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Abstract—In this paper, we merge Bayesian experimental de-
sign with turbo approximate message passing (AMP) algorithms
for the purpose of recovering structured-sparse signals using a
multi-step adaptive compressive-measurement procedure. First,
we show that, when the signal posterior is Gaussian, a waterfilling
approach can be used to adapt the measurement matrix in a way
that expected information gain is maximized. Next, we propose
four methods of approximating AMP’s non-Gaussian marginal
posteriors by a Gaussian joint posterior. One of these methods
requires only point estimates of the signal, and leads to a novel
kernel adaptation scheme that works even with non-Bayesian
signal recovery algorithms like LASSO. Finally, we demonstrate
(empirically) that our adaptive turbo AMP yields estimation
performance very close to the support-oracle bound.1

I. INTRODUCTION
Many signals in nature are known to yield a sparse rep-

resentation in an appropriate basis. Here we mean that, for
all signals u ∈ RN in a given class U , there exists a unitary
Ψ ∈ RN×N that gives u = Ψx for x ∈ RN containing only a
few (say K, where K " N ) entries of significant magnitude.
In such cases, it is known thatM = O(K log(N/K)) random
projections y, collected using Φ ∈ RM×N via

y = Φu+w = ΦΨx+w, (1)

suffice (with high probability) for accurate recovery of x (and
thus u), even in the presence of noise w ∈ RM . For example,
given such y, computationally efficient algorithms like LASSO
[1] are capable of producing estimates x̂ with error ‖x−x̂‖2 ≤
C‖w‖2, where C is a constant [2].
In many applications, the sparse representation x has struc-

ture beyond simple sparsity. For example, if u is a natural
scene and Ψ implements a 2D discrete wavelet transform,
then the coefficients x are not only sparse but also exhibit
persistence across scales [3], which manifests as correlation
within the sparsity pattern. Similarly, if u is an impulse
response from a wideband wireless communications channel
and Ψ = I , then x is sparse with clustered dominant entries
[4]. The advantage of structured sparsity is that accurate signal
recovery can be accomplished using fewer random linear
measurements, such as M = O(K) [2].
When the measurement kernel Φ must be chosen prior

to sparse signal recovery, there are good reasons to choose
Φ with i.i.d random entries (see, e.g., [5]). We, however,
are interested in adapting the measurement kernel Φ during
the signal recovery process [6]–[10] based on the current
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knowledge of u. In particular, say that y
t−1

= Φt−1u+wt−1

are the cumulative measurements available before the tth

measurement step, and that yt = Φtu + wt ∈ RMt are the
Mt new measurements taken during the tth measurement step,
so that

[
y
t−1

yt

]

︸ ︷︷ ︸

y
t

=

[

Φt−1

Φt

]
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u+
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]

︸ ︷︷ ︸

wt

. (2)

The knowledge of u gained from y
t−1

can be used to design
Φt in an effort to make yt most informative about u.
In this paper, we first briefly review the Bayesian experi-

mental design approach to measurement kernel adaptation that
is well known for Mt = 1 new measurements per step, and
show how it can be generalized to Mt≥1 using a waterfilling
approach. We then propose a method to exploit structured
sparsity in measurement kernel adaptation that leverages our
prior work on “turbo” approximate message passing (AMP)
algorithms. A key step in our approach involves joint Gaussian
posterior approximation, for which we propose several options.
One of these options requires only point estimates of the
signal, and leads to a novel kernel adaptation scheme that
works with generic non-Bayesian signal recovery algorithms
like LASSO. Finally, we demonstrate the efficacy of our
approaches using experiments with clustered-sparse signals.

II. BAYESIAN EXPERIMENTAL DESIGN

We now review core principles from Bayesian experimental
design [6]–[9]. In the sequel, we use t = 0, 1, 2, . . . , T −1
to index the measurement step, and we assume the following
procedure. At t = 0, M0 initial (non-adaptive) measurements
y0 = Φ0u+w0 are collected using the kernel Φ0 ∈ RM0×N .
At each subsequent step t > 0, Mt new measurements yt =
Φtu +wt are collected using a kernel Φt ∈ RMt×N that is
designed with the goal of maximizing the expected information
gain, as defined in the sequel. Just after step t, a total ofM t !∑t

τ=0
Mτ measurements have been taken. Upon termination,

the total number of measurements will be M ! MT−1.

A. Expected Information Gain

Suppose that, at the start of the tth measurement step, the
signal posterior is given by p(u |y

t−1
). After Φt is chosen

and the corresponding new measurements yt have been taken,



the posterior will be p(u |y
t−1

,yt). For brevity, we write

q(u) ! p(u |y
t−1

) (3)

q(u |yt) ! p(u |y
t−1

,yt) (4)

noting that y
t−1

is fixed and known here. The information gain
provided by the measurements yt is defined as the Kullback-
Leibler (KL) divergence between q(u) and q(u |yt), i.e.,

D(yt) !

∫

u

q(u |yt) log
q(u |yt)

q(u)
. (5)

Since yt is not yet known when designing Φt, one typically
designs Φt to maximize the expected information gain (EIG)

E{D(yt) |yt−1
} =

∫

y
t

p(yt |yt−1
)

︸ ︷︷ ︸

! q(yt)

∫

u

q(u |yt) log
q(u |yt)

q(u)
.

(6)

From (6), it is easy to see that the expected information
gain equals the mutual information I(U ;Y t) between random
vectors U ∼ q(u) and Y t ∼ q(yt), i.e.,

I(U ;Y t) =

∫

y
t

∫

u

q(u,yt) log
q(u,yt)

q(u)q(yt)
. (7)

Thus, when designing Φt, maximizing EIG is equivalent to
maximizing the (y

t−1
-conditioned) mutual information be-

tween the signal u and the new measurements yt.
Although evaluation of the EIG expression (6) is generally

difficult, it is simple when the noise prior p(w) and the signal
posterior q(u) are both Gaussian. To see this, we first write

E{D(yt) |yt−1
} = H(Y t)−

∫

u

q(u)H(Y t |U = u), (8)

for differential entropies

H(Y t) ! −
∫

y
t

q(yt) log q(yt) (9)

H(Y t |U=u) ! −
∫

y
t

q(yt |u) log q(yt |u). (10)

Differential entropies are easy to evaluate for Gaussian distri-
butions: H

(

N (a; â,C)
)

= 1
2
log |2πeC|. So, if we assume

p(wt−1) = N (wt−1;0, vwI) (11)
q(u) = p(u |y

t−1
) = N (u;µu,Σu), (12)

then we have

q(yt |u) = N (yt;Φtu, vwI) (13)
q(yt) = N (yt;Φtµu,ΦtΣuΦ

T
t + vwI), (14)

and (8) can be easily evaluated. In particular,

E{D(yt) |yt−1
}

= 1
2
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∣
∣2πe(ΦtΣuΦ

T
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∣
∣−

∫

u

q(u) 1
2
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= 1
2
log

∣
∣ 1
vw

ΦtΣuΦ
T
t + I

∣
∣. (15)

B. Maximizing the Expected Information Gain
We now seek the measurement kernel Φt that maximizes

the EIG subject to a sensing energy constraint ‖Φt‖2F ≤ E .
In the often discussed case thatMt = 1 (e.g., [7], [8], [10]),

Φt is a row vector and so the EIG maximizing choice is simply√
E times the dominant eigenvector of Σu.
To our knowledge, the general case Mt ≥ 1 has not been

discussed in the literature. To tackle this case, we first write

E{D(yt) |yt−1
} = 1

2
log

∣
∣Φ

T
tΦt + vwΣ

−1
u

∣
∣+ 1

2
log

∣
∣ 1
vw

Σu

∣
∣,

(16)
and seek the positive semidefinite (p.s.d.) Φ

T
tΦt ∈ RN×N

with rank ≤ Mt that maximizes the first term in (16). Using
the eigenvalue decomposition vwΣ

−1
u = V ΛV T and the

definition B ! V T
Φ

T
tΦtV , we can write |ΦT

tΦt+vwΣ
−1
u | =

|B +Λ| and thus translate the design problem to

max
symmetric p.s.d. B

|B +Λ| s.t. tr(B) ≤ E and rank(B) ≤ Mt,

which has [11, p. 255] a “waterfilling” solution, i.e., B is the
diagonal matrix whose nonzero elements Bnn satisfy

Bnn =

{

max{L− λn, 0} n = 1, . . . ,Mt

0 n = Mt + 1, . . . , N
(17)

for L ∈ R+ selected so that
∑Mt

n=1
Bnn = E . In writing (17),

we have assumed that the eigenvalues are ordered such that
λn ≤ λn+1 ∀n. Also, we note that the solution (17) is not
unique under repeated eigenvalues. Translating back to the
measurement-kernel domain, we conclude that the nth row of
the EIG-maximizing Φt equals

√
Bnn times the nth column

of the eigenvector matrix V .

C. Gaussian Posterior Approximation
In Section II-A, it was observed that evaluation of the

EIG is straightforward when the signal posterior p(u |y
t−1

)
is Gaussian. However, for the sparsely represented signals
u = Ψx that we target, the prior p(u) is decidedly non-
Gaussian, implying the same for the posterior p(u |y

t−1
) ∝

N (y
t−1

;Φt−1u, vwI)p(u). Thus, it is common practice to
approximate p(u |y

t−1
) as Gaussian.

Various examples of Gaussian posterior approximations can
be found in the literature. For example, in the “Bayesian
compressive sensing” (BCS) approach [8], the sparse represen-
tation x is assumed to have the conditionally Gaussian prior
p(x |α) =

∏N

n=1
N (xn; 0,α−1

n ) with the precisions {αn}
following a Gamma pdf, thus yielding an unconditional prior
that is Student’s-t. However, by plugging in an estimate α̂
of α (obtained, e.g., via the EM algorithm), one obtains the
Gaussian prior approximation p̂(x) = N (x;0,Diag(α̂)−1).
Then, assuming wt−1 ∼ N (0, vwI) in the observation model
y
t−1

= Φt−1Ψx+wt−1, and abbreviating At−1 ! Φt−1Ψ,
we directly obtain [8]

p̂(x |y
t−1

) = N (x;µx,Σx) (18)

Σx !
(

1
vw

AT
t−1At−1 +Diag(α̂)

)−1 (19)
µx ! 1

vw

ΣxA
T
t−1yt−1

, (20)
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Fig. 1. Factor graph just before measurement step t.

and thus the Gaussian posterior approximation p̂(u |y
t−1

) =

N (u;µu,Σu) for µu = Ψµx and Σu = ΨΣxΨ
T.

Examples of other approaches include [7], which assumed
a Laplace prior on x and applied expectation propagation to
obtain a Gaussian posterior approximation, and [9], which
used variational techniques.

III. DESIGN UNDER STRUCTURED SPARSITY

A. Structured-Sparse Signal Model

We now propose a method to exploit structured sparsity in
Bayesian experimental design. First, we assume a decoupled
conditionally Gaussian prior on structured-sparse x:

p(xn | sn) = snN (xn;µx, vx) + (1− sn)δ(xn), (21)

where sn ∈ {0, 1} is a binary indicator, (µx, vx) are the prior
mean and variance of non-zero coefficients, and δ(·) denotes
the Dirac delta. In conjunction, we assume a joint prior pmf
p(s) on the support pattern s ! [s1, . . . , sN ]T. While we place
no restrictions on p(s), we note that Markov chain/field/tree
priors typically lead to efficient algorithms [12]. The resulting
factor graph is shown in Fig. 1 (where aT

m is used to denote
the mth row of At−1).

B. Marginal Inference via Turbo-AMP

Although exact evaluation of the joint posterior p(x |y
t−1

)
is computationally impractical, the marginal posteriors
{p(xn |y

t−1
)}Nn=1 can be closely approximated using loopy

belief propagation. For this, we propose to use the following
“turbo” inference procedure. To start, the generalized2 [14]
approximate message passing (AMP) algorithm [13] is used
to infer x and s using the prior marginals {p(sn)}Nn=1. Then,
treating the marginal likelihoods {p(y

t−1
| sn)}Nn=1 returned

by AMP as a (refined) prior on s, we infer the support s
using an appropriate soft decoding algorithm (e.g., Markov
chain/tree/field inference [12]). Next, treating the marginal
likelihoods on s returned by the decoder as a (further refined)
prior on s, we re-infer x and s using AMP. These alternations
between AMP and support decoding are repeated until the like-
lihoods on s converge. Details on this turbo-AMP procedure
can be found in [15].

2Since the columns of A
t−1

are not guaranteed to be equal energy, as
required by Donoho/Maleki/Montanari’s AMP [13], we need the generalized
AMP proposed by Rangan in [14].

C. Gaussian Posterior Approximation
For the purpose of Bayesian experimental design, the

posteriors returned by AMP are problematic in two ways:
they are i) marginal and ii) non-Gaussian. To remedy the
situation, we propose to take an approach reminiscent of
[8]: we convert AMP’s marginal posteriors into a Gaussian
prior approximation p̂(x) = N (x; m̂,Diag(α̂)−1), which
then leads directly to

p̂(x |y
t−1

) = N (x;µx,Σx) (22)

Σx !
(

1
vw

AT
t−1At−1 +Diag(α̂)

)−1 (23)

µx ! m̂+ 1
vw

ΣxA
T
t−1(yt−1

−At−1m̂), (24)

and thus the Gaussian posterior approximation p̂(u |y
t−1

) =

N (u;µu,Σu) for µu = Ψµx and Σu = ΨΣxΨ
T.

In deciding how AMP’s marginal posteriors are mapped to
the prior approximation N (x; m̂,Diag(α̂)−1), we recall from
(15) that only the precisions α̂ = [α1, . . . ,αN ]T will affect the
EIG; the means m̂ are inconsequential. Thus, using (x̂n, νn)
to denote the posterior mean and variance on xn returned by
AMP, and using ŝn to denote the posterior mean of sn returned
by AMP, we suggest several assignments for α̂:
1) Var: α̂−1

n = νn.
2) Mean: α̂−1

n = |x̂n|2
3) Energy: α̂−1

n = |x̂n|2 + νn
4) Support: α̂−1

n = ŝn
(

|µx|2 + vx
)

,
recalling that (µx, vx) denotes the prior mean and variance on
{xn}Nn=1 specified by the signal model (21).
We now make a few comments. First, we note that our

Support-based approximation is perhaps closest in spirit to
the BCS approach [8] detailed in Section II-C, since the
conditionally Gaussian prior p(xn | sn) is converted to the
Gaussian prior approximation p̂(xn) by simply “plugging in”
an estimate of sn. Second, we note that our Mean-based
approximation requires only the point estimates {x̂n} and
thus facilitates kernel adaptation with non-Bayesian sparse
recovery algorithms like LASSO. Third, we note from (23)
that the most expensive step in kernel adaptation is the
computation of the Mt smallest eigenvectors/values of the
matrix AT

t−1At−1 + vw Diag(α̂), a task that is efficiently
tackled by the Lanczos algorithm (e.g., “eigs” in Matlab).

IV. NUMERICAL EXPERIMENTS
We now report the results of numerical experiments where

clustered-sparse signals were recovered under measurement
kernel adaptation. The clustered-sparse signals x were gen-
erated according to the Bernoulli-Gaussian model p(xn|sn) =
snN (xn; 0, 1)+(1−sn)δ(xn) with sparsity pattern {sn} gen-
erated by a Markov chain (MC) with transition probabilities
p01 ! Pr{sn=0 | sn−1=1} and p10 ! Pr{sn=1 | sn−1=0}.
In all cases, we used signals of length N = 500 and
set p01 and p10 so that the activity rate πs ! Pr{sn =
1} = (1 + p01/p10)−1 = 0.1 and the clustering parameter
γs ! p10/πs = 0.1. In this case, the expected cluster length
equals 1/p10 = 11.1. Throughout, we assumed the canonical



sparsity basis (i.e., Ψ = I so that u = x and At = Φt)
and the sensing energy constraint ‖Φt‖2F = MtN . We used
T =5 measurement steps with M0=100 initial measurements
(constructed using i.i.d Gaussian Φ0) and Mt = 25 new
measurements per adaptation step, Finally, the noise variance
vw was chosen so that SNR ! E{‖aT

mx‖22}/vw = 15dB,
and our performance metric is NMSE ! E{‖x̂− x‖22/‖x‖22}
averaged over 500 problem realizations.
In Fig. 2, we show average NMSE versus number of mea-

surements M t, for both AMP (without support decoding) and
turbo-AMP, under various adaptation schemes. For adaptation,
we tested the four Gaussian approximation approaches to EIG-
maximization proposed in Section III-C. As baselines, we
also show the performance of AMP and turbo-AMP under
non-adaptive (i.i.d Gaussian) kernels. From the figure, we see
that the NMSE reduction from kernel adaptation is 5dB, from
clustered-sparsity is 4dB, and from the combination is 12dB:
more than the sum of the parts. Among the four approximation
schemes used for EIG maximization, we see nearly identical
performance for all but the Support approximation, which
degrades by 1dB in the clustered-sparse context.
In Fig. 3, we show average NMSE versus number of

measurements M t under various recovery schemes, including
BCS3 [8] and LASSO3 [1]. The figure shows that, under
non-adaptive measurements, BCS and AMP both perform
5dB better than LASSO, while turbo-AMP performs 8dB
better than LASSO. When the measurements are adapted to
maximize EIG under our Mean-based approximation, we see
significant (4dB-7dB) improvements over the corresponding
non-adaptive cases. Furthemore, for adaptive BCS, our Mean-
based approximation performs 1dB better than the Gaussian
approximation suggested in [8]. Finally, our adaptive turbo-
AMP comes within 2dB of the support-genie bound, where the
support s of x is assumed to be known. In the latter case, the
signal prior/posterior are Gaussian and thus EIG maximization
can be implemented without approximation.
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