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Abstract— The constant modulus (CM) criterion has be-
come popular in the design of blind linear estimators of
sub-Gaussian i.i.d. processes transmitted through unknown
linear channels in the presence of unknown additive inter-
ference. In this paper, we present an upper bound for the
conditionally unbiased mean-squared error (UMSE) of CM-
minimizing estimates that depends only on the source kur-
toses and the UMSE of Wiener estimates. Further analysis
reveals that the extra UMSE of CM estimates can be up-
per bounded by approximately the square of the Wiener
(i.e., minimum) UMSE. Since our results hold for arbitrary
linear channels and additive multi-source interference, they
confirm the longstanding conjecture regarding the general
MSE-robustness of CM estimates.

I. Introduction

Consider the linear estimation problem of Fig. 1,
where a desired source sequence {s(0)

n } combines linearly
with K interfering sources {s(k)

n } through vector channels
{h(0)(z), . . . ,h(K)(z)}. Our goal is to estimate the desired
source using the vector linear estimator f(z). The lin-
ear estimates {yn} which minimize the mean-squared error
(MSE)

Jm,ν(yn) := E
{

|yn − s(0)

n−ν |2
}

(1)

are generated by the minimum MSE (MMSE) estimator,
or Wiener estimator, fm,ν(z). Specification of fm,ν(z),
however, requires knowledge of the joint statistics of the
observed sequence {rn} and the desired source sequence
{s(0)

n }, which are typically unavailable when the channel is
unknown.

When only the statistics of the observed sequence {rn}
are known, it may still be possible to estimate {s(0)

n } up
to unknown magnitude and delay, i.e., yn =

∑

i f
H
i rn−i ≈

αs(0)

n−ν for some α ∈ C, some ν ∈ Z, and all n. The liter-
ature refers to this problem as blind estimation (or blind
deconvolution).

Minimization of the constant modulus (CM) criterion
[1], [2] has become perhaps the most studied and imple-
mented means of blind equalization for data communica-
tion over dispersive channels (see, e.g., [3] and the ref-
erences within) and has also been used successfully as a
means of blind beamforming (see, e.g., [4]). The CM cri-
terion is defined below in terms of the estimates {yn} and
a design parameter γ.

Jc(yn) := E
{(

|yn|2 − γ
)2}

. (2)
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The popularity of the CM criterion is usually attributed to

1. the existence of a simple adaptive algorithm (“CMA”
[1], [2]) for estimation and tracking of the CM-
minimizing estimator fc(z), and

2. the excellent MSE performance of CM-minimizing esti-
mates.

The second of these two points was first conjectured in
the original works [1], [2] and provides the theme for the
recently-published comprehensive survey [3]. In this paper,
we attempt to precisely quantify the general MSE perfor-
mance of CM-minimizing estimates.

The last decade has seen a plethora of papers giving
evidence for the “robustness” of CM performance in situ-
ations where the CM-minimizing (and MMSE) estimates
are not perfect. Most of these studies, however, focus on
particular features of the system model that prevent per-
fect estimation, such as

1. the presence of additive white Gaussian noise (AWGN)
corrupting the observation (e.g., [5], [6], [7]),

2. channels that do not provide adequate diversity, (e.g.,
[5], [8]), or

3. estimators with an insufficient number of adjustable pa-
rameters (e.g., [9], [10]).

A notable exception is the work of Zeng et al. [11], in
which an algorithm is given to bound the MSE of CM-
minimizing estimates for the case of a single source trans-
mitted through a finite-duration impulse response (FIR)
linear channel in the presence of AWGN. The channel
model assumed by [11] is general enough to incorporate
most combinations of the three conditions above, though
not as general as the multi-source model of Fig. 1. The
bounding algorithm in [11] is rather involved, however, pre-
venting a direct link between the MSE performance of CM
and Wiener receivers.

The main contribution of this paper is a (closed-form)
bound on the MSE performance of CM-minimizing esti-
mates that is a simple function of the MSE performance
of Weiner estimates. This bound, derived under the multi-
source linear model in Fig. 1, provides the most formal
link (established to date) between the CM and Wiener es-
timators, and as such, the most general testament to the
MSE-robustness of the CM criterion.

II. Background

In this section, we give more detailed information on
the linear system model and the MSE, UMSE, and CM
criteria. The following notation is used throughout: (·)t
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rn
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Fig. 1. Linear system model with K sources of interference.

denotes transpose, (·)∗ conjugate, (·)H hermitian, and (·)†
Moore-Penrose pseudo-inverse. Likewise, E{·} denotes ex-
pectation, ‖x‖p the p-norm defined by p

√
∑

i |xi|p, R+ the
field of non-negative real numbers, and `1(C) the space
of absolutely-summable complex sequences. In general, we
use boldface lowercase type to denote vector quantities and
boldface uppercase type to denote matrix quantities.

A. Linear System Model

First we formalize the linear time-invariant multi-
channel model illustrated in Fig. 1. Say that the de-
sired symbol sequence {s(0)

n } and K sources of interfer-
ence {s(1)

n }, . . . , {s(K)
n } each pass through separate linear

“channels” before being observed at the receiver. In
addition, say that the receiver uses a sequence of P -
dimensional vector observations {rn} to estimate (a possi-
bly delayed version of) the desired source sequence, where
the case P > 1 corresponds to a receiver that employs
multiple sensors and/or samples at an integer multiple
of the symbol rate. The observations rn can be writ-
ten rn =

∑K
k=0

∑∞
i=0 h

(k)

i s(k)

n−i, where {h(k)
n } denote the

impulse response coefficients of the linear time-invariant
(LTI) channel h

(k)(z). We assume that h
(k)(z) is causal

and bounded-input bounded-output (BIBO) stable with
an auto-regressive moving-average (ARMA) structure.

From the vector-valued observation sequence {rn}, the
receiver generates a sequence of linear estimates {yn} of
{s(k)

n−ν}, where ν is a fixed integer. Using {fn} to denote
the impulse response of the linear estimator f(z), the esti-
mates are formed as yn =

∑∞
i=−∞ f

H
i rn−i.We will assume

that the linear system f(z) is BIBO stable with constrained

ARMA structure.
In the sequel, we will focus almost exclusively on the

combined channel-estimators q(k)(z) := f
H(z)h(k)(z). The

impulse response coefficients of q(k)(z) can be written

q(k)

n =

∞
∑

i=−∞

f
H
i h

(k)

n−i, (3)

allowing the estimates to be written as yn =

∑K
k=0

∑∞
i=−∞ q(k)

i s(k)

n−i. Adopting the following vector no-
tation helps to streamline the remainder of the paper.

q := (· · · , q(0)

−1, . . . , q
(K)

−1 , q(0)

0 , . . . , q(K)

0 , q(0)

1 , . . . , q(K)

1 , · · · )t,

s(n) :=(· · · , s(0)

n+1, . . . , s
(K)

n+1, s
(0)
n , . . . , s(K)

n , s(0)

n−1, . . . , s
(K)

n−1, · · · )t.

For instance, the estimates can be rewritten concisely as
yn = q

t
s(n).

It is important to recognize that that placing a particular
structure on the channel and/or estimator will restrict the
set of attainable channel-estimator responses, which we will
denote by Qa. For example, when the estimator is FIR,
(3) implies that q ∈ Qa = row(H), where

H :=









h
(0)

0 · · · h(K)

0 h
(0)

1 · · · h(K)

1 h
(0)

2 · · · h(K)

2 · · ·
0 · · · 0 h

(0)

0 · · · h(K)

0 h
(0)

1 · · · h(K)

1 · · ·
...

...
...

...
...

...
0 · · · 0 0 · · · 0 h

(0)

0 · · · h(K)

0 · · ·









.

Restricting the estimator to be sparse or autoregressive,
for example, would generate a different attainable set Qa.

Throughout the paper, we make the following assump-
tions on the K + 1 source processes:

S1) For all k, {s(k)
n } is zero-mean i.i.d.

S2) For k 6= `, {s(k)
n } is statistically independent of {s(`)

n }.
S3) For all k, E{|s(k)

n |2} = σ2
s .

S4) K(s(0)
n ) < 0, where K(·) denotes kurtosis:

K(sn) := E{|sn|4} − 2 E2{|sn|2} −
∣

∣E{s2
n}
∣

∣

2
. (4)

S5) If, for any k, q(k)(z) or {s(k)
n } is not real-valued, then

E{s(k)
n

2} = 0 for all k.

B. The Mean-Squared Error Criterion

The well-known mean-squared error (MSE) criterion was
defined in (1) in terms of the estimate yn and the esti-
mand s(0)

n−ν . It is possible to derive closed-form expressions
for the MMSE quantities that correspond our source and
model assumptions [14]. In the case of an FIR estimator,
for example, S1)–S3) imply qm,ν = H

t(H∗
H

t)†H∗
e

(0)
ν ,

where e
(k)
ν is a vector with single nonzero element of value 1

located so that q
t
e

(k)
ν = q(k)

ν . Henceforth, we denote MMSE
quantities by the subscript “m.”

C. Unbiased Mean-Squared Error

Since both symbol power and channel gain are unknown
in the “blind” scenario, blind estimates suffer from a gain
ambiguity. To ensure that our estimator performance eval-
uation is meaningful in the face of such ambiguity, we base
our evaluation on normalized versions of the blind esti-
mates and normalize by the receiver gain q(0)

ν . Given that
the estimate yn can be decomposed into signal and inter-
ference terms as

yn = q(0)

ν s(0)

n−ν + q̄
t
s̄(n), (5)



where q̄ denotes q with the q(0)
ν term removed and s̄(n)

denotes s(n) with the s(0)

n−ν term removed, the normalized
estimate yn/q(0)

ν can be referred to as “conditionally unbi-
ased” since E{yn/q(0)

ν |s(0)

n−ν} = s(0)

n−ν .
The (conditionally) unbiased MSE (UMSE) associated

with yn, an estimate of s(0)

n−ν , is then defined

Ju,ν(yn) := E
{

|yn/q(0)

ν − s(0)

n−ν |2
}

. (6)

Substituting (5) into (6), we find that

Ju,ν(q) = E
{

|q̄t
s̄(n)|2

}

/|q(0)

ν |2 = σ2
s‖q̄‖2

2/|q(0)

ν |2. (7)

Note that UMSE equals inverse signal to interference-plus-
noise ratio (SINR), i.e., Ju,ν = σ2

s SINR−1
ν where

SINRν :=
E
{

|q(0)
ν s(0)

n−ν |2
}

E
{

|q̄t
s̄(n)|2

} =
|q(0)

ν |2

‖q̄‖2
2

.

D. The Constant Modulus Criterion

The constant modulus (CM) criterion, introduced inde-
pendently in [1] and [2], was defined in (2) in terms of the
estimates {yn}. In (2), γ is a positive parameter known
as the “dispersion constant.” Though γ is often chosen
according to the marginal statistics of the desired source
process (when known), we will see that the UMSE perfor-
mance of CM-minimizing estimates is insensitive to γ.

In the two “ideal” situations below, CM-minimizing es-
timates {yn} are known to take the form yn = αs(0)

n−ν ,

where α = ejφ
√

γσ2
s/ E{|s(0)

n |4}, for some φ and ν. Note
that these estimates have zero UMSE and, as such, are per-

fect up to a scalar ambiguity. For a single i.i.d. source that
satisfies S4) and S5), this perfect CM-estimation property
has been proven for

• unconstrained doubly-infinite estimators with BIBO
channels [12], and

• causal FIR estimators with full-column rank H [13].

In Section III-C, we extend the perfect CM-estimation
property to the multi-source linear model described in Sec-
tion II-A. See [15] for other properties of the CM criterion.

III. CM Performance under General Additive

Interference

An algorithm for bounding the MSE performance of CM
minimizers has been derived by Zeng et al. for the case of
a real-valued i.i.d. source, a FIR channel, AWGN, and a
finite-length estimator. The development for full column-
rank (FCR) and non-FCR H appear in [6] and [11], respec-
tively. Though the relatively complicated Zeng algorithm
generates reasonably tight CM-UMSE upper bounds, we
have found that it is possible to derive tight bounds for
the UMSE of CM-minimizing symbol estimates that

• have a closed-form expression,

• support arbitrary additive interference,

• support complex-valued channels and estimators, and

• support IIR (as well as FIR) channels and estimators.

We will now derive such bounds. Section III-A outlines
our approach, Section III-B presents the main results, and
Section III-C comments on these results.

A. The CM-UMSE Bounding Strategy

Say that qr,ν is an attainable reference channel-estimator
response for the desired user (k=0) at delay ν. Formally,
qr,ν ∈ Qa ∩Q(0)

ν , where

Q(0)

ν :=
{

q s.t. |q(0)

ν | > max
(k,δ) 6=(0,ν)

|q(k)

δ |
}

.

Q(0)
ν defines the set of channel-estimators associated1 with

user 0 at delay ν. The set2 of locally CM-minimizing
channel-estimator responses for the desired user at delay ν
will be denoted by {qc,ν} and defined as:

{qc,ν} :=
{

arg min
q∈Qa

Jc(q)
}

∩ Q(0)

ν .

In general, it is not possible to determine closed-form ex-
pressions for {qc,ν}, making it difficult to evaluate the
UMSE of CM-minimizing estimates.

When qr,ν is in the vicinity of a qc,ν (the meaning of
which will be made more precise later) then, by definition,
this qc,ν must have CM cost less than or equal to the cost
at qr,ν . In this case, qc,ν ∈ Qc(qr,ν), where

Qc(qr,ν) :=
{

q s.t. Jc(q) ≤ Jc(qr,ν)
}

∩ Q(0)

ν . (8)

This approach implies the following CM-UMSE upper
bound:

Ju,ν(qc,ν) ≤ max
q∈Qc(qr,ν)

Ju,ν(q). (9)

Note that the maximization on the right of (9) does not
explicitly involve the admissibility constraint Qa; the con-
straint is implicitly incorporated through qr,ν .

The tightness of the upper bound (9) will depend on the
size and shape of Qc(qr,ν), motivating careful selection of
the reference qr,ν . Notice that the size of Qc(qr,ν) can usu-
ally be reduced via replacement of qr,ν with βrqr,ν , where
βr := argminβ Jc(βqr,ν). (Since Qa is a linear subspace,
qr,ν ∈ Qa ∩Q(0)

ν ⇒ βrqr,ν ∈ Qa ∩Q(0)
ν .) This implies that

the direction (rather than the size) of qr,ν is important;
the tightness of the CM-UMSE bound (9) will depend on
collinearity of qr,ν and {qc,ν}. Fig. 2 presents an illustra-
tion of this idea.

1Note that under S1)–S3), a particular {user, delay} combination
is “associated” with an estimate if and only if that {user, delay}
contributes more energy to the estimate than any other {user, delay}.

2We refer to the CM-minimizing channel-estimators in plural to
avoid establishing the uniqueness of CM local minima within Qa ∩
Q(0)

ν .



Zeng [11] has shown that in the case of an i.i.d. source, a
FIR channel and AWGN noise, qc,ν are nearly collinear to
the MMSE channel-estimator response qm,ν. These find-
ings, together with the abundant interpretations of the
MMSE estimator and the existence of closed-form expres-
sions for qm,ν suggest the reference choice qr,ν = qm,ν .

q0

q1

q2

Qa

Qc(βrqr,ν)qr,ν

a

b∗(a)

βrqr,ν

θa

Fig. 2. Illustration of CM-UMSE upper-bounding technique using
reference qr,ν .

Determining a CM-UMSE upper bound from (9) can
be accomplished as follows. Since both Jc(q) and Ju,ν(q)
are invariant to phase rotation of q (i.e., scalar multipli-
cation of q by ejφ for φ ∈ R), we can restrict our atten-
tion to the set of “de-rotated” channel-estimator responses
{q s.t. q(0)

ν ∈ R+}. Such q allow parameterization in terms
of gain a = ‖q‖2 and interference response q̄ (defined in
Section II-C), where ‖q̄‖2 ≤ a. In terms of the pair (a, q̄),
the upper bound in (9) may then be rewritten

max
q∈Qc(βrqr,ν )

Ju,ν(q) = max
a

(

max
q̄: (a,q̄)∈Qc(βrqr,ν)

Ju,ν(a, q̄)

)

.

Under particular conditions on the gain a and the refer-
ence qr,ν (made explicit in Section III-B), there exists a
minimum interference gain

b∗(a) := (10)

min
b(a)

s.t.
{

(a, q̄) ∈ Qc(βrqr,ν) ⇒ ‖q̄‖2 ≤ b(a)
}

,

which can be used in the containment:
{

(a, q̄) ∈ Qc(βrqr,ν)
}

⊂
{

(a, q̄) s.t. ‖q̄‖2 ≤ b∗(a)
}

,

implying

max
q̄: (a,q̄)∈Qc(βrqr,ν)

Ju,ν(a, q̄) ≤ max
q̄: ‖q̄‖2≤b∗(a)

Ju,ν(a, q̄).

Applying (7) to the previous statement yields

max
q̄: ‖q̄‖2≤b∗(a)

Ju,ν(a, q̄) = max
q̄: ‖q̄‖2≤b∗(a)

(

‖q̄‖2
2

a2 − ‖q̄‖2
2

)

σ2
s

=

(

b2
∗(a)

a2 − b2
∗(a)

)

σ2
s ,

and putting these arguments together, we arrive at the
CM-UMSE bound

Ju,ν(qc,ν) ≤ max
a

(

b2
∗(a)

a2 − b2
∗(a)

)

σ2
s . (11)

The roles of various quantities can be summarized using
Fig. 2. Starting with the arbitrarily-chosen (but attain-
able) reference channel-estimator response qr,ν , the scalar
βr minimizes the CM cost that characterizes all scaled
versions of qr,ν . Since the CM minimum qc,ν is known
to lie within the set Qc(βrqr,ν), delineated in Fig. 2 by
long-dashed lines, the maximum UMSE within Qc(βrqr,ν)

forms a valid upper bound for CM-UMSE.3 Determining
the maximum UMSE within Qc(βrqr,ν) is accomplished
by first deriving b∗(a), the smallest upper bound on in-
terference gain for all q ∈ Qc(βrqr,ν) that have a total
gain of a, and then finding the particular combination of
{a, b∗(a)} that maximizes UMSE. The angle θa shown in
Fig. 2 gives a simple trigonometric interpretation of the
UMSE bound (11): Ju,ν(qc,ν) ≤ maxa tan2(θa). Also ap-
parent from Fig. 2 is the notion that the valid range for a
will depend on the choice of qr,ν .

B. Closed-Form Bounding Expressions for CM-UMSE

After making a few definitions, we present CM-UMSE
bounding expressions resulting from the approach of Sec-
tion III-A. See [14] for detailed derivation and proofs.

Normalized kurtosis (not to be confused with K(·) in
(4)) is defined:

κ(k)

s := E
{

|s(k)

n |4
}

/ E2
{

|s(k)

n |2
}

. (12)

Under the following definition of κg, our results will hold
for both real-valued and complex-valued models.

κg :=

{

3, s(k)
n ∈ R, ∀k, n

2, otherwise,
(13)

Note that, under S1) and S5), κg represents the normalized
kurtosis of a Gaussian source. As shown in [14], the nor-
malized and un-normalized kurtoses are related through

3Though a tighter bound would follow from use of the fact that
∃ qc,ν ∈ Qc(βrqr,ν)∩Qa (denoted by the shaded area in Fig. 2), the

set Qc(βrqr,ν) ∩ Qa is too difficult to describe analytically.



K(s(k)
n ) = (κ(k)

s − κg)σ
4
s when S3) and S5) hold. The fol-

lowing quantities are used in the sequel:

κmin
s := min0≤k≤K κ(k)

s , κmax
s := max0≤k≤K κ(k)

s ,

ρmin :=
κg−κmin

s

κg−κ
(0)
s

, ρmax :=
κg−κmax

s

κg−κ
(0)
s

.

Theorem 1: When there exists a Wiener estimator asso-
ciated with the desired user at delay ν generating estimates
with kurtosis κym obeying

ρmin

1 + ρmin
<

κg − κym

κg − κ(0)
s

≤ 1,

there exists a CM-minimizing estimator that generates es-
timates associated with the same user/delay whose UMSE
can be upper bounded by Ju,ν

∣

∣

max,κym

c,ν
, where

Ju,ν

∣

∣

max,κym

c,ν
:=

1 −
√

(ρmin + 1)
κg−κym

κg−κ
(0)
s

− ρmin

ρmin +
√

(ρmin + 1)
κg−κym

κg−κ
(0)
s

− ρmin

σ2
s . (14)

While Theorem 1 presents a closed-form CM-UMSE
bounding expression in terms of the kurtosis of the MMSE
estimates, it is also possible to derive lower and upper
bounds in terms of the UMSE of MMSE estimates.

Theorem 2: If Wiener UMSE Ju,ν(qm,ν) < Joσ
2
s , where

Jo :=

8

>

>

<

>

>

:

2
p

(1 + ρmin)−1 − 1 κmax
s ≤κg

1−
√

1−(3−ρmin)(1+ρmax)/4

ρmax+
√

1−(3−ρmin)(1+ρmax)/4
, κmax

s >κg, ρmax 6=−1,

3−ρmin
5+ρmin

κmax
s >κg, ρmax =−1.

(15)

there exists a CM-minimizing estimator associated with
the desired user at delay ν whose UMSE can be upper
bounded by Ju,ν

∣

∣

max,Ju,ν(qm,ν)

c,ν
, where

Ju,ν

∣

∣

max,Ju,ν(qm,ν)

c,ν
:= (16)
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s

(1+ρmin)

„

1+
Ju,ν (qm,ν)

σ2
s

«−2

−ρmin

ρmin+

s

(1+ρmin)

„

1+
Ju,ν (qm,ν)

σ2
s

«−2

−ρmin

σ2
s

when κmax
s ≤ κg,

1−

s

(1+ρmin)

„

1+
Ju,ν (qm,ν)

σ2
s

«−2„

1+ρmax
J2
u,ν (qm,ν)

σ4
s

«

−ρmin

ρmin+

s

(1+ρmin)

„

1+
Ju,ν (qm,ν)

σ2
s

«−2„

1+ρmax
J2
u,ν (qm,ν)

σ4
s

«

−ρmin

σ2
s

when κmax
s > κg.

Note that the two cases of Jo in (15) and of

Ju,ν

∣

∣

max,Ju,ν(qm,ν)

c,ν
in (16) coincide as κmax

s → κg. Equa-

tion (16) leads to an elegant approximation of the extra

UMSE of CM-minimizing estimates:

Eu,ν(qc,ν) := Ju,ν(qc,ν) − Ju,ν(qm,ν).

Theorem 3: If Ju,ν(qm,ν) < Joσ
2
s , then the extra

UMSE of CM-minimizing estimates can be bounded as
Eu,ν(qc,ν) ≤ Eu,ν

∣

∣

max,Ju,ν(qm,ν)

c,ν
, where

Eu,ν

∣

∣

max,Ju,ν(qm,ν)

c,ν
(17)

:= Ju,ν

∣

∣

max,Ju,ν(qm,ν)

c,ν
− Ju,ν(qm,ν)

=



























1
2σ2

s
ρminJ

2
u,ν(qm,ν) + O

(

J3
u,ν(qm,ν)

)

when κmax
s ≤ κg

1
2σ2

s
(ρmin − ρmax)J

2
u,ν(qm,ν) + O

(

J3
u,ν(qm,ν)

)

when κmax
s > κg.

Equation (17) implies that the extra UMSE of CM-
minimizing estimates is upper bounded by approximately
the square of the minimum UMSE. Fig. 3 plots the upper
bound on CM-UMSE and extra CM-UMSE from (16) as
a function of Ju,ν(qm,ν)/σ2

s for various values of ρmin and
ρmax. The second-order approximation based on (17) ap-
pears very good for all but the largest values of UMSE.
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Fig. 3. Upper bound on (a) CM-UMSE and (b) extra CM-UMSE
versus Ju,ν(qm,ν) (when σ2

s = 1) from (16) with second-order

approximation from (17). From left to right, {ρmin, ρmax} =
{1000, 0}, {1,−2}, and {1, 0}.

C. Comments on the CM-UMSE Bounds

C.1 Implicit Incorporation of Qa

First, recall that the CM-UMSE bounding procedure in-
corporated Qa, the set of attainable channel-estimators,
only in the requirement that qr,ν ∈ Qa. Thus Theo-
rems 1–3, written under the reference choice qr,ν = qm,ν ∈
Qa ∩ Q(0)

ν , implicitly incorporate the channel and/or es-
timator constraints that define Qa. For example, if qm,ν



is the MMSE channel-estimator response constrained to
the set of causal IIR estimators, then CM-UMSE bounds
based on this qm,ν will implicitly incorporate the causality
constraint. The implicit incorporation of attainable set Qa

makes these bounding theorems general and easy to apply.

C.2 Effect of ρmin

When κmax
s ≤ κg and ρmin =

κg−κmin
s

κg−κ
(0)
s

= 1, the expres-

sions in Theorems 1–3 simplify: e.g., Jo = (
√

2 − 1) and

Ju,ν

∣

∣

max,qm,ν

c,ν
=

1 −
√

2
(

1 +
Ju,ν(qm,ν)

σ2
s

)−2

− 1

1 +

√

2
(

1 +
Ju,ν(qm,ν)

σ2
s

)−2

− 1

σ2
s

≈ Ju,ν(qm,ν) +
1

2σ2
s

J2
u,ν(qm,ν).

Typical scenarios leading to ρmin = 1 include

a) sub-Gaussian desired source in the presence of AWGN,

b) constant-modulus desired source in the presence of non-
super-Gaussian interference, or

c) i.i.d. sources/interferers in the presence of AWGN.

The case ρmin > 1, on the other hand, might arise
from the use of dense (and/or shaped) source constella-
tions in the presence of interfering sources that are “more
sub-Gaussian.” In fact, source assumption S4) allows for
arbitrarily large ρmin, which could result from a nearly-
Gaussian desired source in the presence of non-Gaussian
interference. Though Theorems 1–3 remain valid for arbi-
trarily high ρmin, the requirements placed on qm,ν via Jo

become more stringent (recall Fig. 3).

C.3 Generalization of Perfect CM-Estimation Property

Finally, we note that the Ju,ν(qm,ν)-based CM-UMSE
bound in Theorem 2 implies that the perfect CM-
estimation property, proven under more restrictive condi-
tions in [12] and [13], extends to the general multi-source
linear model of Fig. 1:

Corollary 1: The CM-minimizing estimates are perfect
(up to a scaling) in the presence of K interferers under
S1)-S5) and

• for BIBO IIR channels, unconstrained and doubly-
infinite estimators; or

• for FIR channels, FCR channel matrices H; or

• for arbitrary channels, perfect (up to a scaling) Wiener
estimates.

Proof: Under S1)-S3) and the channel conditions
above, Ju,ν(qm,ν) = 0. Under S1)-S5), Theorem 2 says
that Ju,ν(qm,ν) = 0 ⇒ Ju,ν(qc,ν) = 0. Hence, the esti-
mates are perfect up to a (fixed) scale factor.

IV. Conclusions

In this paper we have presented, for the general multi-
source linear model of Fig. 1, two closed-form bounding ex-
pressions for the UMSE of CM-minimizing estimates and a
generalization of the perfect CM-estimation property. This
work confirms the longstanding conjecture (see, e.g., [1],
[2], and [3]) that the MSE performance of the CM estima-
tor is robust to general linear channels and general (multi-
source) additive interference. As such, our results super-
sede previous work demonstrating the MSE-robustness of
CM-minimizing estimates in special cases (e.g., when only
AWGN is present, when the channel does not provide ad-
equate diversity, or when the estimator has an insufficient
number of adjustable parameters).
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