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Outline:

1. Compressive sensing under structured sparsity

2. Adaptive compressive sensing via Bayesian experimental design

3. Approximate message passing (AMP) for structured-sparse recovery

4. How to make AMP (and other algorithms like LASSO) adaptive

5. Empirical performance close to oracle bounds.
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Compressive Sensing:

• In compressive sensing, we aim to recover a signal vector u from noisy

underdetermined linear measurements

y = Φu+w ∈ R
M .

• Although the problem is underdetermined, accurate recovery maybe possible

if u can be sparsely represented in some dictionary Ψ, i.e.,

u = Ψx for K-sparse x ∈ R
N ,

where Ψ is “incoherent” with Φ.

• It is common to choose Φ randomly and apply the LASSO algorithm to

recover an estimate x̂, in which case one can guarantee ‖x̂− x‖2
2
≤ C‖w‖2

2
,

for some constant C, with

M ≥ O(K log(N/K)) measurements.
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Structured Sparsity:

• Often the signal u has a representation x that is not simply sparse but rather

structured sparse.

For examples,

– wavelet coefficients of natural images are tree-sparse, and

– impulse responses of wideband wireless channels are clustered-sparse.

• In this case, similar reconstruction guarantees are possible with only

M ≥ O(K) measurements

using structured-sparse recovery algorithms!
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Adaptive Compressive Sensing:

• In some applications, we can afford T > 1 measurement rounds and adapt

the measurement matrix Φt for the tth round based on the knowledge gained

from previous rounds.

• In this case, the observation model changes to
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where underbars are used to denote cumulative quantities.

So, how is Φt designed?

• In Bayesian experimental design [DeGroot 62], Φt is chosen to maximize the

expected information gain (EIG).
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Bayesian Experimental Design:

• The information gain is defined as the KL divergence between the prior

and posterior distributions at measurement step t:

D(yt) ,

∫

u

q(u |yt) log
q(u |yt)

q(u)
,

where
q(u) , p(u |y

t−1
) is the step-t prior, and

q(u |yt) , p(u |y
t−1

,yt) is the step-t posterior.

• Since yt is not yet known, we consider expected information gain:

EIGt , E{D(yt) |yt−1
} =

∫

y
t

p(yt |yt−1
)

︸ ︷︷ ︸

, q(yt)

∫

u

q(u |yt) log
q(u |yt)

q(u)

=

∫

y
t

∫

u

q(u,yt) log
q(u,yt)

q(u)q(yt)
= I(u; yt),

i.e., the mutual information between u ∼ q(u) and yt ∼ q(yt).
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Gaussian Experimental Design:

• Evaluating the expected information gain is often difficult.

• However, when all distributions are Gaussian, it becomes easy.

For example, if

noise: w ∼ N (0, vwI)

step-t signal prior: u|y
t−1

∼ N (µu,Σu)

then it is straightforward to show that

EIGt =
1

2
log

∣
∣ 1

vw
ΦtΣuΦ

T
t + I

∣
∣.

• Of course, in compressive sensing, the signal priors are non-Gaussian and

thus the above could only be used after approximations are made.
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Gaussian design of Φt:

What is the EIG-maximizing Φt subject to the energy constraint ‖Φt‖2F ≤ E?
• Previous works [Seeger 08, Ji/Xu/Carin 08] studied the case of one scalar

measurement per step (i.e., Mt = 1).

In this case, Φt is a row vector and so EIGt =
1

2
log

∣
∣ 1

vw
ΦtΣuΦ

T
t + I

∣
∣ is

maximized by the dominant eigenvector of Σu.

• In practice, though, we may want Mt ≫ 1 measurements per step.

For this case, we show that the EIG is maximized by waterfilling:

Lemma 1 Say that (λm,vm)Mt

m=1
are the Mt dominant (eigenvalue,

eigenvector) pairs of Σu. Then for {Em}Mt

m−1
and “water level” L satisfying

Em = max
{
L− vw/λm, 0

}
∀m ∈ {1, . . . ,Mt}

∑
Mt

m=1
Em = E ,

the mth row of the EIG-maximizing Φt equals
√
Emvm.
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Leveraging Gaussian design for Adaptive CS:

• In CS, the step-t prior (i.e., step-(t−1) posterior) p(u|y
t−1

) is non-Gaussian,

and so a Gaussian posterior approximation must be made.

• Previous works have tackled this using a Gaussian prior approximation:

– Say p(x |y
t−2

) ≈ ∏
N

n=1
N (xn; 0, α

−1
n ) with “precision” αn.

– Then p(x |y
t−1

) ≈ N (x;µx,Σx) with

Σx ,
(

1

vw
AT

t−1At−1 +D(α)
)
−1

µx ,
1

vw
ΣxA

T
t−1yt−1

At−1 , Φt−1Ψ

and so p(u |y
t−1

) ≈ N (u;µu,Σu) with µu = Ψµx and Σu = ΨΣxΨ
T.

– To estimate α, [Ji/Xu/Carin 08] used Tipping’s RVM (“Bayesian CS”).

• Other works used different Gaussian posterior approximations:

– [Seeger 08] assumed Laplacian x and expectation propagation, and

– [Seeger/Nickisch 11] used variational methods.
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Approximate Message Passing:

• Efficient sparse reconstruction algorithms have been constructed using loopy

belief propagation with carefully constructed message approximations:

– The LASSO AMP [Donoho/Maleki/Montanari 09] assumes i.i.d

Laplacian signal, Gaussian noise, and i.i.d constructed A.

– The Bayesian AMP [Donoho/Maleki/Montanari 10] accepts generic

signal priors, Gaussian noise, and i.i.d constructed A.

– The generalized AMP [Rangan 10] accepts generic signal and noise

priors and arbitrary A. (We need this one!)

• These AMP algorithms are very fast iterative thresholding algorithms.

Their complexity is dominated by one application of A and AT per iteration,

and . 50 iterations (for any M and N) . . . many fewer than FISTA.
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Turbo-AMP for Structured Sparsity:

• AMP has been extended to generic structured-sparse reconstruction using

an approach inspired by turbo equalization and decoding.

• For this, the prior pdf is chosen as p(x) = p(s)
∏

N

n=1
p(xn | sn) with a generic

support prior p(s) and Bernoulli-Gaussian amplitudes:

p(xn | sn) = snN (xn; 0, vx) + (1− sn)δ(xn), sn ∈ {0, 1}.

In this case, the factor graph becomes

.

p(x1|s1)

p(x2|s2)

p(xN |sN )

p(s)

x1

x2

xN

s1

s2

sN

N (y1;a
T
1
x, vw)

N (y2;a
T
2
x, vw)

N (yM
t−1

;aT
M

t−1

x, vw)

...
...

...
...

AMP support
decoding

and we pass extrinsic likelihoods on {sn} back and forth between the two

soft-input/soft-output “decoders” [Schniter 10].
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Turbo-AMP for Adaptive CS:

•• To leverage Gaussian experiment design, we propose a variation on the

Gaussian prior approximation used in [Ji/Xu/Carin 08]:

p(x |y
t−2

) ≈
N∏

n=1

N (xn; 0, α
−1

n )

• Instead of using the RVM to ML-estimate {αn}, we we use AMP’s marginal

posteriors

p(xn |y
t−1

) ≈ N (xn; x̂n, νn) and Pr{sn=1 |y
t−1

} ≈ λn.

In particular, we propose several surrogates for the inverse precisions α−1n :

1. “Variance”: α̂−1n = νn.

2. “Mean”: α̂−1n = |x̂n|2 . . . only point estimates ( adaptive Lasso!)

3. “Energy”: α̂−1n = |x̂n|2 + νn

4. “Support”: α̂−1n = λnvx ,
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Empirical Study:

We now present empirical evidence showing that the proposed adaptive

turbo-AMP performs very close to oracle bounds.

• Clustered-sparse Bernoulli-Gaussian signal:

– length N = 500,

– sparsity K = 50,

– average cluster-size = 11.

• Canonical sparsifying dictionary Ψ = I (i.e., u = x).

• AWGN yielding average SNR = 15dB.

• T =5 measurement steps, with M0=100 i.i.d-N , then subsequently Mt=50.

• We report NMSE ‖x̂− x‖2
2
/‖x‖2

2
averaged over 500 realizations.

• We compare to the support oracle, for which signal is Gaussian, and so both

EIG-maximizing Φt and MSE-minimizing x̂ can be computed in closed form.
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NMSE versus cumulative measurements M
t
:
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← LASSO non-adaptive

← BCS adaptive [JXC 08]
← turbo-AMP non-adaptive

← turbo-AMP adaptive
← support-oracle

• Performances gain from structured sparsity, adaptivity, and the combination.

• Adaptive turbo-AMP performs 1.5 dB from the support-oracle bound!
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Effect of surrogate choice in Gaussian prior approximation:
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← AMP non-adaptive

← turbo-AMP non-adaptive
← AMP “var/mean/energy/support”

← turbo-AMP “support”
← turbo-AMP “var/mean/energy”

Relatively insensitive to the Gaussian-prior-approximation used in Φt design.
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Using the “mean” surrogate to create new algorithms:
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← LASSO non-adaptive

← BCS non-adaptive
← AMP non-adaptive

← BCS [JXC08] & Lasso “mean” surrogate
← BCS “mean” surrogate
← AMP “mean” surrogate

← turbo-AMP “mean” surrogate
← support-oracle

• Adaptation using our “mean” surrogate yields an adaptive LASSO.

• Adaptation using our “mean” surrogate improves BCS over [JXC 08].
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Summary and ongoing work:

• Main focus:

Merging Bayesian experim. design with structured-sparse recovery.

• Contributions:

– Waterfilling solves Gaussian experimental design for Mt > 1 meas/step.

– Novel adaptation heuristics leading to adaptive LASSO, etc.

– An adaptive turbo-AMP empirically performing near oracle bounds.

• Ongoing work:

– Optimal design of initial Φ0.

– Theoretical analysis using AMP’s state evolution.

– Extension to pre-measurement noise model y = Φ(Ψx+ v) +w.

– Adaptation under constrained Φ (e.g., Toeplitz).

– Development/analysis of simplified schemes (no eigendecomposition).
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Thanks!
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