Exploiting Structured Sparsity in Bayesian Experimental Design

Phil Schniter

(With support from NSF grant CCF-1018368 and DARPA/ONR grant N66001-10-1-4090)

CAMSAP 2011

Outline:

- 1. Compressive sensing under **structured** sparsity
- 2. Adaptive compressive sensing via Bayesian experimental design
- 3. Approximate message passing (AMP) for structured-sparse recovery
- 4. How to make AMP (and other algorithms like LASSO) adaptive
- 5. Empirical performance close to oracle bounds.

Compressive Sensing:

• In compressive sensing, we aim to recover a signal vector u from noisy **underdetermined** linear measurements

$$\boldsymbol{y} = \boldsymbol{\Phi} \boldsymbol{u} + \boldsymbol{w} \in \mathbb{R}^M.$$

• Although the problem is underdetermined, accurate recovery maybe possible if u can be **sparsely** represented in some dictionary Ψ , i.e.,

$$oldsymbol{u} = oldsymbol{\Psi} oldsymbol{x}$$
 for *K*-sparse $oldsymbol{x} \in \mathbb{R}^N,$

where Ψ is "incoherent" with Φ .

• It is common to choose Φ randomly and apply the LASSO algorithm to recover an estimate \hat{x} , in which case one can guarantee $\|\hat{x} - x\|_2^2 \leq C \|w\|_2^2$, for some constant C, with

$$M \geq \mathcal{O}(K \log(N/K))$$
 measurements.

Structured Sparsity:

• Often the signal *u* has a representation *x* that is not simply sparse but rather structured sparse.

For examples,

- wavelet coefficients of natural images are tree-sparse, and

- impulse responses of wideband wireless channels are **clustered-sparse**.
- In this case, similar reconstruction guarantees are possible with only

 $M \geq \mathcal{O}(K)$ measurements

using structured-sparse recovery algorithms!

Adaptive Compressive Sensing:

- In some applications, we can afford T > 1 measurement rounds and adapt the measurement matrix Φ_t for the tth round based on the knowledge gained from previous rounds.
- In this case, the observation model changes to

$$egin{aligned} & \left[egin{aligned} \underline{y}_{t-1} \ \underline{y}_{t} \end{array}
ight] = \left[egin{aligned} \underline{\Phi}_{t-1} \ \underline{\Phi}_{t} \end{array}
ight] oldsymbol{u} + \left[egin{aligned} \underline{w}_{t-1} \ w_{t} \end{matrix}
ight] & \in \mathbb{R}^{M_{t-1}} \ \in \mathbb{R}^{M_{t}} & \in \mathbb{R}^{M_{t}} \end{aligned}, \ & \left[egin{aligned} \underline{y}_{t} \end{matrix}
ight] & \left[egin{aligned} \underline{\Phi}_{t} \end{matrix}
ight] & egin{aligned} \underline{w}_{t} & \in \mathbb{R}^{M_{t}} \end{array}
ight], \end{split}$$

where underbars are used to denote cumulative quantities.

So, how is Φ_t designed?

• In Bayesian experimental design [DeGroot 62], Φ_t is chosen to maximize the **expected information gain (EIG)**.

Bayesian Experimental Design:

• The **information gain** is defined as the **KL divergence** between the **prior** and **posterior** distributions at measurement step *t*:

$$D(\boldsymbol{y}_t) \triangleq \int_{\boldsymbol{u}} q(\boldsymbol{u} \,|\, \boldsymbol{y}_t) \log \frac{q(\boldsymbol{u} \,|\, \boldsymbol{y}_t)}{q(\boldsymbol{u})},$$

where

$$q(\boldsymbol{u}) \triangleq p(\boldsymbol{u} | \boldsymbol{y}_{t-1})$$
 is the step- t prior, and
 $q(\boldsymbol{u} | \boldsymbol{y}_t) \triangleq p(\boldsymbol{u} | \boldsymbol{y}_{t-1}, \boldsymbol{y}_t)$ is the step- t posterior.

• Since y_t is not yet known, we consider **expected** information gain:

$$\begin{split} \mathsf{EIG}_t \, &\triangleq \, \mathrm{E}\{D(\boldsymbol{y}_t) \,|\, \underline{\boldsymbol{y}}_{t-1}\} = \int_{\boldsymbol{y}_t} \underbrace{p(\boldsymbol{y}_t \,|\, \underline{\boldsymbol{y}}_{t-1})}_{&\triangleq q(\boldsymbol{y}_t)} \int_{\boldsymbol{u}} q(\boldsymbol{u} \,|\, \boldsymbol{y}_t) \log \frac{q(\boldsymbol{u} \,|\, \boldsymbol{y}_t)}{q(\boldsymbol{u})} \\ &= \int_{\boldsymbol{y}_t} \int_{\boldsymbol{u}} q(\boldsymbol{u}, \boldsymbol{y}_t) \log \frac{q(\boldsymbol{u}, \boldsymbol{y}_t)}{q(\boldsymbol{u})q(\boldsymbol{y}_t)} = \mathrm{I}(\boldsymbol{u}; \boldsymbol{y}_t), \end{split}$$

i.e., the mutual information between $\mathbf{u} \sim q(\mathbf{u})$ and $\mathbf{y}_t \sim q(\mathbf{y}_t)$.

Gaussian Experimental Design:

- Evaluating the expected information gain is often difficult.
- However, when all distributions are Gaussian, it becomes easy. For example, if

noise: $\boldsymbol{w} \sim \mathcal{N}(\boldsymbol{0}, v_w \boldsymbol{I})$ step-t signal prior: $oldsymbol{u}| \underline{oldsymbol{y}}_{t-1} \sim \mathcal{N}(oldsymbol{\mu}_u, oldsymbol{\Sigma}_u)$

then it is straightforward to show that

• Of course, in compressive sensing, the signal priors are **non-Gaussian** and

 $\mathsf{EIG}_t = \frac{1}{2} \log \left| \frac{1}{v_w} \mathbf{\Phi}_t \mathbf{\Sigma}_u \mathbf{\Phi}_t^\mathsf{T} + \mathbf{I} \right|.$

Gaussian design of Φ_t :

What is the EIG-maximizing Φ_t subject to the energy constraint $\|\Phi_t\|_F^2 \leq \mathcal{E}$?

- Previous works [Seeger 08, Ji/Xu/Carin 08] studied the case of one scalar measurement per step (i.e., M_t = 1).
 In this case, Φ_t is a row vector and so EIG_t = ¹/₂ log |¹/_{v_w}Φ_tΣ_uΦ^T_t + I| is maximized by the dominant eigenvector of Σ_u.
- In practice, though, we may want $M_t \gg 1$ measurements per step. For this case, we show that the EIG is maximized by **waterfilling**:

Lemma 1 Say that $(\lambda_m, v_m)_{m=1}^{M_t}$ are the M_t dominant (eigenvalue, eigenvector) pairs of Σ_u . Then for $\{E_m\}_{m=1}^{M_t}$ and "water level" L satisfying

$$E_m = \max \left\{ L - v_w / \lambda_m, 0 \right\} \quad \forall m \in \{1, \dots, M_t\}$$
$$\sum_{m=1}^{M_t} E_m = \mathcal{E},$$

the m^{th} row of the EIG-maximizing Φ_t equals $\sqrt{E_m} v_m$.

Leveraging Gaussian design for Adaptive CS:

- In CS, the step-t prior (i.e., step-(t-1) posterior) $p(\boldsymbol{u}|\boldsymbol{y}_{t-1})$ is non-Gaussian, and so a Gaussian posterior approximation must be made.
- Previous works have tackled this using a **Gaussian prior approximation**:

- Say
$$p(\boldsymbol{x} | \underline{\boldsymbol{y}}_{t-2}) \approx \prod_{n=1}^{N} \mathcal{N}(x_n; 0, \alpha_n^{-1})$$
 with "precision" α_n .

- Then $p(\pmb{x} \,|\, \underline{\pmb{y}}_{t-1}) pprox \mathcal{N}(\pmb{x}; \pmb{\mu}_x, \pmb{\Sigma}_x)$ with

$$\begin{split} \boldsymbol{\Sigma}_{x} &\triangleq \left(\frac{1}{v_{w}}\underline{\boldsymbol{A}}_{t-1}^{\mathsf{T}}\underline{\boldsymbol{A}}_{t-1} + \mathcal{D}(\boldsymbol{\alpha})\right)^{-1} \\ \boldsymbol{\mu}_{x} &\triangleq \frac{1}{v_{w}}\boldsymbol{\Sigma}_{x}\underline{\boldsymbol{A}}_{t-1}^{\mathsf{T}}\underline{\boldsymbol{y}}_{t-1} \\ \underline{\boldsymbol{A}}_{t-1} &\triangleq \underline{\boldsymbol{\Phi}}_{t-1}\boldsymbol{\Psi} \end{split}$$

and so $p(\boldsymbol{u} \,|\, \underline{\boldsymbol{y}}_{t-1}) \approx \mathcal{N}(\boldsymbol{u}; \boldsymbol{\mu}_u, \boldsymbol{\Sigma}_u)$ with $\boldsymbol{\mu}_u = \boldsymbol{\Psi} \boldsymbol{\mu}_x$ and $\boldsymbol{\Sigma}_u = \boldsymbol{\Psi} \boldsymbol{\Sigma}_x \boldsymbol{\Psi}^\mathsf{T}$.

- To estimate α , [Ji/Xu/Carin 08] used Tipping's RVM ("Bayesian CS").
- Other works used different Gaussian posterior approximations:
 - [Seeger 08] assumed Laplacian $oldsymbol{x}$ and expectation propagation, and
 - [Seeger/Nickisch 11] used variational methods.

Approximate Message Passing:

- Efficient sparse reconstruction algorithms have been constructed using loopy belief propagation with carefully constructed message approximations:
 - The LASSO AMP [Donoho/Maleki/Montanari 09] assumes i.i.d
 Laplacian signal, Gaussian noise, and i.i.d constructed A.
 - The Bayesian AMP [Donoho/Maleki/Montanari 10] accepts generic signal priors, Gaussian noise, and i.i.d constructed A.
 - The generalized AMP [Rangan 10] accepts generic signal and noise priors and arbitrary A. (We need this one!)
- These AMP algorithms are very fast iterative thresholding algorithms. Their complexity is dominated by one application of A and A^T per iteration, and ≤ 50 iterations (for any M and N) ... many fewer than FISTA.

Turbo-AMP for Structured Sparsity:

- AMP has been extended to generic **structured-sparse** reconstruction using an approach inspired by **turbo** equalization and decoding.
- For this, the prior pdf is chosen as $p(\mathbf{x}) = p(\mathbf{s}) \prod_{n=1}^{N} p(x_n | s_n)$ with a generic support prior $p(\mathbf{s})$ and Bernoulli-Gaussian amplitudes:

$$p(x_n | s_n) = s_n \mathcal{N}(x_n; 0, v_x) + (1 - s_n) \delta(x_n), \quad s_n \in \{0, 1\}.$$

In this case, the factor graph becomes

and we pass **extrinsic likelihoods** on $\{s_n\}$ back and forth between the two soft-input/soft-output "decoders" [Schniter 10].

Turbo-AMP for Adaptive CS:

• To leverage Gaussian experiment design, we propose a variation on the **Gaussian prior approximation** used in [Ji/Xu/Carin 08]:

$$p(\boldsymbol{x} | \underline{\boldsymbol{y}}_{t-2}) \approx \prod_{n=1}^{N} \mathcal{N}(x_n; 0, \alpha_n^{-1})$$

Instead of using the RVM to ML-estimate {α_n}, we we use AMP's marginal posteriors

$$p(x_n | \underline{y}_{t-1}) \approx \mathcal{N}(x_n; \hat{x}_n, \nu_n) \quad \text{and} \quad \Pr\{s_n = 1 | \underline{y}_{t-1}\} \approx \lambda_n.$$

In particular, we propose several surrogates for the inverse precisions α_n^{-1} :

1. "Variance": $\hat{\alpha}_n^{-1} = \nu_n$. 2. "Mean": $\hat{\alpha}_n^{-1} = |\hat{x}_n|^2$... only point estimates (\rightsquigarrow adaptive Lasso!) 3. "Energy": $\hat{\alpha}_n^{-1} = |\hat{x}_n|^2 + \nu_n$ 4. "Support": $\hat{\alpha}_n^{-1} = \lambda_n v_x$,

Empirical Study:

We now present empirical evidence showing that the proposed **adaptive turbo-AMP** performs very close to **oracle bounds**.

- Clustered-sparse Bernoulli-Gaussian signal:
 - length N = 500,
 - sparsity K = 50,
 - average cluster-size = 11.
- Canonical sparsifying dictionary $\Psi = I$ (i.e., u = x).
- AWGN yielding average SNR = 15 dB.
- T = 5 measurement steps, with $M_0 = 100$ i.i.d- \mathcal{N} , then subsequently $M_t = 50$.
- We report NMSE $\|\hat{x} x\|_2^2 / \|x\|_2^2$ averaged over 500 realizations.
- We compare to the support oracle, for which signal is Gaussian, and so both EIG-maximizing Φ_t and MSE-minimizing \hat{x} can be computed in closed form.

- Performances gain from structured sparsity, adaptivity, and the combination.
- Adaptive turbo-AMP performs 1.5 dB from the support-oracle bound!

Relatively insensitive to the Gaussian-prior-approximation used in Φ_t design.

- Adaptation using our "mean" surrogate yields an adaptive LASSO.
- Adaptation using our "mean" surrogate improves BCS over [JXC 08].

Summary and ongoing work:

• Main focus:

Merging Bayesian experim. design with structured-sparse recovery.

- Contributions:
 - Waterfilling solves Gaussian experimental design for $M_t > 1$ meas/step.
 - Novel adaptation heuristics leading to adaptive LASSO, etc.
 - An adaptive turbo-AMP empirically performing near oracle bounds.
- Ongoing work:
 - Optimal design of initial Φ_0 .
 - Theoretical analysis using AMP's state evolution.
 - Extension to pre-measurement noise model $oldsymbol{y} = oldsymbol{\Phi}(oldsymbol{\Psi}oldsymbol{x}+oldsymbol{v}) + oldsymbol{w}.$
 - Adaptation under constrained Φ (e.g., Toeplitz).
 - Development/analysis of **simplified** schemes (no eigendecomposition).

Thanks!