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Abstract— In this paper, we propose several methods for the
pilot-aided estimation of significant ICI coefficients resulting
from pulse-shaped multicarrier modulation (PS-MCM) over
DD channels. Specifically, we outline Wiener and reduced-rank
(RR) Wiener estimation schemes that leverage statistical channel
structure, as well as deterministic least-squares (LS) schemes
based on basis expansion modeling (BEM). We then report the
results of a numerical study which suggests that RR Wiener
estimation outperforms LS estimation based on polynomial and
oversampled complex exponential BEM, even under significant
statistical mismatch. In addition, the RR Wiener estimator is
computationally cheaper than the LS-BEM techniques. These
findings have implications on the practical design of PS-MCM
channel estimation schemes.1

I. I NTRODUCTION

One of the most channeling aspects of multicarrier commu-
nication (MCM) over doubly dispersive (DD) channels is joint
mitigation of inter-symbol interference (ISI) and inter-carrier
interference (ICI). The ICI and ISI profiles are a function of
the channel’s dispersion characteristics as well as the pulse
shapes used in modulation and demodulation. For example,
cyclic-prefixed orthogonal frequency division multiplexing
(CP-OFDM) is known for excellent ISI suppression but poor
ICI suppression in DD channels (e.g., [1]). Generalizations of
CP-OFDM based on smooth, rather than rectangular, pulses
allow better joint suppression of ICI and ISI [2]–[7]. While
it is impossible to completely suppress both ICI and ISI in a
spectrally efficient multicarrier system, it is possible todesign
pulses which make the ISI negligible and reduce the ICI span
so that each subcarrier sees significant interference from only
±D adjacent sub-carriers. In anN -sub-carrier system, then,
equalization would require knowledge of only(2D + 1)N
significantICI coefficients [8]–[13], where typicallyD � N .
This reduction in unknown parameters is key to practical
implementation.

Still, given onlyN observations per multicarrier symbol, it
is impossible to accurately estimate(2D+1)N ICI coefficients
without assuming and exploitingstructure in the channel
response [14]–[19]. This channel structure could be statistical,
via an assumed correlation structure, or deterministic, via an
assumed basis expansion model (BEM). In either case, how-
ever, poor estimation performance might result if the structural
assumptions do not match the true channel properties. For this
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reason, therobustnessof these channel estimation schemes is
of particular importance.

In this paper, we propose Wiener, rank-reduced (RR)
Wiener, and least-squares (LS) methods for pilot-aided estima-
tion of significant ICI coefficients arising from general pulse-
shaped (PS) MCM over DD channels. We focus on pilot-aided
methods, rather than decision-directed methods, for reasons of
complexity: the decision-directed methods typically require the
inversion of large data-dependent matrices. Within the class
of general PS-MCMwe include both classical schemes like
CP-OFDM as well as modern schemes (e.g., [2]–[7]) which
use smooth overlapping pulses. While the estimation of time-
domain DD channel coefficients (e.g., [9], [15], [20]–[22])or
frequency-domain DD channel coefficients (e.g., [23], [24]) is
well studied, we are not aware of much work on the estimation
of pulse-shaped ICI coefficients whose structure depends both
on channel and pulse properties (e.g., [25] allows smooth
demodulation pulses but assumes a CP-OFDM transmitter).

For each proposed estimator, we derive an expression for
mean-squared estimator error which is then examined in a
detailed numerical study. We pay special attention to the
performance ofmismatchedWiener estimators, i.e., Wiener
estimators designed under incorrect statistical assumptions.
Our numerical performance study suggests that Wiener esti-
mates compare favorably to the LS-BEM estimates, even under
significant statistical mismatch. In addition, our study shows
that the rank-reduced Wiener estimator can be implemented
with a fraction of the complexity required for LS-BEM. These
findings have implications on the practical design of PS-MCM
channel estimation schemes.

II. SYSTEM MODEL

At each symbol indexi ∈ Z, N QAM data points
{sk(i)}N−1

k=0 are collected to form a (multicarrier) symbol
s(i) = [s0(i), . . . , sN−1(i)]

T . These symbols are used to
modulate pulsed subcarriers as follows:

tn =

∞
∑

i=−∞

an−iNs

1√
N

N−1
∑

k=0

sk(i)ej 2π
N

(n−iNs−No)k. (1)

In (1),{an} is the modulation pulse,Ns is the symbol interval,
andNo ∈ {0, . . . , N − 1} delays the subcarrier origin relative
to the pulse origin. The multipath channel is described by
its time-variant discrete impulse responsehn,l, defined as the
time-n response to an impulse applied at timen−l. We assume



a causal impulse response of length ofNh. The signal observed
by the receiver is then

rn = νn +

Nh−1
∑

l=0

hn,ltn−l, (2)

where {νn} is a circular white Gaussian noise (CWGN)
process with varianceσ2. Definingrn(i) := riNs+n, νn(i) :=
νiNs+n, andhn,l(i) := hiNs+n,l, equations (1) and (2) imply

rn(i) = νn(i) +

Nh−1
∑

l=0

hn,l(i)

∞
∑

q=−∞

aqNs+n−l

× 1√
N

N−1
∑

k=0

sk(i − q)ej 2π
N

(n−l+qNs−No)k. (3)

The receiver employs the modulation pulse{bn} to calculate
{xd(i)}N−1

d=0 , where

xd(i) =
1√
N

∞
∑

n=−∞

rn(i)bne−j 2π
N

d(n−No). (4)

Plugging (3) into (4), we find

xd(i) = wd(i) +

∞
∑

q=−∞

N−1
∑

k=0

Hd−k,k(i, q) sk(i − q) (5)

where

wd(i) =
1√
N

∞
∑

n=−∞

bnνn(i)e−j 2π
N

d(n−No) (6)

Hd,k(i, q) =
1

N

∞
∑

n=−∞

Nh−1
∑

l=0

hn,l(i)bnaqNs+n−l

× e−j 2π
N

d(n−No)e−j 2π
N

k(l−qNs) (7)

Equation (5) indicates thatHd,k(i, q) can be interpreted as
the response, at timei and subcarrierk + d, to a frequency-
domain impulse applied at timei − q and subcarrierk. Note
that Hd,k(i, q) depends on the pulses{an} and{bn}.

In the sequel, we assume wide-sense stationary uncorrelated
scattering (WSSUS) [26] so thatE{hn,lh

∗
n−m,l−`} = ρmσ2

l δ`.
Here,ρm denotes the normalized autocorrelation at lagm (i.e.,
ρ0 = 1) andσ2

l denotes the variance of thelth tap. In the case
of Rayleigh fading, we haveρm = J0(2πfdTcm), wherefdTc

denotes the normalized single-sided Doppler spread andJ0(·)
denotes a0th-order Bessel function of the first kind.

In practice we implement finite-duration causal pulses{an}
and{bn} of lengthNa andNb, respectively, implying that only
a finite number of terms in the set{Hd,k(i, q)}q∈Z will be
non-zero. Specifically, (7) implies that non-zero terms result
from indicesq which satisfy0 ≤ qNs + n − l ≤ Na − 1 for
somen ∈ {0, . . . , Nb − 1} and somel ∈ {0, . . . , Nh − 1}.
It is straightforward to show thatHd,k(i, q) may be non-zero
for q ∈ {−Lpre, . . . , Lpst}, whereLpre = bNb−1

Ns
c andLpst =

bNa+Nh−2
Ns

c.

With the definitions x(i) := [x0(i), . . . , xN−1(i)]
T ,

w(i) := [w0(i), . . . , wN−1(i)]
T , and [H(i, q)]d,k :=

Hd−k,k(i, q), (5) implies the block formulation

x(i) = w(i) +

Lpst
∑

q=−Lpre

H(i, q)s(i − q). (8)

It will be convenient to write

w(i) = Bν(i) (9)

B = FJ D(b) (10)

J =

[

0N−No×No
IN̄oIN · · · IN

INo
0N−N̄o×N̄o

]

,(11)

whereν(i) := [ν0(i), . . . , νNb−1(i)]
T , F denotes the unitary

N -DFT matrix, N̄o = 〈Nb − No〉N , and the number ofIN

matrices inJ is
⌊

Nb−No

N

⌋

.
In this paper, we will assume that the pulses{an} and{bn}

are designed so that inter-symbol interference (ISI) becomes
negligible relative tow(i), in which case (8) reduces to

x(i) = w(i) + H(i, 0)s(i). (12)

In addition, we will assume that we are interested in estimating
only N(2D + 1) coefficients withinH(i, 0), namely, those
within the shaded region of Fig. 1. For convenience, we collect
them ingD(i) ∈ C(2D+1)N :

gD(i) :=
[

diag−D(H(i, 0))T , . . . , diagD(H(i, 0))T
]T

,(13)

where diagk(·) extracts the kth sub-diagonal
of its matrix argument, i.e., diagk(H) :=
[

[H ]k,0, [H]k+1,1, . . . , [H ]k+N−1,N−1

]T
with modulo-

N indexing assumed.

III. C HANNEL ESTIMATION

Below we propose Wiener, rank-reduced Wiener, and LS-
BEM schemes for pilot-aided estimation ofg(i). Before dis-
cussing the estimation schemes, we describe the pilot pattern.

A. Choice of Pilot Pattern

We choose a pilot pattern where one out of everyP ≥ 2
multicarrier symbols is used as a pilot. These pilot symbols
are then used to estimate the channel coefficients of theP −1
multicarrier data symbols in-between. Pilot patterns of this
form are relatively common, having been used in several other
works (e.g., [9], [18]). Since design of optimal pilot symbols
appears to be a challenging problem, we used values obtained
from a semi-exhaustive search.

We choose this pattern over one where each multicarrier
symbol contains a mixture of pilot and data sub-carriers for
the following reason. Assuming a significant ICI radius equal
to D, the pilot and data sub-carriers would interfere unless
a frequency-domain guard with radius2D was placed around
each pilot tone.2 Since Nyquist sampling considerations imply

2This pilot strategy corresponds to the MMSE-optimal pilot pattern from
[27] for a DD channel satisfying a(2D + 1)-coefficient CE-BEM.



the need forNh pilot tones, prevention of pilot/data inter-
ference would require that at least(4D + 1)Nh sub-carriers
are spared from data transmission. For many applications of
interest (e.g., the setup in Section IV), however,(4D+1)Nh >

N , making this scheme impractical.
We now define some quantities that follow from our pilot

pattern. Say that, for all indicesi corresponding to pilot
symbols, we haves(i) = p. For thesei we can write

x(i) = P g(i) + w(i) (14)

g(i) :=
[

diag0(H(i, 0))T , . . . , diagN−1(H(i, 0))T
]T

(15)

P =
[

Θ
0 D(p) · · · Θ

N−1 D(p)
]

(16)

Θ =

[

0
T
N−1 1

IN−1 0N−1

]

, (17)

where D(·) transforms a vector argument into a diagonal
matrix. From (7), we can write

g(i) = Ch(i), (18)

gD(i) = CDh(i), (19)

whereC ∈ CN2×NbNh , CD ∈ C(2D+1)N×NbNh , andh(i) ∈
CNbNh are defined element-wise as

[h(i)]m = h
〈m〉

Nb
,
j

m
Nb

k(i) (20)

[C]n,m =
1

N
b〈m〉

Nb

a
〈m〉

Nb
−

j

m
Nb

ke
−j 2π

N

j

m
Nb

k

n

× e
−j 2π

N b n
N c

“

〈m〉
Nb

−No

”

. (21)

[CD]n,m =
1

N
b〈m〉Nb

a
〈m〉

Nb
−

j

m
Nb

ke
−j 2π

N

j

m
Nb

k

n

× e
−j 2π

N (b n
N c−D)

“

〈m〉
Nb

−No

”

. (22)

Note that h(i) contains all time-domain impulse response
coefficients affectingH(i, 0), and that its statistics are easily
written in terms of{σ2

l }Nh−1
l=0 and{ρm}Nb−1

m=0 .
Our goal is to estimateg

D
:= [gD(i + 1)T , . . . , gD(i +

P −1)T ]T , the channel coefficients required for coherent data
detection [via (4)], fromx := [x(i)T , x(i + P )T ]T , the pilot
observations.

B. Wiener Channel Estimation

We now derive a pilot-aided Wiener channel estimation
procedure based on the pilot structure in Section III-A. The
linear MMSE estimate ofg

D
from x is [28]

ĝ
D,w

= RgxR−1
xx x, (23)

whereRgx := E
{

g
D

xH
}

andRxx := E
{

xxH
}

. From (9),
(14), and (18),

Rgx =













R(1)
gx R(1−P )

gx

R(2)
gx R(2−P )

gx
...

...
R(P−1)

gx R(−1)
gx













(24)

Rxx =

[

R(0)
xx R(−P )

xx

R(P )
xx R(0)

xx

]

(25)

where

R(q)
gx := CDR

(q)
hhCHP H (26)

R(q)
xx := P CR

(q)
hhCHP H + δqσ

2BBH (27)

R
(q)
hh := E{h(i)h(i − q)H}. (28)

In (27) we assumedPNs > Nb, so thatE{w(i)w(i+P )H} =
0. The WSSUS assumption implies that

R
(q)
hh = D([σ2

0 , . . . , σ2
Nh−1]

T ) ⊗ R(q)
ρ (29)

[R(q)
ρ ]

m,n
= ρm−n+qNs

, m, n ∈ {0, . . . , Nb − 1}.(30)

It is well known that the Wiener estimation error̃g
D,w

=

ĝ
D,w

− g
D

has covariance [28]

E{g̃
D,w

g̃H

D,w
} = Rgg − RgxR−1

xx RH
gx, (31)

whereRgg := E{g
D

gH
D
} is given by

Rgg =













R(0)
gg R(−1)

gg · · · R(1−P )
gg

R(1)
gg R(0)

gg · · · R(2−P )
gg

...
...

. . .
...

R(P−1)
gg R(P−2)

gg · · · R(0)
gg













(32)

R(q)
gg := CDR

(q)
hhCH

D . (33)

C. BEM-Constrained Least-Squares Estimation

When it is difficult to obtain accurate knowledge of sta-
tistical quantities like{ρm}, {σ2

l }, and σ2, Wiener channel
estimation becomes infeasible. As an alternative, one could
assume that the channel obeys a basis expansion model (BEM)
and estimate the BEM coefficients via least-squares (LS) fit.
A generic LS-BEM channel estimation procedure is outlined
below for the pilot structure specified in Section III-A.

The BEM models the (estimated) time-domain channel
coefficients over the pilot/data/pilot intervalNf = Nb +PNs,
using the same basis expansion at each delay:

[ĥ]m = ĥ
〈m〉

Nf
,
j

m
Nf

k(i), ĥ ∈ C
Nf Nh (34)

ĥ = (INh
⊗ Q)η̂. (35)

In (35), Q ∈ CNf×K contains the basis vectors and̂η ∈
CNhK contains the (estimated) BEM coefficients. We can
relateĥ to ĝ(i + q) and ĝD(i + q) via

ĝ(i + q) = C(q)ĥ (36)

ĝD(i + q) = C
(q)
D ĥ (37)

[C(q)]n,m =
1

N
b〈m〉

Nf
−qNs

a
〈m〉Nf

−qNs−
j

m
Nf

ke
−j 2π

N

j

m
Nf

k

n

× e
−j 2π

N b n
N c

“

〈m〉
Nf

−qNs−No

”

(38)

[C
(q)
D ]n,m =

1

N
b〈m〉

Nf
−qNs

a
〈m〉

Nf
−qNs−

j

m
Nf

ke
−j 2π

N

j

m
Nf

k

n

× e
−j 2π

N (b n
N c−D)

“

〈m〉Nf
−qNs−No

”

(39)



so that we get

ĝ
D

= CD(INh
⊗ Q)η̂ (40)

CD =
[

C
(1)T
D · · · C

(P−1)T
D

]T

. (41)

For channel estimation, we choose BEM coefficientsη to
LS-fit the pilot observationsx. This yields, via (14) and (37),

η̂
ls

= arg min
η

∥

∥

∥

∥

x −
[

PC(0)

PC(P )

]

(INh
⊗ Q)η

∥

∥

∥

∥

2

. (42)

We then plug η̂
ls

into (40) to obtain the estimated ICI
coefficientsĝ

D,ls
:

ĝ
D,ls

= F ls x (43)

F ls = CD(INh
⊗ Q)

([

PC(0)

PC(P )

]

(INh
⊗ Q)

)+

,(44)

where(·)+ denotes the pseudo-inverse. The covariance of the
LS-BEM estimation error̃g

D,ls
= ĝ

D,ls
− g

D
is then

E{g̃
D,ls

g̃H

D,ls
} = F lsRxxF H

ls − RgxF H
ls − F lsR

H
gx + Rgg,(45)

for Rxx, Rgx, andRgg defined in Section III-B.
Examples of BEMs which do not require statistical channel

knowledge include the polynomial BEM [15], [17]:

[Q]m,k = (
√

Nf)−1
(

m − Nf−1
2

)k

, (46)

and oversampled complex exponential (OCE) BEM with over-
sampling factorM [16], [21]:

[Q]m,k = (
√

Nf )−1e
j 2π

MNf
(k− K−1

2
)m

. (47)

BEMs which require statistical knowledge include the Slepian
BEM [18] and the Karhunen-Loeve BEM [19].

D. Rank-Reduced Wiener Estimation

We now derive a rank-reduced (RR) version of the Wiener
channel estimation procedure outlined in Section III-B and
give a BEM interpretation. The intuition is that each of the
Nh channel taps changes slowly over theNf -duration pi-
lot/data/pilot interval and thus contributes only aboutK = 1+
d2fdTcNfe non-negligible singular values toRgxR−1

xx . Thus,
optimal rank reduction [28] can be used to significantly reduce
the complexity of channel estimation with little performance
degradation [9].

The optimal rank-NhK estimator ofg(i) is constructed as
follows [28]. From the SVDRgxR−1

xx = UΣV H , we build
UK and V K from the first NhK columns of U and V ,
respectively, and we buildΣK from the firstNhK rows and
columns ofΣ. We find thatRgxR−1

xx ≈ UKW H
K for UK ∈

C(P−1)(2D+1)N×NhK and W K := V KΣK ∈ C2N×NhK .
Note thatUK can be interpreted as the MMSE-optimal order-
NhK BEM for g

D
andW K can be interpreted as the linear

MMSE estimator of the corresponding BEM coefficientsλ.
The resulting rank-reduced estimation procedure

λ̂ = W H
Kx (48)

ĝ
D,rr

= UKλ̂ (49)

requires onlyNhK[2N +(P −1)(2D+1)N ] complex MACs
per P − 1 MCM data symbols.

Using F rr = UKW H
K , the covariance of the RR Wiener

estimation error̃g
D,rr

= ĝ
D,rr

− g
D

can be expressed as

E{g̃
D,rr

g̃H

D,rr
} = F rrRxxF H

rr − RgxF H
rr − F rrR

H
gx + Rgg.

(50)

IV. N UMERICAL RESULTS

The coefficient-averaged MSEs from (31), (45),
and (50), i.e., Ew = 1

(2D+1)Nh
tr(E{g̃

D,w
g̃H

D,w
}),

Els = 1
(2D+1)Nh

tr(E{g̃
D,ls

g̃H

D,ls
}), and Err =

1
(2D+1)Nh

tr(E{g̃
D,rr

g̃H

D,rr
}), respectively, are now analyzed

under various parameter settings. Both the OCE-BEM
and polynomial-BEM were tested. We employed the
pulse-shaped MCM system from [7],3 which chooses the
modulator/demodulator pulses to maximize SINR, where
“signal energy” is defined as that received through the
channel constructed using the diagonal elements ofH(i, 0),
and “interference energy” is defined as that received through
ISI as well as the ICI coefficients outside the shaded region
in Fig. 1. The system under consideration usedN = 16
sub-carriers, significant ICI radiusD = 2, multicarrier symbol
intervalNs = N (i.e., operation at 1 symbol/second/Hz), pulse
lengthsNa = 24 and Nb = 26, OCE-BEM oversampling
factor M = 3, and (unless otherwise noted) pilot spacing
P = 2. We used Jakes model to generate realizations
of a Rayleigh fading WSSUS channel with maximum
normalized delay spreadNh = 4 and exponential power
decayσ2

l = 2−l/N3 for l ∈ {0, . . . , Nh−1}. Unless otherwise
noted, the half-power length wasN3 = 4, the normalized
Doppler frequency wasfdTc = 0.01, and SNR=15dB. Note
that, for largeN3, the power profile becomes uniform, while,
for small N3, the channel becomes frequency-flat.

A. Effect of RankK

Figure 2 shows the MSE of RR-Wiener and LS-BEM
methods versus the rank parameterK under the nominal
conditions described earlier. For comparison, Fig. 2 also shows
the minimum MSE (i.e., that attained by full-rank Wiener es-
timation). First, we see that the Wiener estimator is extremely
robust to rank reduction. Next, we see that, while Wiener error
decreases with rank, LS-BEM error does not. In fact, LS-BEM
faces an inherent compromise between imposing too much
structure (i.e.,K too low) or not enough (i.e.,K too high).
For the remainder of our experiments, we useK = 3 in an
attempt to get near-optimal performance out of all algorithms,
keeping in mind that the Wiener estimator could be operated
at rankK = 1 or K = 2 without much performance loss.

B. Effect offdTc, fdTc-Mismatch, and Pilot SpacingP

Figures 3-4 show MSE versusfdTc for LS-BEM, RR-
Wiener underfdTc mismatch, and Wiener under both mis-
matched and perfect knowledge offdTc. Figure 3 uses pilot

3Similar results were observed for other MCM systems, thoughthe results
are not reported here.



spacing P = 2 while Fig. 4 usesP = 5. There we
see that the OCE and polynomial BEMs perform similarly,
with a relatively constant MSE at lowfdTc and increasing
MSE at highfdTc. Wiener estimation performs substantially
better than LS-BEM, andmismatchedRR-Wiener estimation
performs about the same as LS-BEM over the entire range
of mismatch. Comparing Fig. 3 to Fig. 4, we see that MSE
decreases as the pilot density increases, as would be expected.

C. Effect of SNR and SNR-Mismatch

Figure 5 shows MSE versus SNR for LS-BEM, RR-Wiener
under SNR mismatch, and Wiener under both mismatched
and perfect knowledge of SNR. Here again, the OCE and
polynomial LS-BEMs perform similarly, the Wiener estimator
outperforms both LS-BEMs (significantly so at low SNR),
and the mismatched reduced-rank Wiener outperforms the LS-
BEMs over a wide range of mismatch.

D. Effect of Decay ParameterN3 and Its Mismatch

Figure 5 shows MSE versus decay parameterN3 for the
LS-BEMs, RR-Wiener underN3 mismatch, and Wiener under
both mismatched and perfect knowledge ofN3. It turns out
that estimation performance is almost completely invariant to
N3, so that the Wieners scheme significantly outperform the
LS-BEMs, regardless of mismatch and rank-reduction.

V. CONCLUSION

In this paper, we proposed several methods for the pilot-
aided estimation of significant ICI coefficients resulting from
pulse-shaped multicarrier transmissions over DD channels.
The key to accurate estimation of these coefficients is the
exploitation of structure within the channel response. We out-
lined Wiener and RR-Wiener estimation schemes that leverage
statistical structure, as well as deterministic LS schemesthat
leverage BEM structure. We then reported the results of a
numerical study which suggested that RR-Wiener estimation
outperforms LS estimation based on polynomial and OCE
BEMs, even under significant statistical mismatch. In addition,
it suggests that the rank-reduced Wiener estimator can be made
computationally cheaper than the LS-BEM techniques without
much loss in performance. These findings have implications on
the practical design of PS-MCM channel estimation schemes.
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Fig. 1. Quasi-banded channel matrix.
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Fig. 2. Channel estimation MSE versus rank parameterK for LS-BEM,
Wiener, and rank-reduced Wiener schemes.
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Fig. 3. Channel estimation MSE versusfdTc for LS-BEM, Wiener,
mismatched Wiener, and mismatched rank-reduced Wiener schemes when
P = 2. The mismatched schemes assumedfdTc = 0.0125.
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Fig. 4. Channel estimation MSE versusfdTc for LS-BEM, Wiener,
mismatched Wiener, and mismatched rank-reduced Wiener schemes when
P = 5. The mismatched schemes assumedfdTc = 0.008.
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Fig. 5. Channel estimation MSE versus SNR for LS-BEM, Wiener,
mismatched Wiener, and mismatched rank-reduced Wiener schemes. The
mismatched schemes assumed SNR= 20dB.
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Fig. 6. Channel estimation MSE versus exponential decay parameterN3 for
LS-BEM, Wiener, mismatched Wiener, and mismatched rank-reduced Wiener
schemes. The mismatched schemes assumedN3 = 4.


