for all tested signal types.
 - State-of-the-art complexity for signals of length $N \gtrsim 1000$.
 - Minimal tuning: choose between "sparse" or "heavy-tailed" modes.
- Ongoing related work:
 - Theoretical performance guarantees of EM-GM-GAMP.
 - Extension to non-Gaussian noise.
 - Universal learning/exploitation of structured sparsity.
 - Extensions to matrix completion, dictionary learning, robust PCA.

Matlab code is available at http://ece.osu.edu/~vilaj/EMGMAMP/EMGMAMP.html

Thanks!