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Abstract—We consider the recovery of an (approximately)
sparse signal from noisy linear measurements, in the case that
the signal is apriori known to be non-negative and obeys certain
linear equality constraints. For this, we propose a novel empirical-
Bayes approach that combines the Generalized Approximate
Message Passing (GAMP) algorithm with the expectation max-
imization (EM) algorithm. To enforce both sparsity and non-
negativity, we employ an i.i.d Bernoulli non-negative Gaussian
mixture (NNGM) prior and perform approximate minimum
mean-squared error (MMSE) recovery of the signal using sum-
product GAMP. To learn the NNGM parameters, we use the
EM algorithm with a suitable initialization. Meanwhile, the
linear equality constraints are enforced by augmenting GAMP’s
linear observation model with noiseless pseudo-measurements.
Numerical experiments demonstrate the state-of-the art mean-
squared-error and runtime of our approach.1

I. INTRODUCTION

We consider the recovery of an (approximately) sparse
signal x ∈ RN from the noisy linear measurements

y = Ax+w ∈ R
M , (1)

where A is a known sensing matrix, w is additive white
Gaussian noise (AWGN), and M may be " N . In this paper,
we focus on non-negative signals (i.e., xn ≥ 0 ∀n) that obey
linear equality constraints Bx = c ∈ RP . A notable example
is the simplex constraint, i.e., x ∈ ∆+ ! {x ∈ RN : x ≥
0 ∀n,1Tx = 1}, occurring in hyperspectral unmixing [1],
portfolio optimization [2], density learning [3], and many other
applications.

For this task, we propose a novel empirical-Bayes approach
that combines truncated Gaussian-mixture models, the expec-
tation maximization (EM) algorithm [4], and the Generalized
Approximate Message Passing (GAMP) algorithm [5], sum-
marized in Table I and contextualized in the sequel.

GAMP is a computationally efficient approach to (ap-
proximate) maximum a posteriori (MAP) or minimum mean-
squared error (MMSE) inference of a random vector x ∈ RN

with a known i.i.d prior pdf pX(·) from a corrupted observation
y ∈ RM of the linear transform outputs z ! Ax ∈ RM , where
{ym} are conditionally independent (given z) with known
likelihood pY |Z(y|·). GAMP, recently proposed by Rangan,
generalizes Donoho, Maleki, and Montanari’s Approximate
Message Passing (AMP) algorithm [6] from AWGN obser-
vations to arbitrary likelihoods pY |Z(y|·). AMP and GAMP
are both derived from (Taylor-series and central-limit-theorem
based) approximations of loopy belief propagation, and yield
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inputs: pX(·), pY |Z(ym|·), {Amn}, Tmax, τgamp

definitions:
pZ|P (zm|p̂m;µp

m) !
pY |Z(ym|zm)N (zm;p̂m,µp

m)
∫
z pY |Z(ym|z)N (z;p̂m,µ

p
m)

(D1)

pX|R(xn|r̂n;µr
n) !

pX(xn)N (xn;r̂n,µr
n)∫

x pX(x)N (x;r̂n,µr
n)

(D2)

initialize:
∀n : x̂n(1) =

∫

x
x pX(x) (I1)

∀n : µx
n(1) =

∫

x
|x− x̂n(1)|2pX(x) (I2)

∀m : ŝm(0) = 0 (I3)
for t = 1 : Tmax,

∀m : µp
m(t) =

∑N
n=1 |Amn|2µx

n(t) (R1)

∀m : p̂m(t) =
∑N

n=1Amnx̂n(t)− µp
m(t) ŝm(t− 1) (R2)

∀m : µz
m(t) = var{Z|P = p̂m(t);µp

m(t)} (R3)
∀m : ẑm(t) = E{Z|P = p̂m(t);µp

m(t)} (R4)
∀m : µs

m(t) =
(

1− µz
m(t)/µp

m(t)
)

/µp
m(t) (R5)

∀m : ŝm(t) =
(

ẑm(t)− p̂m(t)
)

/µp
m(t) (R6)

∀n : µr
n(t) =

(
∑M

m=1 |Amn|2µs
m(t)

)−1
(R7)

∀n : r̂n(t) = x̂n(t) + µr
n(t)

∑M
m=1A

∗
mnŝm(t) (R8)

∀n : µx
n(t+1) = var{X|R = r̂n(t);µr

n(t)} (R9)
∀n : x̂n(t+1) = E{X|R = r̂n(t);µr

n(t)} (R10)

if
∑N

n=1 |x̂n(t+1)− x̂n(t)|2 < τgamp
∑N

n=1 |x̂n(t)|2, break (R11)
end

outputs: {ẑm(t), µz
m(t)}, {r̂n(t), µr

n(t)}, {x̂n(t+1), µx
n(t+1)}

TABLE I. THE GAMP ALGORITHM FROM [5]

computationally simple “first-order” algorithms that admit
rigorous analysis in the large-system limit (i.e., M,N → ∞
for fixed ratio M/N ) for i.i.d zero-mean sub-Gaussian A
[7] and that have been demonstrated to work well for many
deterministic matrices [8]. As we shall see, the generalization
that GAMP affords over AMP is essential for our approach to
enforcing the linear equality constraints Bx = c.

The GAMP algorithm requires specification of both the
signal prior pX and the likelihood pY |Z , which are typically
unknown in practice. Recently, it was proposed to model
pX as Bernoulli-Gaussian-Mixture (BGM) with determinis-
tic unknown parameters, and pY |Z as Gaussian with deter-
ministic unknown variance, and then compute (approximate)
maximum-likelihood estimates of these parameters using the
EM algorithm [9]. This combination of Bayesian and frequen-
tist techniques is usually referred to as “empirical Bayes” [10].
Extensive empirical evidence showed that the resulting EM-
GM-AMP algorithm offers state-of-the-art mean-squared error
(MSE) and runtime for large random A.

In this work, we extend the EM-GM-AMP approach from
[9] to support non-negativity and linear equality constraints
on x. In the sequel, we provide details on our new approach
and then present empirical evidence of its performance using
phase-transition curves for the recovery of simplex signals and
a sparse non-negative image-recovery experiment.



II. AUGMENTED MEASUREMENT MODEL

To enforce the linear equality constraint Bx = c using
GAMP, we extend the observation model (1) into

[

y
c

]

=

[

A
B

]

x+

[

w
0

]

(2)

and exploit the fact that GAMP supports a likelihood function
that varies with the measurement index m. Assuming the
elements of w are i.i.d Gaussian with variance ψ, and defining
y ! [ yc ], A ! [AB ], and z ! Ax, the likelihood function
corresponding to the augmented measurement model (2) is

(3)pY m|Zm
(ym|zm)=

{

N (ym; zm,ψ) m = 1, ...,M
δ(ym− zm) m = M+1, ...,M+P.

GAMP approximates the marginal posterior p(zm|y) by

pZm|Pm

(

zm|p̂m(t);µp
m(t)

)

∝ pY m|Zm
(ym|zm)N

(

zm; p̂m(t), µp
m(t)

)

(4)

at iteration t, where p̂m(t) and µp
m(t) are given in Table I.

The variance and mean of this posterior, used in lines (R3)
and (R4) of Table I, are (dropping the t notation for brevity)

(5)
ẑm =

{

p̂m + µp
m

µp
m+ψ (ym − p̂m) m = 1, ...,M

ym m = M+ 1, ...,M+P

µz
m =

{

µp
mψ

µp
m+ψ m = 1, ...,M

0 m = M+ 1, ...,M+P.
(6)

III. NON-NEGATIVE GAUSSIAN MIXTURE GAMP

We now describe how GAMP can be used with an i.i.d
Bernoulli non-negative Gaussian mixture (NNGM) prior pdf
of the form

pX(x) = (1− λ)δ(x) + λ
L
∑

"=1

ω"N+(x; θ",φ"), (7)

where N+(·) denotes the non-negative Gaussian pdf, i.e.,

N+(x; θ,φ) =

{

N (x;θ,φ)
Φc(−θ/

√
φ)

x ≥ 0

0 x < 0
, (8)

Φc(·) is the complimentary cdf of the standard normal dis-
tribution, λ ∈ (0, 1] is the sparsity rate, and ω", θ", and
φ" are the weight, location, and scale, respectively, of the
'th mixture component. For now, we treat the parameters
q ! [λ,ω,θ,φ,ψ] and the model order L as fixed and known.

GAMP approximates the marginal posterior p(xn|y) by

pX|R(xn|r̂n;µr
n) ∝ pX(xn)N (xn; r̂n, µ

r
n) (9)

where the quantities r̂n and µr
n (see Table I) vary with

the GAMP iteration t. Given this posterior, the sum-product
GAMP updates (R9) and (R10) are [11]

x̂n =
λ

ζn

L
∑

"=1

βn,"
(

γn," +
√
νn,"f(αn,")

)

, (10)

µx
n =

λ

ζn

L
∑

"=1

βn,"
(

νn,"g(αn,")+
(

γn,"+
√
νn,"f(αn,")

)2
)

−x̂2
n,

(11)

in terms of the normalization factor

ζn ! (1− λ)N (0; r̂n, µ
r
n) + λ

L
∑

"=1

βn,", (12)

the (r̂n, µr
n, q)-dependent quantities

αn," !
−γn,"√
νn,"

(13)

γn," !
r̂n/µr

n + θ"/φ"
1/µr

n + 1/φ"
, (14)

νn," !
1

1/µr
n + 1/φ"

(15)

βn," !
ω"N (r̂n; θ", µr

n+φ")Φc(αn,")

Φc(−θ"/
√
φ")

, (16)

and the functions

f(a) !
ϕ(a)

Φc(a)
(17)

g(a) ! 1− f(a)
(

f(a)− a
)

, (18)

where ϕ(·) is the pdf of the standard normal distribution.
From (9), it is straightforward to show that the corresponding
posterior support probabilities πn ! Pr{xn *= 0|y; q} are

πn =
1

1 +
(

λ
1−λ

∑
L
!=1

βn,!

N (0;r̂n,µr
n)

)−1 . (19)

IV. EM PARAMETER LEARNING

Since the parameters q ! [λ,ω,θ,φ,ψ] that best “fit”
the true signal and noise distributions are typically unknown,
we propose to learn them using an EM procedure [4]. The
EM algorithm is an iterative technique that is guaranteed
to converge to a local maximum (or a saddle point) of the
likelihood p(y; q). We choose the “hidden” data to be x,
resulting in the iteration-i EM update

qi+1 = argmax
q

E{ln p(x,y; q) |y; qi}. (20)

For reasons of tractability, we evaluate the “argmax” in (20)
one component at a time, while holding the others fixed, as
in the “incremental” variant of EM from [12], and we use
GAMP’s approximate posteriors to evaluate the expectation in
(20). With this approximation, the updates become2 [11]

θi+1
k =

∑N
n=1 πnβn,k

(

γn,k +
√
νn,kf(αn,k)

)

∑N
n=1 πnβn,k

(21)

φi+1
k =

∑N
n=1

πnβn,k

(

(γn,k+
√
νn,kf(αn,k)−θk)2+νn,kg(αn,k)

)

∑
N
n=1

πnβn,k

(22)

ωi+1
k =

∑N
n=1 πnβn,k
∑N

n=1 πn
, (23)

where βn,k ! βn,k/
∑

" βn,". Because all quantities needed for
the EM updates are by-products of sum-product GAMP, the
EM approach does not substantially increase the complexity
of our approach.

2The EM updates for the sparsity rate λ and noise variance ψ are identical
to those given in [9].



A good EM initialization is essential to avoiding bad local
minima. We propose to set the initial sparsity rate at

λ0 = M
N ρSE(

M
N ), (24)

where ρSE(·) is the theoretical noiseless phase-transition-curve
(PTC) for '1 recovery of sparse non-negative (SNN) signals,
shown to have the closed-form expression

ρSE(δ) = max
c≥0

1− (1/δ)[(1 + c2)Φ(−c)− cϕ(c)]

1 + c2 − [(1 + c2)Φ(−c)− cϕ(c)]
(25)

in [13], where Φ(·) and ϕ(·) denote the cdf and pdf of the
standard normal distribution. We then propose to set the initial
values of the NNGM weights {ω"}, locations {θ"}, and scales
{φ"} at the values that best fit the uniform pdf on [0, 1]
(which can be computed offline using the standard EM-based
approach described in [14, p. 435]). We propose to set the
initial noise variance at ψ0 = ‖y‖22/

(

(SNR + 1)M
)

, where,

without knowledge of the true SNR ! ‖Ax‖22/‖w‖22, we
suggest using the value SNR=100.

V. NUMERICAL RESULTS

A. Phase Transition Curves

First, we present empirically generated phase-transition
curves (PTCs) for the recovery of K-sparse N -length simplex
signals from M noiseless measurements.

To evaluate each PTC, we fixed N = 500 and constructed a
20×20 uniformly spaced grid on the M

N -versus- K
M plane over

the ranges M
N ∈ [0.05, 1] and K

M ∈ [0.05, 1]. At each grid point,
we drew R=100 independent realizations of the pair (A,x),
where A ∈ RM×N was constructed with i.i.d N (0,M−1)
entries and x ∈ RN was constructed with K nonzero elements
{xk}Kk=1 (placed uniformly at random), drawn i.i.d from a
symmetric Dirichlet distribution with concentration parameter
a > 0, whose pdf can be written as

p(x1, . . . , xK−1) =

{

Γ(aK)
Γ(a)K

∏K
k=1 x

a−1
k , xk ∈ [0, 1]

0 else
(26a)

p(xK |x1, . . . , xK−1) = δ(1− x1 − · · ·− xK) (26b)

where Γ(·) is the gamma function. Note that (26) enforces
the simplex constraint. For the rth realization of (A,x), we
then recovered x from the noiseless observation y = Ax and
defined the recovery x̂ to be “successful” if NMSE ! ‖x −
x̂‖22/‖x‖22 < 10−6. Using Sr = 1 to mark a success and Sr =
0 otherwise, the average success rate was then computed via
S ! 1

R

∑R
r=1 Sr, and the empirical PTC was then plotted as

the S = 0.5 level-curve using Matlab’s contour command.

Figures 1–2 show the empirical PTCs for symmetric
Dirichlet distributions with parameter a = 1 (i.e., uniformly
distributed over the simplex) and a = 100 (i.e., xk ≈ 1

K ∀k),
respectively, using the proposed “simplex EM-NNGM-AMP”
approach, greedy selection and simplex projection (GSSP)
[3], and Matlab’s lsqnonneg (using the augmented model
(2)). In addition, Figures 1–2 show the theoretical SNN '1-
recovery PTC ρSE(

M
N ) from [13], given by (25). For the

GSSP algorithm, we initialized x̂0 as the SPGL1 [15] solution
(using the augmented model from (2)) and set the step size as
100/‖A‖2F , as it yielded the best overall PTCs.
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Fig. 1. Empirical PTCs and $1-SNN theoretical PTC for noiseless recovery
of length-N=500, K-sparse, symmetric Dirichlet signals with concentration
a = 1 from M measurements.
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Fig. 2. Empirical PTCs and $1-SNN theoretical PTC for noiseless recovery
of length-N=500, K-sparse, symmetric Dirichlet signals with concentration
a = 100 from M measurements.

Figures 1–2 show that the proposed simplex-EM-NNGM-
AMP approach yields empirical PTCs that are significantly
better than those of the competing approaches. Its excellent
performance is the result of three factors: i) the generality of
the NNGM prior, ii) the ability of the EM approach to accu-
rately learn the prior parameters, and iii) the ability of GAMP
to exploit the learned prior. In fact, Fig. 2 shows simplex-
NNGM-AMP accurately reconstructing K-sparse signals from
only M = K measurements even while N > M , thereby
achieving a sort of “holy grail” in sparse reconstruction. The
latter is possible because the signal x is highly structured when
a = 100, and because the proposed approach can learn and
exploit that structure.

B. Non-negative Image Recovery

As a practical example, we experimented with the recovery
of a sparse non-negative image. For this, we used the N =
256×256 satellite image shown in Fig. 3, which contained K=
6678 nonzero pixels and N−K = 58858 zero-valued pixels,
and thus was approximately 10% sparse. Linearly compressed
measurements y = Ax+w were collected under i.i.d Gaussian
noise w whose variance was selected to achieve SNR = 60



Fig. 3. Sparse non-negative image of a satellite: original image on left and
EM-NNGM-AMP recovery at M

N
= 1

4 on right.

dB. Here, x represents the (rasterized) image and A a linear
measurement operator configured as A=ΦΨS, where Φ ∈
{0, 1}M×N was constructed from rows of the N×N identity
matrix selected uniformly at random, Ψ ∈ {−1, 1}N×N was a
Hadamard transform, and S ∈ RN×N was a diagonal matrix
with ±1 diagonal entries chosen uniformly at random. Note
that multiplication by A can be executed using a fast binary
algorithm, making it attractive for hardware implementation.
For this experiment, no linear equality constraints exist and so
the observation model was not augmented.

As a function of the sampling ratio M
N , Fig. 4 shows the

NMSE and runtime averaged over R=100 realizations of A
and w for the proposed EM-NNGM-AMP in comparison to
EM-GM-AMP from [9], genie-tuned non-negative LASSO via
TFOCS [16],3 EM-tuned non-negative LASSO GAMP (EM-
NNL-AMP) from [11],4 and genie-tuned standard LASSO
implemented via SPGL15 [15]. Results for lsqnonneg are
not shown because its per-realization runtime exceeded three
hours (since lsqnonneg treats A as an explicit matrix).

Figure 4 (top) shows that the proposed EM-NNGM-AMP
algorithm provided the most accurate signal recoveries for
all undersampling ratios. Remarkably, its phase-transition oc-
curred at M

N ≈ 0.25, whereas that of the other algorithms

occurred at M
N ≈ 0.35. The gain of EM-NNGM-AMP over

EM-GM-AMP can be attributed to the former’s exploitation
of signal non-negativity, whereas the gain of EM-NNGM-
AMP over non-negative LASSO (either via EM-NNL-AMP
or genie-tuned TFOCS) can be attributed to former’s learn-
ing/exploitation of the true signal distribution. Finally, the
gain of non-negative LASSO over standard LASSO can be
attributed to the former’s exploitation of signal non-negativity.
In terms of runtime, EM-NNGM-AMP was about 3× as fast as
EM-GM-AMP, between 3× to 15× as fast as standard LASSO
(via SPGL1), and 10× to 20× as fast as non-negative LASSO
(via TFOCS).
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