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Abstract — With a fading channel, standard ML
detection of differential Unitary Space-Time modu-
lation (DUST) leads to an error floor in the BER-
versus-SNR curve since it is derived under the as-
sumption that the channel remains constant during
every consecutive pair of matrix-symbols. Assuming
knowledge of the channel fading correlations, we de-
sign multiple-symbol ML differential detectors which
drastically reduce this error floor, especially for fast-
fading channels. Multiple-symbol differential detec-
tion has the additional benefit of reducing the 3dB
loss in SNR (relative to coherent detection) that char-
acterizes standard one-symbol differential detection.

To derive these new detectors, we make the simpli-
fying assumption that the channel changes once per
matrix-symbol (i.e., block fading) rather than once
per channel use (i.e., continuous fading). However,
the block fading assumption is not required when di-
agonal codes are used. The simulation results show
that, in spite of the block-fading assumption, the new
receivers far outperform standard single-symbol de-
tection under continuous fading as well.

I. Introduction

The capacity of wireless communication systems over fading
channels is significantly enhanced by the use of multiple an-
tennas at the transmitter and/or at the receiver. Space-time
coding is a bandwidth and power efficient method of commu-
nication over fading channels that realizes benefits of multiple
transmit antennas [1]. Although the majority of space-time
codes proposed so far assume knowledge of channel state infor-
mation (CSI) at the receiver [1], the class of unitary space-time
codes [2] and differential unitary space-time codes [3, 4] have
been proposed for Rayleigh flat-fading channels when neither
the transmitter nor the receiver knows the fading coefficients.

Differential unitary space-time modulation (DUST) can be
seen as an extension of differential phase-shift keying (DPSK),
commonly used in single antenna systems when the channel is
unknown to the receiver as well as to the transmitter. The in-
formation is encoded in the phase difference between two con-
secutive symbols, so that the information can be decoded from
phase difference between two consecutive observations. In
DUST, the transmitted symbols can be considered M×M uni-
tary matrices, where M is the number of transmit antennas.
The previously transmitted matrix-symbol is pre-multiplied
by the current information matrix-symbol to form the current
transmitted matrix-symbol. The standard differential receiver
detects one information matrix-symbol from each pair of con-
secutive received matrices.
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Ideally, we desire that the channel experienced by every
pair of consecutively transmitted matrices is the same. How-
ever, this would require that the channel be forever constant—
a requirement which is never met in practice. The per-
formance of DUST with standard single-symbol maximum-
likelihood (ML) decoding in continuously-fading channel has
been evaluated in [5], where it has been shown that an er-
ror floor is achieved when the error due to channel variation
dominates that due to additive noise.

In this paper, we present DUST detectors for use in fast
fading channels—channels for which standard single-symbol
detection is unsuccessful. In deriving the new detectors, we
make the simplifying assumption that the channel changes
once per matrix-symbol (i.e., M channel uses), and that the
receiver knows the fading correlation. We will see, however,
that the block fading assumption is not necessary when diag-
onal space-time codes [3] are used. Under these assumptions,
single- and multiple-symbol ML differential detectors are de-
rived. Simulation results show that, in spite of the block-
fading assumption, the new detectors exhibit significantly im-
proved performance compared to the standard single-symbol
detector in fast continuously-fading channels.

The notations used in this paper are as follows: Matrices
will be denoted by capital letters (e.g., X and X) and vectors
by lower case bold (e.g., x). IN will denote identity matrix
of size N × N . The operator vec(·), e.g., xn = vec(Xn), de-
notes stacking of the columns of matrix Xn in column vector
xn. (·)∗ denotes conjugate transposition, ⊗ denotes the Kro-
necker product, tr(·) denotes the trace operator, and det(·)
the determinant.

II. Background

The system model in a continuously-fading channel is
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where Xn is the M×N received matrix during the nth matrix-
symbol interval, and where M and N are the number of trans-
mit and receive antennas, respectively. Hk,n is the M × N

MIMO channel response matrix at the kth time instant in the
nth matrix-symbol interval, i.e., at the (nM + k)th channel
use. Sn = [s0,n s1,n . . . sM−1,n]∗ is the nth M × M trans-
mitted matrix-symbol, encoded as Sn = VznSn−1. zn ∈ L =
{0, 1, . . . , 2RM − 1} is the time-n integer index into matrix al-
phabet A of size 2RM , so that Vzn ∈ A. Thus R is the number
of bits per channel use. Wn is a matrix of i.i.d. unit variance
Gaussian entries and ρ is the average SNR.



Under the assumption that the channel remains constant
for one matrix-symbol interval, we have Hn = H0,n = · · · =
HM−1,n, which changes (1) to

Xn =

r
ρ

M
SnHn + Wn (2)

Even without this assumption, the use of diagonal space time
codes Sn implies that the continuous fading model (1) simpli-
fies to

Xn =

r
ρ

M
SnH

(c)
n + Wn (3)

where the kth row of the “equivalent continuous fading chan-
nel matrix” H(c)

n is the kth row of Hk,n, for k = 0, . . . , M−1. If
the MIMO fading process Hk,n is independent between anten-
nas, then the equivalent fading process H(c)

n is also indepen-
dent between antennas; the process H(c)

n , however, is M -fold
“faster” than Hk,n. Keeping this in mind, H(c)

n shall be de-
noted as Hn from here onwards, and (2) will be used as the
system model. Note that (2) is an approximate model when
non-diagonal codes are used in continuous fading channel.

Since Xn−1 =
p

ρ

M
Sn−1Hn−1 + Wn−1, on realizing that

Sn = VznSn−1, and assuming Hn = Hn−1, we can write

Xn = VnXn−1 + Wn − VznWn−1
| {z }

Ŵn

(4)

Since Vzn is unitary, Ŵn contains i.i.d. Gaussian entries with
variance twice of those in Wn. From (4) it is straight-forward
to show that the ML detection rule for zn is [3]

ẑn = arg max
zn∈L

<[tr{X∗
nVznXn−1}] (5)

Due to increased noise variance in Ŵn, this detector loses 3dB
in performance compared to coherent detection. Under the
assumption of Hn = Hn−1, the Chernoff upper bound on Pe

for the detector in (5) converges to zero as ρ → ∞ [3]. However
if the channel changes from one matrix-symbol interval to the
next, i.e., if Hn = Hn−1 + ∆H , then (4) becomes

Xn = VznXn−1 +

r
ρ

M
Sn∆H

| {z }

X̃n

+Wn − VznWn−1

where the term X̃n creates additional “noise” that induces an
error floor in BER curve. Note that the detector in (5) ignores
channel variation and is therefore suboptimal in a fading envi-
ronment. In following sections we derive detection rules that
exploit knowledge of the autocorrelation of the time-varying
channel coefficients.

III. One-Symbol ML Differential Detection

Here we derive the ML detector for zn given Xn and Xn−1

that exploits knowledge of the correlation between Hn and
Hn−1 (rather than assuming Hn = Hn−1 as in standard de-
tector [3]). Denoting hn = vec(Hn),xn = vec(Xn), and
wn = vec(Wn),
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Assuming hn and wn contain zero-mean unit-variance i.i.d.
Gaussian random variables, we have E[hnh∗

n] = IMN . Fur-
thermore, we assume that E[hnh∗

n−k] = ζkIMN , k > 0. Con-
ditioned Sn and Sn−1, xn is a zero-mean Gaussian vector with
autocorrelation matrix

R
(1) =

ρ

M

»
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ζ∗
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ζ1IN ⊗ Vzn

IMN

–

+ I2MN (7)

where we have used the facts that Sn is unitary and Sn =
VznSn−1. Note that the distribution of xn depends on Vzn

rather than Sn and Sn−1. Equation (7) can be rewritten

R
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From the identity det(I + AB) = det(I + BA) it follows that
det(R(1)) is independent of Vzn . Note also that

R
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Thus the ML detector for zn given Xn and Xn−1 (equivalently
given xn) becomes

ẑn = arg max
zn∈L

p(xn|Vzn)

= arg max
zn∈L

e
−x∗

nR(1)−1xn

= arg min
zn∈L

tr
h
−ρζ1
Md1
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= arg max
zn∈L

<{tr[ζ1X
∗
nVznXn−1]} (9)

While detector (9) is similar to detector (5), it exploits the
known fading correlation ζ1. When ζ1 is real and positive,
however, it does not affect the decision rule and can be re-
moved, making (9) identical to (5). For reasons that will be-
come clear later, we denote a

(1)

0,1 = ζ1. In order to further
improve performance we consider joint differential detection
of multiple symbols in the next section.

IV. Multiple-symbol ML differential detection

Multiple-symbol differential detection of M -PSK has been
proposed as an effective way to reduce the 3dB SNR loss in-
curred by one-symbol differential detection [6], as well as to
enhance performance in correlated Rayleigh fading channels
[7]. We extend this idea to DUST and incorporate knowledge
of fading correlation, assuming the block-fading channel de-
scribed in the previous section. First we derive the 2- and
3-symbol joint detectors and later generalize to an arbitrary
number of symbols.

A. Two-Symbol ML Detection

We now collect Xn−2, Xn−1, and Xn, with the intention of



detecting zn−1 and zn. Straightforward extension of (6) yields
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Under the channel and noise assumptions of Section III, the
received vector xn conditioned on Sn, Sn−1 and Sn−2 is zero-
mean Gaussian with an autocorrelation matrix R(2) that de-
pends only on Vzn−1 , Vzn , ζ1, ζ2 and ρ

M
. As before, det(R(2))

can be shown to be independent of Vzn and Vzn−1 . In this
case,

R
(2)−1

=
1

d2

2

4

a
(2)

0,0IMN

−a
(2)

0,1

∗
IN ⊗ V ∗

zn−1

−a
(2)

0,2

∗
IN ⊗ V ∗

zn−1
V ∗

zn

−a
(2)

0,1IN ⊗ Vzn−1

a
(2)

1,1IMN

−a
(2)

1,2

∗
IN ⊗ V ∗

zn

−a
(2)

0,2IN ⊗ VznVzn−1

−a
(2)

1,2IN ⊗ Vzn

a
(2)

2,2IMN

3

5 (10)
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Hence the detection rule is given by

{ẑn, ẑn−1} = arg max
zn−1,zn∈L

−x∗
nR

(2)−1
xn

= arg max
zn−1,zn∈L

<
ˆ
tr{a(2)

0,1X
∗
nVznXn−1

+ a
(2)

1,2X
∗
n−1Vzn−1Xn−2

+ a
(2)

0,2X
∗
nVznVzn−1Xn−2}

˜
(13)

The main difference between detector (13) and one-symbol
detector (9) is that (13) makes use of additional channel pa-
rameters. Thus we hope for improved performance in fast-
fading channels. It is worth noticing that when the channels
in subsequent blocks are independent (i.e., ζ1 = ζ2 = 0), then
a

(2)

0,1 = a
(2)

0,2 = a
(2)

1,2 = 0, implying that differential encoding
cannot be used—an intuitively satisfying observation.

B. Three-symbol ML detection

We now give the structure of the 3-symbol differential de-
tector as a prelude to the general m-symbol case and to
demonstrate that closed-form expressions for the parame-
ters a

(m)

k,l become quite lengthy when m ≥ 3. As in pre-
vious sections, we compute the inverse of the autocorrela-
tion matrix of xn = [x∗

n x∗
n−1 x∗

n−2 x∗
n−3]

∗, conditioned on
{Sn, Sn−1, Sn−2, Sn−3}, and find that its determinant is inde-

pendent of {Vzn , Vzn−1 , Vzn−2}. This leads to the ML detector
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Note that (14) is a straightforward extension of (13), except
that the coefficients {a(3)

k,l} are different from {a(2)

k,l}. As be-

fore, if ζ1 = ζ2 = ζ3 = 0, then a
(3)

k,l = 0 ∀k 6= l, imply-
ing that differentially-encoded symbols cannot be detected.
When ζk = 1 ∀k, i.e., the channel is fixed, the detection
rules (13) and (14) do not depend on SNR, since in that case
a

(2)

0,1 = a
(2)

0,2 > 0 and a
(3)

0,1 = a
(3)

1,2 = a
(3)

0,2 = a
(3)

0,3 > 0.
Though we have not derived ML detection rules for non-

diagonal DUST codes in continuously-fading channels, the
multiple-symbol detection rules (13) and (14), derived for
the block-fading channel, should still show improvement over
the standard detector in a continuous-fading environment.
The coefficients {a(m)

i,j } used in this case would be recom-
puted with ζk defined such that E[h0,nh∗

0,n−k] = ζkIMN for
h0,n = vec(H0,n). The simulation results in Section VI con-
firm that detectors (13) and (14) significantly outperform the
standard single-symbol detector (5) under fast continuous fad-
ing.
C. m-Symbol ML Detection

The ML joint detection rule for m symbols can be shown to
be

{ẑn, ẑn−1, . . . , ẑn−m+1} = arg max
zn,zn−1,...,zn−m+1∈L

(15)
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where
Qm−1

j=0
(Aj) = A0A1 · · ·Am−1. From the previous two

subsections, we see that deriving closed-form expressions for



the coefficients {a(m)

k,l } is quite difficult when m > 3. These
coefficients can, however, be computed numerically by first
constructing an (m + 1)MN × (m + 1)MN autocorrelation
matrix as an extension of (7), but with the additional sim-
plification that Vzn−j

= IM ∀j, then computing its inverse.

In the case of a fixed channel it can be shown that a
(m)

i,j =

a
(m)

k,l > 0 ∀i, j, k, l ∈ {0, . . . , m} & i 6= j, k 6= l. As a result, the

detector (15) becomes independent of coefficients a
(m)

i,j .
It is important to note that there does not appear to exist

a Viterbi-like algorithm for m-symbol ML detection that has
complexity linear in m. Observe that it is not possible to write
the detection metric as a sum of terms that contain strict sub-
sets of the symbol set {Vzn , . . . , Vzn−m+1}; there is always one

term with the form tr
˘
X∗

n

`Qm−1

j=0
Vzn−j

´
Xn−m

¯
. Thus, max-

imization of the quantity in (15) can only accomplished using
a brute force search over all symbol combinations, yielding a
complexity exponential in m.

V. Suboptimal Sequence Detection

Practical applications require the detection of N � 3 symbols.
Yet, as we have seen, the joint ML differential detector for N

symbols has a complexity that is exponential in N . Thus,
we are motivated to consider suboptimal N-symbol detection
using some combination of m-symbol ML detectors for, say,
m ≤ 3.

It is instructive to note the difference between the N-
symbol ML detector and any suboptimal N-symbol detector
constructed from m-symbol ML detectors (m < N). From
(15), we see that the suboptimal sequence detector uses de-
tection metrics that linearly combine terms based on subsets
of {Vzn , . . . , Vzn−m+1} for n ∈ {m − 1, . . . , N − 1}. The com-

bining coefficients are taken from the set {a(m)

k,l }. In con-
trast, the optimal N-symbol detection metric linearly com-
bines these terms with additional terms based on subsets of
{VzN−1 , . . . , Vz0} that are ignored by the suboptimal detector.

In addition, the N-symbol combining coefficients are {a(N)

k,l },
which are, in general, different from {a(m)

k,l }. Thus, the task
of constructing a “good” N-symbol detector that employs (at
most) m-symbol optimal detections (m < N) can be consid-
ered equivalent to the approximation of {a(N)

k,l } by a sparse
coefficient set.

For the simulations in Section VI, we divide the (N + 1)-
matrix observation sequence into consecutive subsequences of
length m + 1, each of which overlaps its neighbor by one
matrix-observation. Then, m-symbol detection is performed
on each subsequence. This is equivalent to replacing the coeffi-
cients {a(N)

k,l } with {a(m)

k,l } where defined, and replacing the rest
with zeros. Schemes in which neighboring observation subse-
quences overlap by more than one matrix-observation lead to
different approximations of the coefficient set {a(N)

k,l } and are
currently under investigation.

VI. Simulations

We evaluate the performance of the detectors in two types
of channel: the “block fading channel” (2) and the “con-
tinuous fading channel” (3). The correlation between fad-
ing coefficients k symbols apart is given by J0(2πfDTsk) [8]
in continuous fading channels, where fDTs is the normalized
Doppler frequency. In block fading channel, correlation be-
tween channel coefficients m matrix-symbols apart is given by
J0(2πfDTsMm).
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Fig. 1: Diagonal codes in continuous fading channel with

fDTs = 0.1.

As shown in Section II, the use of diagonal codes in
continuous-fading channels yield the same model as general
codes in block-fading channels, and hence detector perfor-
mance with diagonal codes is identical for these two chan-
nel types. Therefore, we first present the performance of the
detectors (5) (9) (13) and (14) in continuous-fading channels
using diagonal codes. The simulations assume two transmit
and two receive antennas with R = 1 and the constellation
specified in [3].

As described in Section V, detection is accomplished by
detecting non-overlapping portions of the transmitted symbol
sequence using 1-, 2-, and 3-symbol ML differential detectors
(9), (13), and (14). Results will be presented for detectors with
exact knowledge of fading correlations, as well as for detectors
which assume that the channel is fixed (marked by “fixed” in
the figures). In the figures shown here, solid, dashed, and
dotted lines correspond to 1-, 2- and 3- symbol detection, re-
spectively.

Fig. 1, where fDTs = 0.1, clearly illustrates the advan-
tage of detectors which jointly detect multiple symbols and

incorporate channel fading parameters. Note that detector
(5), which ignores the fading correlation, succumbs to a very
high error floor. Detector (9), designed to incorporate fading
correlation into single-symbol detection, performs same as (5)
does, since Rayleigh flat-fading model used in our simulations
leads to ζ1 > 0. Thus, both forms of single-symbol detec-
tion perform very sub-optimally in the fading environment.
The 2-symbol detector (13) which incorporates fading corre-
lation exhibits considerably improved performance, although
still succumbing to an error floor. Meanwhile, the 2-symbol
detector which ignores fading correlation performs even worse
than the one-symbol detector. Performance increases dramat-
ically with the 3-symbol detector that incorporates fading, and
decreases with the 3-symbol detector that ignores fading. As
hinted by the plot, even the good 3-symbol detector will suc-
cumb to an error floor at high-enough SNR. The important
point, however, is that the error floor has been pushed outside
of the expected operating range.

Figures 2 and 3, corresponding to normalized Doppler fre-
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Fig. 2: Diagonal codes in continuous fading channel with

fDTs = 0.05.

quencies of fDTs = 0.05 and 0.025, respectively, mimic the
results of Fig. 1 but in a less pronounced fashion. Again we
see the improvement associated with multiple-symbol ML dif-
ferential detectors that incorporate fading correlation.

Next, the performance of the detectors has been evaluated
in continuously-fading channels with non-diagonal codes to
illustrate the performance loss due to approximation in the
system model (2). The non-diagonal codes are generated by
right multiplying the diagonal codes by a fixed non-diagonal
unitary matrix. Because such an operation does not change
the product distance of the constellation [3], the comparison
of diagonal to non-diagonal codes is fair.

Figures 4 and 5 illustrate the performance of the detec-
tors with non-diagonal codes in continuously-fading channel
with fDTs = 0.05 and 0.025, respectively, and compares them
with performance of 3-symbol detector with diagonal codes.
Although the performance loss due to neglecting the chan-
nel variation within the matrix-symbol interval is significant
when fDTs = 0.05 and negligible when fDTs = 0.025, in both
cases 3- and 2-symbol detectors that incorporate knowledge
of fading correlations perform better than the single symbol
detector in terms of reducing the error floor.

The above observations lead us to important conclusions
about the detectors described in this paper. First, multiple-
symbol detection is essential to combat fading channels since
the detectors (5) and (9) are often equivalent. Increasing the
number of symbols being jointly detected improves the per-
formance in terms of SNR loss and increases the robustness
against fading channels when knowledge of fading correlations
is properly incorporated into the detection rule. Generally,
the faster the fading, the more symbols are required in joint
detection to push the error floor out of the operating range.

VII. Conclusions

In this paper, we have demonstrated the efficacy of multiple-
symbol ML differential detection that incorporates channel
fading parameters in combating the error floor exhibited by
standard one-symbol ML detection of DUST. In fact, we have
shown that multiple-symbol (versus single-symbol) detection
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Fig. 3: Diagonal codes in continuous fading channel with

fDTs = 0.025.

is essential to performance enhancement. Our multiple-
symbol detection rules, which assume the channels to be block-
fading when non-diagonal codes are used, have been shown to
improve performance in continuously-fading channels as well.
We are currently investigating the robustness of these detec-
tors to imperfect knowledge of fading correlation and SNR as
well as reduced complexity implementation of the multiple-
symbol detectors for large m. In addition, we are working to
derive theoretical error bounds for these detectors.
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Fig. 4: Non-diagonal codes in continuously-fading channel with

fDTs = 0.05.
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Fig. 5: Non-diagonal codes in continuously-fading channel with

fDTs = 0.025.


