
Sparse Multinomial Logistic Regression via Approximate

Message Passing

A Thesis

Presented in Partial Fulfillment of the Requirements for the Degree
Master of Science in the Graduate School of The Ohio State

University

By

Evan Byrne, B.S.

Graduate Program in Electrical and Computer Engineering

The Ohio State University

2015

Master’s Examination Committee:

Dr. Philip Schniter, Advisor

Dr. Lee C. Potter

c© Copyright by

Evan Byrne

2015

Abstract

For the problem of multi-class linear classification and feature selection, we pro-

pose new approximate message passing algorithms based on Hybrid Generalized Ap-

proximate Message Passing (Hybrid-GAMP) to train a multinomial logistic regression

model. We propose both maximum a posteriori (MAP) and approximate minimum

mean-square error (MMSE) estimators of the weight vectors. Then we design sim-

plified variants of these algorithms that lead to significantly faster runtimes and im-

proved numerical robustness. Our algorithms are able to handle the case where the

number of features far exceeds the number of training examples through the use

of sparsity-promoting prior distributions on the weight vectors. Additionally, our

algorithms are able to take advantage of existing expectation-maximization (EM)

and Stein’s Unbiased Risk Estimate (SURE) methods to tune their parameters on-

line. Finally, we demonstrate our algorithms’ performance on both synthetic and real

datasets.

ii

Acknowledgments

Working on this research project was a very fulling experience for me, and I have

many people to thank. First, I thank my advisor, Phil Schniter, for his guidance

and patience during the course of this project. I thank my advisor again along

with Lee Potter and Emre Koksal for teaching fun and intellectually stimulating

undergraduate courses. Without these courses I may have never developed an interest

in my particular field. Also, I thank everyone involved with the IPS group including

Jeri McMichael and the students for being friendly and more than willing to offer

help. I also thank my colleagues at previous internships for their encouragement to

pursue grad school, and for writing letters of rec at the last second. I thank my

friends including my roommates and members of Buckeye Barbell Club for providing

much needed distractions for the past couple of years. Lastly, I thank my family for

their love and support.

iii

Vita

2012 .B.S. Electrical and Computer Engi-
neering, The Ohio State University

2013-present .Graduate Research Assistant,
The Ohio State University

Fields of Study

Major Field: Electrical and Computer Engineering

Studies in:

Communication Theory Prof. Philip Schniter
Digital Signal Processing Prof. Lee Potter

iv

Table of Contents

Page

Abstract . ii

Acknowledgments . iii

Vita . iv

List of Figures . vii

List of Tables . viii

1. Introduction . 1

1.1 Linear classification . 1
1.2 Designing the weight matrix . 3
1.3 Assumed data model . 5

1.3.1 Definition . 5
1.3.2 Bayes’ optimal classifier . 6
1.3.3 Justification for the multinomial logistic likelihood 7

1.4 Application of approximate message passing algorithms 8
1.5 Prior work . 9
1.6 Contributions . 10
1.7 Thesis outline . 11

2. Hybrid-GAMP for Multinomial Logistic Regression 13

2.1 Background on Hybrid-GAMP . 13
2.2 Hybrid-GAMP for multinomial logistic regression 15

2.2.1 Multinomial logistic regression via MAP-HyGAMP 17
2.2.2 Multinomial logistic regression via MMSE-HyGAMP 21

2.3 Conclusion . 25

v

3. Simplified Hybrid-GAMP for Multinomial Logistic Regression 26

3.1 Scalar variance SHyGAMP . 27
3.2 Multinomial logistic regression via MAP-SHyGAMP 28

3.2.1 Input estimators: inference of x̂n 28
3.2.2 Output estimators: inference of ẑm 29
3.2.3 Parameter selection for MAP-SHyGAMP 30

3.3 Multinomial logistic regression via MMSE-SHyGAMP 33
3.3.1 Input estimators: inference of x̂n 34
3.3.2 Output estimators: inference of ẑm 35
3.3.3 Parameter selection for MMSE-SHyGAMP 46

3.4 Conclusion . 48

4. Classification Experiments . 52

4.1 Synthetic data . 52
4.2 fMRI Multi-Voxel Pattern Analysis 54
4.3 Text mining . 56
4.4 Micro-array gene expression . 58
4.5 Conclusion . 59

5. Conclusions . 62

Appendices 63

A. Derivation for the Bayes’ error rate . 63

B. Derivations for Output Estimator Approximations in MMSE-SHyGAMP 65

B.1 Derivation for the Taylor series approximation 65
B.2 Derivation for the Gaussian posterior approximation 70

Bibliography . 73

vi

List of Figures

Figure Page

2.1 Factor graph for the Hybrid-GAMP model 14

3.1 Estimator performance vs numerical integration parameters 38

3.2 Estimator performance vs the number of importance sampling points 39

3.3 GM estimator performance vs number of components 45

3.4 GM estimator performance vs the No. of numerical integration points 46

3.5 GM estimator runtime vs number components 47

3.6 GM estimator runtime vs the No. of numerical integration points . . 48

3.7 MMSE-SHyGAMP output estimator performance 49

3.8 MMSE-SHyGAMP output estimator runtime 50

4.1 Classification error rate vs M . 54

4.2 Algorithm runtime vs M . 55

4.3 Classification error rate vs N . 56

4.4 Algorithm runtime vs N . 57

4.5 Classification error rate vs K . 58

4.6 Algorithm runtime vs K . 59

4.7 RCV1 classification error rate vs runtime 61

vii

List of Tables

Table Page

1.1 Variable definitions . 12

3.1 Default estimator parameters . 49

4.1 Classification results on the Haxby dataset 60

4.2 Micro-array gene expression results 60

viii

Chapter 1: Introduction

1.1 Linear classification

In this thesis we explore linear classification and feature selection. In classification

[1, pg. 3] we are given training data consisting of M feature-label pairs {am, ym}Mm=1

where am ∈ R
N is a feature vector and ym ∈ {1, ..., D} is a class label. Our objective

is to use the training data to predict the unknown class label y0 on a test feature vector

a0.

Linear classification [1, §4] is a two step process. First, we compute linear scores

z0 , XTa0 ∈ R
D using the weight-matrix X ∈ R

N×D learned from the training

data. Then, we estimate the class label as the index of the largest score:

ŷ0 = argmax
d

[z0]d. (1.1)

We are interested in classification problems that have the following attributes.

1. They involve D > 2 classes.

2. The feature vector dimension N is very large, e.g., N > 1000.

3. The number of training examples M is much less than N .

1

4. A small number, K ≪ {M,N}, of the features may suffice for accurate classi-

fication. In this case, the ‘true’ weight-matrix X is sparse.

In the case that a small subset of features suffices for accurate classification, we may

want to estimate that subset, which is known as “feature selection.” We can do this

by simply examining the row-support of X.

In practice, we see many applications of multi-class linear classification and feature

selection that display our previously listed attributes. For instance, in fMRI Multi-

Voxel Pattern Analysis (MVPA), feature selection can be used to determine which

areas of the brain are active during particular cognitive tasks [2,3]. In this application,

features are indexed over voxels in an fMRI image and their value corresponds to the

voxel’s brightness, while each class is a particular cognitive task. Another application

is text mining, where the objective might be to classify the topic of a document

based on the frequency of keywords [4]. In this application, features may be the

count or frequency of particular words, while the classes are the article’s topic. In

bioinformatics, one may want to learn which genes contribute to a particular disease,

which can be recognized as feature selection [5,6]. In this application, features may be

gene expression levels and classes are particular diseases. Lastly, there are a multitude

of other multi-class classification problems, such as handwriting recognition [7], where

features are pixels in an image of a character and the classes are the various characters

to be recognized. In the previously listed applications, the number of features (N) is

typically on the order of 10000, the number of training examples (M) is on the order

of 100 to 100000, and the number of classes (D) is on the order of 10.

2

1.2 Designing the weight matrix

The main challenge in linear classification is designing the weight matrix X. We

take the approach of assuming that the training data {am, ym}Mm=1 are independent

realizations of the random variable pair (a, y) that obeys an assumed conditional

probability model

py |A(y |A;X) =
M∏

m=1

py | a(ym |am;X), (1.2)

for y , [y1, ..., yM]T, A , [a1, ...,aM]T and some “true” weight matrix X. Then, one

approach is to solve for the weight matrix X̂ that gives us the best fit to the model,

i.e.,

X̂ML = argmax
X

M∏

m=1

py | a(ym |am;X) = argmax
X

M∑

m=1

log py | a(ym |am;X). (1.3)

The above can be recognized as the maximum likelihood estimate [8, §IV.D] of X,

hence the subscript “ML.” Our approach of assuming a particular conditional prob-

ability model py |A(y |A;X) and finding a weight matrix that best fits the model is

known as the “discriminative” approach, in contrast to the “generative” approach,

which attempts to find the joint probability pA,y(A,y) directly [1, pg. 43].

In linear classification, the per-example model py | a(ym |am;X) is based on a linear

interaction between am and X, and thus can be written in terms of the scores zm =

XTam. In particular,

py | a(ym |am;X) = py | z(ym |XTam) (1.4)

for the newly introduced random vector z , XTa. The conditional pdf py | z(ym | zm)

is known as the “activation” function [1, pg. 180]. Throughout this thesis, we focus

3

on the “multinomial logistic” [1, §4.3.4] [9, §2] choice given by

py | z(ym | zm) =
exp(zym)∑D
d=1 exp(zd)

, y ∈ {1, ..., D} (1.5)

or equivalently,

py | a(ym |am;X) =
exp(xT

ymam)∑D
d=1 exp(x

T
dam)

, y ∈ {1, ..., D} (1.6)

where xd is the dth column of X. We will justify using (1.5) in Section 1.3.3.

When the training data is linearly separable, i.e., there exists a weight matrix X

that correctly classifies every training example, then X̂ML is infinite because from

(1.6), py | z(ym |XTam) is strictly increasing in X for all m. One way to resolve this

issue is to place a penalty on large X, i.e., to solve for

X̂ = argmax
X

M∑

m=1

log py | a(ym |am;X) + f(X) (1.7)

with appropriately chosen f(·). As we show below, this can be interpreted as max-

imum a posterior (MAP) estimation of X under the prior pX(X) ∝ exp(f(X)) and

the assumption that X is statistically independent of A.

Given the prior pdf pX(X), the MAP [8, §IV.B.3] estimate of X is defined as

X̂MAP , argmax
X

pX |A,y(X |A,y). (1.8)

The posterior distribution of X given the training data {y,A} is, via Bayes’ rule [10],

pX |A,y(X |A,y) =
py |A,X(y |A,X)pX |A(X |A)

py |A(y |A)
(1.9)

=
py |A,X(y |A,X)pX(X)

py |A(y |A)
(1.10)

∝ py |A,X(y |A,X)pX(X). (1.11)

4

The MAP estimate of X can thus also be written as

X̂MAP = argmax
X

log py |A,X(y |A,X)pX(X) (1.12)

= argmax
X

log py |A,X(y |A,X) + log pX(X). (1.13)

Note the equivalence between (1.7) and (1.13).

Alternatively, one could seek the minimum mean-squared error (MMSE) estimate

[8, §IV.B.1] of X, given by

X̂MMSE , E{X |A, y} (1.14)

=

∫

X∈RN×D

XpX |A,y(X |A,y) dX. (1.15)

However, due to the high-dimensionality of the integral in (1.15), MMSE estimation

of X is typically not done in practice. We will refer to the problems in (1.12) and

(1.14), under the assumption of (1.5), collectively as multinomial logistic regression.

1.3 Assumed data model

1.3.1 Definition

We now describe a statistical data model that is consistent with multinomial

logistic regression. Our data model is defined by a joint pdf pa,y(a, y), where a ∈ R
N

is a feature vector and y ∈ {1, ..., D} is its corresponding class label. We prefer to write

our model as pa | y(a | y)py(y) to show the dependence of a feature vector on its class

label. Our first assumption is uniformly distributed classes, i.e., py(y = d) = 1
D
, d ∈

{1, ..., D}. We then assume the feature vector, conditioned on a particular class, has

a multivariate Gaussian distribution with a class-dependent mean and class-invariant

scaled-identity covariance matrix, i.e.,

pa | y(a | y) = N (a;µy, σ
2
aIN) =

1√
(2πσ2

a)
N
exp

(
− 1

2σ2
a

‖a− µy‖22
)
. (1.16)

5

We furthermore assume the class means have equal norm and are mutually orthogonal,

i.e.,

‖µd‖ = c ∀ d (1.17)

and

µT
dµd′

∣∣
d 6=d′ = 0. (1.18)

1.3.2 Bayes’ optimal classifier

Given a test feature vector a0, estimating the unknown class y0 using MAP de-

tection, i.e.,

ŷ0(a0) = argmax
y

py | a(y |a0), (1.19)

is known to minimize the error probability [8, §II.B]. Using Bayes’ rule and our

assumption of uniform prior probabilities,

py | a(y |a0) =
pa | y(a0 | y)py(y)

pa(a0)
(1.20)

=
pa | y(a0 | y)
Dpa(a0)

, (1.21)

and so ML detection is also optimal. Using this, we have

ŷ0(a0) = argmax
y

pa | y(a0 | y) (1.22)

= argmax
y

N (a0;µy, σ
2
aIN) (1.23)

= argmin
y
‖a0 − µy‖22 (1.24)

= argmax
y

aT
0µy, (1.25)

where we use ‖µy‖ = c ∀ y in (1.25). We can see the ML detector uses linear scores

aT
0µy with optimal weight vectors equal to the class means, up to an arbitrary, positive

scale factor α, i.e., x∗
d = αµd for d ∈ {1, .., D}. This problem can be recognized as

6

standard signal detection in additive white Gaussian noise [8, §III], and in particular,

detection of y from measurements

a = µy +w, (1.26)

where µy is one of D transmitted signals and w is additive noise with distribution

N (w;0, σ2
aIN). The detector structure is known as a “matched filter bank,” i.e.,

(1.25). The minimal (i.e., Bayes’) error rate (BER) for this data model (with param-

eters c and σ2
a) is

εB = 1−
∫
N (z; c/σa, 1)Φ(z)

D−1 dz. (1.27)

We derive (1.27) in Appendix A.

1.3.3 Justification for the multinomial logistic likelihood

Next, we show that the model in (1.16) with the assumption of uniform class

priors and equal length and mutually orthogonal class means yields the multinomial

logistic activation function, given in (1.6). Using Bayes’ rule,

py | a(y |a) =
pa | y(a | y)py(y)

pa(a)
(1.28)

=
pa | y(a | y)py(y)∑D

y′=1 pa | y(a | y′)py(y′)
(1.29)

=
1

1 +
∑D

y′=1,6=y

N (a;µy′ ,σ
2
aIN)

N (a;µy ,σ
2
aIN)

(1.30)

=
1

1 +
∑D

y′=1,6=y exp
(

1
σ2
a
aT(µy′ − µy)

) (1.31)

=
exp

(
1
σ2
a
aTµy

)

∑D
y′=1 exp

(
1
σ2
a
aTµy′

) , (1.32)

7

where (1.29) is an application of the law of total probability [10], (1.30) simplifies due

to uniform priors, (1.31) results due to ‖µy‖ = ‖µy′‖ and (1.32) is a restructuring of

(1.31). Note that (1.32) matches (1.6) when 1
σ2
a
µd = xd for all d.

The derivation (1.28)-(1.32) actually did not require the class means to be or-

thogonal. However, we keep the orthogonality assumption because it was necessary

for the probability of error expression (1.27). We note that the multinomial logistic

activation function is also optimal under other data models, as described in [1, §4.2].

1.4 Application of approximate message passing algorithms

Recently, an efficient algorithm has been proposed to solve high-dimensional in-

ference problems similar to, but not exactly the same, as those in (1.12) and (1.14).

It goes by the name of generalized approximate message passing (GAMP) [11]. In

particular, GAMP tries to estimate the random vector x ∈ R
N with separable prior

pdf px(x) =
∏N

n=1 px(xn) from a degraded copy y ∈ R
M of the linear transform output

z = Ax ∈ R
M . Here, the likelihood function of z is assumed to also be separable, i.e.,

py | z =
∏M

m=1 py | z(ym | zm) and A is a known realization of a large, random matrix.

GAMP computes its estimate x̂ through approximate-MMSE or MAP estima-

tion by approximating the sum-product [1, §8.4.4] or max-sum [1, §8.4.5] algorithms,

respectively, on the loopy factor graph [1, §8.4] corresponding to its assumed model.

We cannot apply GAMP to our multinomial logistic regression problem because

GAMP assumes a scalar-input/scalar-output channel py | z(ym | zm). However, a more

general version of GAMP, known as Hybrid-GAMP (or HyGAMP) [12] has been

recently developed and can be applied to our problem, as we show in Chapter 2.

8

1.5 Prior work

Several sparsity promoting multinomial logistic regression algorithms have been

proposed (e.g., [9, 13–17]), differing in their choice of px and methodology used to

estimate X. For example, [9, 14, 15] use the i.i.d Laplacian prior

px(xn;λ) =
D∏

d=1

λ

2
exp(−λ|xnd|), (1.33)

with λ tuned via cross-validation. To circumvent this tuning problem, [16] employs

the Laplacian scale mixture

px(xn) =
D∏

d=1

∫ [
λ

2
exp(−λ|xnd|)

]
p(λ) dλ, (1.34)

with Jeffrey’s non-informative hyperprior p(λ) ∝ 1
λ
1λ≥0. The relevance vector ma-

chine (RVM) approach [13] uses the Gaussian scale mixture

px(xn) =
D∏

d=1

∫
N (xnd; 0, ν)p(ν) dν, (1.35)

with inverse-gamma p(ν) (i.e., the conjugate hyperprior), resulting in an i.i.d. stu-

dent’s t distribution for px. However, other choices are possible. For example, the

exponential hyperprior p(ν;λ) = λ2

2
exp(−λ2

2
ν)1ν≥0 would lead back to the i.i.d. Lapla-

cian distribution (1.33) for px [18]. Finally, [17] uses

px(xn;λ) ∝ exp(−λ‖xn‖2), (1.36)

which encourages row-sparsity in X.

9

Once the probabilistic model (1.9) has been specified, a procedure is needed to

infer the weights X from the training data {(ym,am)}Mm=1. The Laplacian-prior meth-

ods [9, 14, 15, 17] use the maximum a posteriori (MAP) estimation framework:

X̂ = argmax
X

log p(X|y;A) (1.37)

= argmax
X

M∑

m=1

log py|z(ym|XTam) +
N∑

n=1

log px(xn), (1.38)

where Bayes rule was used for (1.38). Under px from (1.33) or (1.36), the second term

in (1.38) reduces to −λ∑N
n=1 ‖xn‖1 or −λ∑N

n=1 ‖xn‖2, respectively. In this case,

(1.38) is concave and can be maximized in polynomial time; [9, 14, 15, 17] employ

(block) coordinate ascent for this purpose. The papers [13] and [16] handle the

scale-mixture priors (1.34) and (1.35), respectively, using the evidence maximization

framework [19]. This approach yields a double-loop procedure: the hyperparameter

λ and ν is estimated in the outer loop, and—for fixed λ and ν—the resulting concave

(i.e., ℓ2 and ℓ1 regularized) MAP optimization is solved in the inner loop.

The methods [9,13–17] described above all yield a sparse point estimate X̂. Thus,

feature selection is accomplished by examining the row-support of X̂ and classification

is accomplished through (1.1).

Finally, GAMP has previously been applied to binary linear classification in [20],

i.e., the special case of our problem where D = 2.

1.6 Contributions

In this thesis, we first develop two algorithms for multinomial logistic regression

by applying Hybrid-GAMP to both (1.12) and (1.14). We will refer to these two

algorithms as MAP-HyGAMP and MMSE-HyGAMP, respectively. Then, we simplify

10

both of these algorithms to obtain simplified Hybrid-GAMP i.e., MAP-SHyGAMP

and MMSE-SHyGAMP. Finally, through a numerical study we demonstrate that

MAP-SHyGAMP and MMSE-SHyGAMP are competitive with state-of-the-art sparse

multinomial logistic regression algorithms.

1.7 Thesis outline

In Chapter 2, we apply Hybrid-GAMP to the MAP (1.12) and MMSE (1.14)

formulations of the multinomial logistic regression problem. In Chapter 3, we simplify

Hybrid-GAMP to form two new algorithms that exhibit faster runtimes. In Chapter

4, we demonstrate our algorithms’ state-of-the-art performance on both synthetic and

real data. Finally, in Chapter 5, we present a brief summary of our algorithms and a

description of their performance.

Notation We represent matrices with boldface uppercase letters, such as A, and

we represent vectors with boldface lowercase letters, such as x. Scalar quantities will

not be boldface. Random quantities will be denoted with sans-serif font (e.g., x, x, X),

while deterministic quantities will be denoted with serif font (e.g., x, x, X). Unless

otherwise stated, subscripts are used to index elements, rows or columns in a matrix

or vector, e.g., zd is the dth element in z. Similarly, xnd is the dth element in the vector

xn. Probability distributions will have their subscripts abbreviated when the random

variables in question are i.i.d., e.g., pxn(xn) = px(xn). If x is normally distributed

with mean µ and covariance matrix Σ this will be denoted by N (x;µ,Σ). var{x}

indicates the covariance matrix of x. ∂2

∂x2f(x) indicates the Hessian of f(x). Also,

let φ(x) and Φ(x) represent the standard normal pdf and cdf, respectively, evaluated

11

at x. Finally, Table 1.1 provides a summary of important variables used throughout

this thesis.

Variable Definition

N feature vector dimension

M number of training examples

D number of classes

K ‘true’ weight-matrix row-sparsity

am ∈ R
N feature vector

A = [a1, ...,aM]T ∈ R
M×N feature matrix

ym ∈ {1, ..., D} class label corresponding to am

X ∈ R
N×D weight matrix

zm = XTam ∈ R
D scores corresponding to am

Table 1.1: Variable definitions

12

Chapter 2: Hybrid-GAMP for Multinomial Logistic

Regression

In this chapter we apply Hybrid-GAMP to the MAP (1.12) and MMSE (1.14)

formulations of the multinomial logistic regression problem, yielding the algorithms

MAP-HyGAMP and MMSE-HyGAMP respectively.

2.1 Background on Hybrid-GAMP

Hybrid-GAMP [12] is a recently developed extension of the GAMP algorithm [11]

that performs high-dimensional inference with more general statistical models. One

such model, which is markedly similar to the GAMP model described in Section 1.4,

is the following: estimate X ∈ R
N×D with separable prior pdf pX(X) =

∏N
n=1 px(xn)

(where xT
n is the nth row ofX) from noisy observations y ∈ R

M of the linear transform

output Z = AX ∈ R
M×D. Here, the likelihood function of Z is assumed to be

separable, i.e., py |Z(y |Z) =
∏M

m=1 py | z(ym | zm) (where zT
m is the mth row of Z),

and A is assumed to be a known realization of a large, random matrix.

The posterior density for this particular statistical model can be written as

pX | y(X |y) ∝ py |Z(y |AX)pX(X) (2.1)

∝
M∏

m=1

py | z(ym |aT
mX)

N∏

n=1

px(xn), (2.2)

13

where aT
m is the mth row of A. The pdf in (2.2) can be represented with a bipartite

factor graph, shown in Figure 2.1. Hybrid-GAMP finds a MAP or approximate-

ym py | z xn px

Figure 2.1: Factor graph corresponding to (2.2). Square nodes represent functions
while circular nodes represent variables. Shaded nodes are known, while non-shaded
nodes are unknown. The nodes on the left hand side represent the likelihood and
the nodes on the right hand side represent the prior. Nodes are vector -valued where
appropriate in accordance with the Hybrid-GAMP model.

MMSE estimate of X by approximating the max-sum or sum-product algorithm, re-

spectively. Through message passing, Hybrid-GAMP breaks this high dimensional in-

ference problem into many lower-dimensional inference problems (of size D). Hybrid-

GAMP iteratively sends messages back and forth between the nodes on the left and

right side of the graph in Figure 2.1. These messages take the form of multivariate

Gaussian pdfs. The Gaussianity of the messages follows in the large system limit

from the central limit theorem [10].

14

Hybrid-GAMP approximates the marginal posterior distribution of the weights

xn with a distribution of the form

px|r(xn | r̂n;Q
r
n) ∝ px(xn)N (xn; r̂n,Q

r
n), (2.3)

where r̂n and Qr
n are computed iteratively. Likewise, Hybrid-GAMP approximates

the marginal posterior distribution of the transformed weights zm with

pz|y,p(zm | ym, p̂m;Q
p
m) ∝ py | z(ym | zm)N (zm; p̂m,Q

p
m), (2.4)

where p̂m and Qp
m are computed iteratively.

The Hybrid-GAMP algorithm is given in Algorithm 1. Note that the algorithm

is broken into linear and non-linear steps; the linear steps are the same for both

MAP-HyGAMP and MMSE-HyGAMP, but the non-linear steps (also referred to

as input and output estimators) differ based on the estimator (MAP or MMSE)

used. Further note that each iteration of the HyGAMP algorithm requires M + N

D×D matrix inverses. The input estimators involve finding an estimate for xn using

the approximate posterior distribution in (2.3) and the output estimators involve

finding an estimate for zm using the approximate posterior distribution in (2.4). The

input and output estimation steps match the overall theme of the algorithm: in

MAP-HyGAMP a small MAP estimation problem is solved at each node, likewise in

MMSE-HyGAMP a small MMSE estimation problem is solved at each node.

2.2 Hybrid-GAMP for multinomial logistic regression

Consider our problem of multi-class linear classification via multinomial logistic

regression. We have M training examples {ym,am}Mm=1, where ym ∈ {1, ..., D} and

am ∈ R
N . We want to design the weight matrix X ∈ R

N×D where each column of

15

Algorithm 1 HyGAMP

Require: Mode ∈ {MAP, MMSE}, matrix A, vector y, pdfs px|r and pz|y,p from (2.3)-(2.4), initializa-

tions r̂n(0), Q
r
n(0).

Ensure: t←0; ŝm(0)←0.

1: repeat

2: if MAP then {for n = 1 . . . N}
3: x̂n(t)← argmax

x
log px|r

(
xn

∣∣r̂n(t−1);Qr
n(t−1)

)

4: Qx
n(t)←

[
− ∂2

∂x2 log px|r
(
x̂n(t)

∣∣r̂n(t−1);Qr
n(t−1)

)]−1

5: else if MMSE then {for n = 1 . . . N}
6: x̂n(t)← E

{
xn
∣∣ rn = r̂n(t−1);Qr

n(t−1)
}

7: Qx
n(t)← Cov

{
xn
∣∣ rn = r̂n(t−1);Qr

n(t−1)
}

8: end if

9: ∀m : Qp
m(t)←∑N

n=1 A
2
mnQ

x
n(t)

10: ∀m : p̂m(t)←∑N
n=1 Amnx̂n(t)−Qp

m(t)ŝm(t−1)
11: if MAP then {for m = 1 . . .M}
12: ẑm(t)← argmax

z
log pz|y,p

(
zm

∣∣ym, p̂m(t);Qp
m(t)

)

13: Qz
m(t)←

[
− ∂2

∂z2 log pz|y,p
(
ẑm(t)

∣∣ym, p̂m(t);Qp
m(t)

)]−1

14: else if MMSE then {for m = 1 . . .M}
15: ẑm(t)← E

{
zm
∣∣ ym,pm = p̂m(t);Qp

m(t)
}

16: Qz
m(t)← Cov

{
zm
∣∣ ym,pm = p̂m(t);Qp

m(t)
}

17: end if

18: ∀m : Qs
m(t)← [Qp

m(t)]−1 − [Qp
m(t)]−1Qz

m(t)[Qp
m(t)]−1

19: ∀m : ŝm(t)← [Qp
m(t)]−1

(
ẑm(t)− p̂m(t)

)

20: ∀n : Qr
n(t)←

[∑M
m=1 A

2
mnQ

s
m(t)

]−1

21: ∀n : r̂n(t)← x̂n(t) +Qr
n(t)

∑M
m=1 Amnŝm(t)

22: t← t+ 1

23: until Terminated

16

X is a weight vector. Given zT
m = aT

mX ∈ R
D, we model the likelihood of am being

in class y with the multinomial logistic activation function, i.e.,

py | z(y | z) =
exp(zy)∑D
d=1 exp(zd)

, y ∈ {1, ..., D}, (2.5)

where zd is the dth element in z (with the m subscript dropped temporarily for

brevity). By assuming independent training examples and also prior independence

among the rows of X, we have the following posterior distribution on the weight

matrix given the training data

pX | y(X |y) ∝ py |Z(y |AX)pX(X) (2.6)

∝
M∏

m=1

py | z(ym |aT
mX)

N∏

n=1

px(xn), (2.7)

where A = [a1, ...,aM]T and xT
n ∈ R

D is the nth row of X. Our model in (2.7)

exactly matches that assumed by Hybrid-GAMP, given in (2.2).

2.2.1 Multinomial logistic regression via MAP-HyGAMP

In order to perform multinomial logistic regression with MAP-HyGAMP, we must

compute line 3 of Algorithm 1, the MAP estimate of xn, at each input node n using the

approximate posterior distribution given in (2.3). Likewise, we must compute line 12

of Algorithm 1, the MAP estimate of zm at each output nodem using the approximate

posterior distribution given in (2.4), where py | z is the multinomial logistic activation

function given in (2.5). In addition, we must compute the inverse Hessian of the

log approximate posterior at the input and the output, shown in lines 4 and 13 of

Algorithm 1, evaluated at the corresponding MAP estimates, x̂n and ẑm, respectively.

17

Input estimators: inference of x̂n

In MAP-HyGAMP, the computation required in line 3 of Algorithm 1, given (2.3),

is

x̂n = argmax
xn∈RD

{
log px | r(xn | r̂n;Q

r
n)
}

(2.8)

= argmax
xn∈RD

{
log px(xn)−

1

2
(xn − r̂n)

T[Qr
n]

−1(xn − r̂n)
}

(2.9)

and the computation required in line 4 is

Qx
n =

[
− ∂2

∂x2
n

log px | r(x̂n | r̂n;Q
r
n)

]−1

, (2.10)

with the iteration index t omitted here for simplicity. Note that in (2.10), the Hessian

of log px | r(· | r̂n;Q
r
n) is evaluated at the x̂n found in (2.8).

Choice of prior As discussed in Section 1.2, we are motivated to use a separable,

log-concave prior on X in order to guarantee a finite X̂ and possibly to promote

sparsity. Two such choices for the prior are the Gaussian or Laplacian distribution [9].

Gaussian Under a Gaussian prior on xn defined by px(xn) = N (xn;µ
x
0 ,Σ

x
0),

the posterior distribution of xn is a Gaussian and thus it obtains its maximum at its

mean. This results in the following closed-form solution for (2.9):

x̂n = ([Σx
0]

−1 + [Qr
n]

−1)−1([Σx
0]

−1µx
0 + [Qr

n]
−1r̂n). (2.11)

Equation (2.11) follows from the following Gaussian multiplication rule:

N (x;a;A)N (x; b,B) =

N (0;a− b,A+B)N
(
x; (A−1 +B−1)−1(A−1a+B−1b), (A−1 +B−1)−1

)
.

(2.12)

18

A Gaussian prior imposes an ℓ2 norm penalty on x̂n, which is not sparsity-promoting.

Additionally, (2.10) can also be found in closed-form via

Qx
n = ([Σx

0]
−1 + [Qr

n]
−1)−1. (2.13)

Laplacian A Laplacian prior,

px(xn) ∝ exp(−λ‖x‖1), (2.14)

imposes an ℓ1 norm penalty on x̂n, which is sparsity-promoting. In this case, (2.9)

becomes

x̂n = argmax
xn∈RD

−λ‖xn‖1 −
1

2
(xn − r̂n)

T[Qr
n]

−1(xn − r̂n), (2.15)

which is reminiscent of the LASSO [21] problem. Although (2.15) has no closed-form

solution, it can be solved iteratively using minorize-maximization (MM) [22].

To maximize a function J(x), MM iterates the recursion

x̂
(k+1) = argmax

x
Ĵ(x; x̂(k)), (2.16)

where Ĵ(x; x̂) is a surrogate function that minorizes J(x) at x̂. In other words,

Ĵ(x; x̂) ≤ J(x̂) ∀x for any fixed x̂, with equality when x = x̂. To apply MM to

(2.15), we identify the utility function as Jn(x) , −1
2
(x − r̂n)

T[Qr
n]

−1(x − r̂n) −

λ‖x‖1. Next we apply a result from [23] that established that Jn(x) is minorized by

Ĵn(x; x̂
(k)
n) , −1

2
(x − r̂n)

T[Qr
n]

−1(x − r̂n) − λ
2

(
xTΛ(x̂(k)

n)x + ‖x̂(k)
n ‖22

)
with Λ(x̂) ,

diag
{
|x̂1|−1, . . . , |x̂D|−1

}
. Thus (2.16) implies

x̂
(k+1)
n = argmax

x
Ĵn(x; x̂

(k)
n) (2.17)

= argmax
x

xT[Qr
n]

−1r̂n −
1

2
xT
(
[Qr

n]
−1 + λΛ(x̂(k)

n)
)
x (2.18)

=
(
[Qr

n]
−1 + λΛ(x̂(k)

n)
)−1

[Qr
n]

−1r̂n (2.19)

19

where (2.18) dropped the x-invariant terms from Ĵn(x; x̂
(k)
n). Note that each iteration

k of (2.19) requires a D ×D matrix inverse.

The Hessian of the log of (2.14) does not exist when xnd = 0 for any d and is zero

otherwise. Thus, we set Qx
n = Qr

n, but then zero the dth row and column of Qx
n for

all d such that x̂nd = 0.

Output estimators: inference of ẑm

In MAP-HyGAMP, the computation required at line 12 of Algorithm 1, given

(2.4), is

ẑm = argmax
zm∈RD

{
log pz | y,p(zm | ym, p̂m;Q

p
m)
}

(2.20)

= argmax
zm∈RD

{
log py | z(ym | zm)−

1

2
(zm − p̂m)

T[Qp
m]

−1(zm − p̂m)
}

(2.21)

and the computation required at line 13 is

Qz
m =

[
− ∂2

∂z2
m

{
log pz | y,p(ẑm | ym, p̂m;Q

p
m)
}]−1

, (2.22)

with the iteration index t again omitted here for simplicity. Similar to (2.10), note

that in (2.22) the Hessian of log pz | y,p(· | ym, p̂m;Q
p
m) is evaluated at the ẑm computed

in (2.21).

Newton’s method We can solve (2.21) using Newton’s method [24, §1.4], which

uses the iteration

z(k+1)
m = z(k)

m + α(k)[H(z(k)
m)]−1∇(z(k)

m), (2.23)

where ∇(·) and H(·) are the gradient and Hessian, respectively, of the objective

function in (2.21) and α(k) is a positive step size.

20

Given (2.5), the gradient of log py | z(ym | zm) w.r.t. zm is

∂

∂z
log py | z(ym | zm) =

∂

∂z

(
zm,ym − log

(D∑

d=1

exp(zm,d)
))

(2.24)

= y′
m − s(zm), (2.25)

where y′
m is a length-D vector containing a 1 in the ymth position and zeros elsewhere,

and s(zm) is a length-D vector where the dth position indicates the value of (2.5)

evaluated at y = d and z = zm. The gradient of the objective function in (2.21) is

then given by

∇(zm) = y′
m − s(zm)− [Qp

m]
−1(zm − p̂m). (2.26)

Given (2.25), the Hessian of log py | z(ym | zm) is invariant to ym (due to y′
m being

a constant), so we drop the m subscript for brevity. The Hessian of log py | z(y | z) is

then

∂2

∂zi∂zj
log py | z(y | z) =

∂

∂zj

(
I{i}(y)−

exp(zi)∑D
d=1 exp(zd)

)
(2.27)

=
− exp(zi)

(∑D
d=1 exp(zd)

)
+ exp(zi)

2

(∑D
d=1 exp(zd)

)2 if i = j (2.28)

=
exp(zi) exp(zj)(∑D

d=1 exp(zd)
)2 if i 6= j, (2.29)

which can be written as −diag{s(z)}+s(z)s(z)T. Thus, the Hessian of the objective

function in (2.21) is

H(zm) = −diag{s(zm)}+ s(zm)s(zm)
T − [Qp

m]
−1. (2.30)

2.2.2 Multinomial logistic regression via MMSE-HyGAMP

In order to apply MMSE-HyGAMP to multinomial logistic regression, at each

input node we must compute the posterior mean and covariance matrix of the ap-

proximate posterior distribution given in (2.3) for an appropriately chosen prior, px.

21

Then, at each output node we must compute the posterior mean and covariance

matrix of the approximate posterior distribution given in (2.4), where py | z is the

multinomial logistic activation function given in (2.5).

Input estimators: inference of x̂n

In MMSE-HyGAMP, the computation required at line 6 of Algorithm 1, given

(2.3), is

x̂n = E{xn | rn = r̂n;Q
r
n} (2.31)

=

∫
RD xnpx(xn)N (xn; r̂n,Q

r
n) dxn∫

RD px(xn)N (xn; r̂n,Q
r
n) dxn

(2.32)

and the computation required at line 7 is

Qx
n = var {xn | rn = r̂n;Q

r
n} (2.33)

=

∫
RD xnx

T
npx(xn)N (xn; r̂n,Q

r
n) dxn∫

RD px(xn)N (xn; r̂n,Q
r
n) dxn

− x̂nx̂
T
n , (2.34)

with the iteration index t omitted here for simplicity.

We choose to use a multivariate Bernoulli-Gaussian distribution for px, given by

px(xn) = λ0N (xn;µ
x
0 ,Σ

x
0) + (1− λ0)δ(xn), λ0 ∈ (0, 1]. (2.35)

Depending on λ0, this prior distribution can encourage MMSE-HyGAMP to learn an

approximately sparse X̂.

22

Additionally, with this prior distribution, (2.32) and (2.34) have closed-form so-

lutions. Given (2.35), the normalizing constant is

Cn ,

∫

RD

px(xn)N (xn; r̂n,Q
r
n) dxn (2.36)

=

∫

RD

(
λ0N (xn;µ

x
0 ,Σ

x
0) + (1− λ0)δ(xn)

)
N (xn; r̂n,Q

r
n) dxn (2.37)

=

∫

RD

λ0N (xn;µ
x
0 ,Σ

x
0)N (xn; r̂n,Q

r
n) dxn+

∫

RD

(1−λ0)δ(xn)N (xn; r̂n,Q
r
n) dxn

(2.38)

= λ0N (0;µx
0 − r̂n,Σ

x
0 +Qr

n) + (1− λ0)N (0; r̂n,Q
r
n). (2.39)

The first term in (2.39) comes from (2.12), while the second term comes from the

sifting property [25]. Then, given (2.32), (2.35), and (2.39),

x̂n = C−1
n

∫

RD

xnpx(xn)N (xn; r̂n,Q
r
n) dxn (2.40)

= C−1
n

∫

RD

xnλ0N (xn;µ
x
0 ,Σ

x
0)N (xn; r̂n,Q

r
n) dxn +

C−1
n

∫

RD

xn(1− λ0)δ(xn)N (xn; r̂n,Q
r
n) dxn (2.41)

= C−1
n λ0N (0;µx

0 − r̂n,Σ
x
0 +Qr

n)([Σ
x
0]

−1 + [Qr
n]

−1)−1([Σx
0]

−1µx
0 + [Qr

n]
−1r̂n)
(2.42)

=
([Σx

0]
−1 + [Qr

n]
−1)−1([Σx

0]
−1µx

0 + [Qr
n]

−1r̂n)

1 + 1−λ0

λ0

N (0;r̂n,Q
r
n)

N (0;µx
0
−r̂n,Σ

x
0
+Qr

n)

. (2.43)

The first term in (2.41) evaluates to (2.42) via (2.12), while the second term in (2.41)

evaluates to zero.

Lastly, given (2.34), (2.35), and (2.39),

Qx
n = C−1

n

∫

RD

xnx
T
npx(xn)N (xn; r̂n,Q

r
n) dxn − x̂nx̂

T
n (2.44)

= C−1
n

∫

RD

xnx
T
nλ0N (xn;µ

x
0 ,Σ

x
0)N (xn; r̂n,Q

r
n) dxn +

C−1
n

∫

RD

xnx
T
n(1− λ0)δ(xn)N (xn; r̂n,Q

r
n) dxn − x̂nx̂

T
n . (2.45)

23

The first term in (2.45) evaluates to the scaled, second moment of a multi-

variate Gaussian distribution via (2.12). The scaling is given by C−1
n N (0;µx

0 −

r̂n,Σ
x
0 +Qr

n) and the second moment is given by S +mmT where m = ([Σx
0]

−1 +

[Qr
n]

−1)−1([Σx
0]

−1µx
0 + [Qr

n]
−1r̂n) and S = ([Σx

0]
−1 + [Qr

n]
−1)−1. The middle term in

(2.45) evaluates to zero. This results in

Qx
n =

S +mmT

1 + 1−λ0

λ0

N (0;r̂n,Q
r
n)

N (0;µx
0
−r̂n,Σ

x
0
+Qr

n)

− x̂nx̂
T
n . (2.46)

Output estimators: inference of ẑm

In MMSE-HyGAMP, the computation required at line 15 of Algorithm 1, given

(2.4), is

ẑm = E{zm | ym = ym,pm = p̂m;Q
p
m} (2.47)

=

∫
RD zmpy | z(ym | zm)N (zm; p̂m,Q

p
m) dzm∫

RD py | z(ym | zm)N (zm; p̂m,Q
p
m) dzm

(2.48)

and the computation required at line 16 is

Qz
m = var{zm | ym = ym,pm = p̂m;Q

p
m} (2.49)

=

∫
RD zmz

T
mpy | z(ym | zm)N (zm; p̂m,Q

p
m) dzm∫

RD py | z(ym | zm)N (zm; p̂m,Q
p
m) dzm

− ẑmẑ
T
m, (2.50)

with the iteration index t again omitted here for simplicity.

The problems in (2.47) and (2.49) are not solvable in closed-form, but they can be

approximated using, e.g., numerical integration or importance sampling [1, §11.1.4].

In numerical integration, we use a D-dimensional hyper-rectangular grid where each

dimension d has J grid points uniformly spaced between
[
p̂md − α

√
[Qp

m]dd, p̂md +

α
√

[Qp
m]dd

]
.

24

If we use importance sampling, we draw J independent samples {z̃m[j]}Jj=1 from

N (zm; p̂m,Q
p
m). Then, the approximations become

ẑm ≈
∑J

j=1 z̃m[j]py | z(ym | z̃m[j])∑J
j=1 py | z(ym | z̃m[j])

(2.51)

and

Qz
m ≈

∑J
j=1 z̃m[j]z̃m[j]

Tpy | z(ym | z̃m[j])∑J
j=1 py | z(ym | z̃m[j])

− ẑmẑ
T
m. (2.52)

2.3 Conclusion

In this chapter, we applied Hybrid-GAMP to the MAP and MMSE multinomial

logistic regression problems in (1.12) and (1.14). Then we showed how to compute

the non-trivial steps in the algorithm, some of which can be solved in closed-form,

some of which rely on approximations, and some of which can be solved iteratively

using an optimization algorithm.

25

Chapter 3: Simplified Hybrid-GAMP for Multinomial

Logistic Regression

In Chapter 2 we applied HyGAMP to a MAP and an MMSE formulation of the

multinomial logistic regression problem. However, a direct application of HyGAMP

to multinomial logistic regression is computationally costly due in part to the many

matrix inverses and also the input and output estimators.

Thus, in this Chapter, we propose a simplified Hybrid-GAMP (SHyGAMP) algo-

rithm for sparse multinomial logistic regression, whose complexity is greatly reduced.

The simplification itself is rather straightforward: we constrain the covariance matri-

ces Qr
n, Q

x
n, Q

p
m, and Qz

m to be diagonal. In other words,

Qr
n = diag

{
qrn1, . . . , q

r
nD

}
, (3.1)

and similar for Qx
n, Q

p
m, and Qz

m. As a consequence, the D×D matrix inversions in

lines 18 and 20 of Algorithm 1 each reduce to D scalar inversions. More importantly,

the D-dimensional inference problems in lines 3-7 and 12-16 can be tackled using

much computationally simpler methods than those described in Chapter 2, as we

detail in the squeal.

26

3.1 Scalar variance SHyGAMP

We further approximate the SHyGAMP algorithm using the scalar variance ap-

proximation from [11], which reduces the memory and complexity of the algorithm.

The scalar variance approximation first approximates {qxnd} by a version invariant to

both n and d, i.e.,

qx ,
1

ND

N∑

n=1

D∑

d=1

qxnd. (3.2)

Then, in line 9 in Algorithm 1, we use the approximation

qpmd ≈
N∑

n=1

A2
mnq

x (3.3)

≈ ‖A‖
2
F

M
qx (3.4)

, qp, (3.5)

where || · ||F is the Frobenius norm. The approximation in (3.4), after precomputing

‖A‖2F , reduces the complexity of line 9 from O(ND) to O(1). We next assume

qs ,
1

MD

M∑

m=1

D∑

d=1

qsmd, (3.6)

and in line 20 we use the approximation

qrnd ≈
[M∑

m=1

A2
mnq

s

]−1

(3.7)

≈ N

qs‖A‖2F
(3.8)

, qr. (3.9)

The complexity of line 20 (excluding the matrix inverse) simplifies from O(MD) to

O(1). For clarity, we note that after applying the scalar variance approximation,

Qx
n = qxID ∀n and similar for Qr

n, Q
p
m and Qz

m.

27

3.2 Multinomial logistic regression via MAP-SHyGAMP

In order to perform multinomial logistic regression with MAP-SHyGAMP we fol-

low the same procedure as MAP-HyGAMP, detailed in Section 2.2.1, but with the

constraint that all Qr, Qx, Qp, and Qz are diagonal.

3.2.1 Input estimators: inference of x̂n

Recall from Section 2.2.1, we must compute

x̂n = argmax
xn∈RD

{
log px|r(xn | r̂n;Q

r
n)
}

(3.10)

= argmax
xn∈RD

{
log px(xn)−

1

2
(xn − r̂n)

T[Qr
n]

−1(xn − r̂n)
}

(3.11)

and

Qx
n =

[
− ∂2

∂x2
n

log px | r(x̂n | r̂n;Q
r
n)

]−1

. (3.12)

Under the assumption of diagonal Qr
n and a separable prior, i.e., px(xn) =

∏D
d=1 px(xnd), the problems in (3.11) and (3.12) decouple into D scalar problems,

shown in (3.14) and (3.15).

x̂nd = argmax
x

{
log px | r(xnd | r̂nd; qrnd)

}
(3.13)

= argmax
x

{
log px(xnd)−

1

2qrnd
(xnd − r̂nd)

2
}

(3.14)

and

qxnd =

[
− d2

dx2
log px | r(xnd | r̂nd; qrnd)

]−1

. (3.15)

Choice of prior In MAP-HyGAMP we used a vector-valued Gaussian or Laplacian

prior on xn. In MAP-SHyGAMP we use a scalar-valued Gaussian or Laplacian prior

on xnd, which correspond to the ℓ2 norm or sparsity-promoting ℓ1 norm constraint,

respectively, on xnd.

28

Gaussian Under a Gaussian prior, defined by px(xnd) = N (xnd;µ0, σ
2
0), the

solution to (3.14) is the scalar equivalent to (2.11), given by

x̂nd = ([σ2
0]

−1 + [qrnd]
−1)−1([σ2

0]
−1µ0 + [qrnd]

−1r̂nd). (3.16)

The solution to (3.15) is

qxnd = ([σ2
0]

−1 + [qrnd]
−1)−1. (3.17)

Laplacian Under a Laplacian prior, defined by

px(xnd) ∝ exp(−λ|xnd|), (3.18)

the solution to (3.14) is shown in (3.19), which is known as soft-thresholding.

x̂nd = sgn(r̂nd)max{0, |r̂nd| − λqrnd}, (3.19)

where sgn(·) is the sign function. Contrast (3.19) to the solution to (2.9) under a

vector-valued Laplacian prior, given in (2.19). In the scalar case, the exact solution

is given in a single step, while in the vector case only an approximate solution is

found through an MM procedure, which may require many iterations (each of which

requires a D ×D matrix inverse).

Since the second derivative of |x| is zero everywhere except the x = 0, for which

it is undefined, qxnd = qrnd except when xnd = 0, in which case we set qxnd = 0.

3.2.2 Output estimators: inference of ẑm

As shown in Section 2.2.1, we must compute

ẑm = argmax
zm∈RD

{
log pz | y,p(zm | ym, p̂m;Q

p
m)
}

(3.20)

= argmax
zm∈RD

{
log py | z(ym | zm)−

1

2
(zm − p̂m)

T[Qp
m]

−1(zm − p̂m)
}

(3.21)

29

and

Qz
m =

[
− ∂2

∂z2
m

{
log pz | y,p(ẑm | ym, p̂m;Q

p
m)
}]−1

. (3.22)

Unlike the simplifications resulting from diagonal Qr
n in Section 2.2.1, assuming diag-

onal Qp
m does not allow (3.21) to decouple into D scalar problems due to the form of

py | z. In Section 2.2.1, we used Newton’s method to solve (3.21). In MAP-SHyGAMP

we choose to use component-wise Newton’s method. We note that we could have

used component-wise Newton’s method in MAP-HyGAMP, but the output estimator

in MAP-HyGAMP is not a bottleneck compared to the linear steps and the input

estimators.

3.2.3 Parameter selection for MAP-SHyGAMP

The Laplacian prior in (3.18) requires the specification (i.e., tuning) of the scale

parameter λ, which controls the sparsity of the estimated weight vector. Traditionally,

λ is tuned via cross-validation, which involves constructing a set of hypotheses for λ

and then training a classifier for each one. We avoid this computationally intensive

procedure by leveraging the SURE-AMP framework from [26]. SURE-AMP adjusts

λ to minimize the Stein’s unbiased risk estimate (SURE) of the weight-vector MSE.

First, we give a brief description of SURE. Suppose that the signal of interest,

{xnd}, is a realization of i.i.d. random variables {xnd}, and that to estimate this

signal we are given access to AWGN corrupted observations

r̂nd = xnd +
√
qrwnd, (3.23)

with known qr > 0 and unit-variance AWGN {wnd}. For an arbitrary scalar estimation

procedure x̂nd = f(r̂nd, q
r;λ), the SURE estimate of the MSE(λ) ,

∑
n,d E{[̂xnd −

30

xnd]
2} is defined as

SURE(R̂;λ) ,
∑

n,d

(
g2
(
r̂nd, q

r;λ) + 2qrg′(r̂nd, q
r;λ) + qr

)
, (3.24)

for g(r̂nd, q
r;λ) , f(r̂nd, q

r;λ)− r̂nd. The key property of SURE is that

E
{
SURE(R̂;λ)

}
= MSE(λ), (3.25)

i.e., it is an unbiased estimate of the MSE that can be calculated with an arbitrary

estimation function f(·) and without any knowledge of the statistics of xnd.

In [26], it was noticed that the SURE assumptions are perfectly satisfied by the

AMP denoiser inputs, and thus it was proposed to set λ at the value minimizing

SURE(R̂;λ), and thereby approximately minimize MSE. Conveniently, the SURE

assumptions also match the scalar-variance SHyGAMP model from Section 3.1, and

thus we propose to do the same. In particular, we propose to set

λ̂ = argmin
λ

N∑

n=1

D∑

d=1

g2
(
r̂nd, q

r;λ) + 2qrg′(r̂nd, q
r;λ). (3.26)

Recall that (3.19) specifies f(·), after which it follows that

g2(r̂nd, q
r;λ) =

{
λ2(qr)2 if |r̂nd| > λqr

r̂2nd otherwise
(3.27)

g′(r̂nd, q
r;λ) =

{
−1 if |r̂nd| < λqr

0 otherwise
. (3.28)

Solving (3.26) for this g(·) is non-trivial because the cost in (3.26) is non-smooth and

has many local minima. A stochastic gradient descent approach was proposed in [26],

but its convergence speed is too slow to be practical.

We propose a novel approach to SURE minimization where the empirical average

in (3.26) is replaced by a statistical average, i.e.,

λ̂ = argmin
λ

E
{
g2
(
r̂, qr;λ) + 2qrg′(̂r, qr;λ)

}
, (3.29)

31

where the random variable r̂ is modeled as a Gaussian-Mixture (GM) whose param-

eters are fitted to {r̂nd}. As a result, the cost function in (3.29) is smooth and (we

conjecture) unimodal. In practice, we use the standard EM approach to GM fitting

and we find that relatively few (e.g., three) mixture terms suffice.

For the GM model pr(r) =
∑L

l=1 αlN (r; θl, σ
2
l), the cost in (3.29) reduces to

E{g2(r, qr;λ) + 2qrg′(r, qr;λ)} =
∫

pr(r)
(
g2(r, qr;λ) + 2qrg′(r, qr;λ)

)
dr (3.30)

=

∫ −λqr

−∞
pr(r)(λ

2(qr)2) dr +

∫ λqr

−λqr
pr(r)(r

2 − 2qr) dr +

∫ ∞

λqr
pr(r)(λ

2(qr)2) dr (3.31)

= Pr{r < −λqr}λ2(qr)2 +

∫ λqr

−λqr
r2pr(r) dr − 2qr Pr{|r| < λqr}+ Pr{r > λqr}λ2(qr)2

(3.32)

= λ2(qr)2
L∑

l=1

αlΦ

(−λqr − θl
σl

)
+

∫ λqr

−λqr
r2pr(r) dr

− 2qr

(
L∑

l=1

αlΦ

(
λqr − θl

σl

)
−

L∑

l=1

αlΦ

(−λqr − θl
σl

))

+ λ2(qr)2

(
1−

L∑

l=1

αlΦ

(
λqr − θl

σl

))
, (3.33)

where

∫ λqr

−λqr
r2pr(r) dr =

L∑

l=1

αl

∫ λqr

−λqr
r2N (r; θl, σ

2
l) dr (3.34)

=
L∑

l=1

αl

(
Φ(bl)− Φ(al)

)[
σ2
l

(
1 +

alφ(al)− blφ(bl)

Φ(bl)− Φ(al)
−
(
φ(al)− φ(bl)

Φ(bl)− Φ(al)

)2
)
+

(
θl + σl

φ(al)− φ(bl)

Φ(bl)− Φ(al)

)2]
, (3.35)

such that al , (−λqr− θl)/σl, and bl , (λqr− θl)/σl. Note that (3.35) can be derived

by applying the second moment of a truncated normal distribution to (3.34), which

requires the introduction of the scale term of
(
Φ(bl) − Φ(al)

)
in the sum to make it

a valid pdf.

32

We then propose to solve (3.29) using the bisection method. The use of bisection

follows from our conjecture that the cost in (3.29) is unimodal, implying that its

derivative w.r.t. λ has a unique root. Thus, we use bisection to find the root of

d
dλ

E{g2(r, qr;λ) + 2cg′(r, qr;λ)}. To find an expression for this derivative, we first

rewrite (3.31) as

E{g2(r, qr;λ) + 2qrg′(r, qr;λ)}

=

∫ −λqr

−∞
pr(r)(λ

2(qr)2) dr +

(∫ λqr

−∞
pr(r)(r

2 − 2qr) dr −
∫ −λqr

−∞
pr(r)(r

2 − 2qr) dr

)

+

∫ ∞

−∞
pr(r)λ

2(qr)2 dr −
∫ λqr

−∞
pr(r)λ

2(qr)2 dr, (3.36)

from which it follows that

d

dλ
E{g2(r, qr;λ) + 2qrg′(r, qr;λ)}

= −λ2(qr)3pr(−λqr) + 2λ(qr)2 Pr{r < −λqr}

+ qrpr(λq
r)(λ2(qr)2 − 2qr) + qrpr(−λqr)(λ2(qr)2 − 2qr)

+ 2λ(qr)2 − λ2(qr)3pr(λq
r)− 2λ(qr)2 Pr{r < λqr} (3.37)

= 2λ(qr)2
[
1− Pr{−λqr < r < λqr}

]
−
[
pr(λq

r) + pr(−λqr)
]
2(qr)2 (3.38)

= 2(qr)
3

2

[
λ
√
qr
(
1− Pr

{
−λ√qr < r√

qr
< λ
√
qr
})
−
(
pr/√qr(λ

√
qr) + pr/√qr(−λ

√
qr)
)]

.

(3.39)

Note that we compute this estimation of λ at each iteration of Algorithm 1, immedi-

ately before line 3, i.e., prior to applying the input estimator.

3.3 Multinomial logistic regression via MMSE-SHyGAMP

In order to perform multinomial logistic regression with MMSE-SHyGAMP, we

follow a similar procedure as with MMSE-HyGAMP, as detailed in Section 2.2.2.

33

Recall that, in SHyGAMP, we assume Qr
n and Qp

m are diagonal, and we refrain from

computing the off-diagonal terms in Qx
n and Qz

m.

3.3.1 Input estimators: inference of x̂n

As shown in Section 2.2.2, we must compute

x̂n = E{xn | rn = r̂n;Q
r
n} (3.40)

=

∫
RD xnpx(xn)N (xn; r̂n,Q

r
n) dxn∫

RD px(xn)N (xn; r̂n,Q
r
n) dxn

(3.41)

and

Qx
n = var {xn | rn = r̂n;Q

r
n} (3.42)

=

∫
RD xnx

T
npx(xn)N (xn; r̂n,Q

r
n) dxn∫

RD px(xn)N (xn; r̂n,Q
r
n) dxn

− x̂nx̂
T
n . (3.43)

Under the assumption of diagonal Qr
n and a separable prior, i.e., px(xn) =

∏D
d=1 px(xnd), the problems in (3.41) and (3.43) decouple into D scalar problems,

shown in (3.45) and (3.47):

x̂nd = E{xnd | rnd = r̂nd} (3.44)

=

∫
xnd px(xnd)N (xnd; r̂nd, q

r
nd) dxnd∫

px(xnd)N (xnd; r̂nd, qrnd) dxnd

(3.45)

and

qxnd = var{xnd | rnd = r̂nd} (3.46)

=

∫
x2
nd px(xnd)N (xnd; r̂nd, q

r
nd) dxnd∫

px(xnd)N (xnd; r̂nd, qrnd) dxnd

− x̂2
nd. (3.47)

We choose px to be a scalar-valued Bernoulli-Gaussian distribution given by

px(xnd) = λ0N (xnd;µ0, σ
2
0) + (1− λ0)δ(xnd), (3.48)

34

which yields the following closed-form solutions for x̂nd and qxnd:

x̂nd =
([σ2

0]
−1 + [qrnd]

−1)−1([σ2
0]

−1µ0 + [qrnd]
−1r̂nd)

1 + 1−λ0

λ0

N (0;r̂nd,q
r
nd)

N (0;µ0−r̂nd,σ
2

0
+qrnd)

(3.49)

and

qxnd =

(
([σ2

0]
−1 + [qrnd]

−1)−1([σ2
0]

−1µ0 + [qrnd]
−1r̂nd)

)2
+ ([σ2

0]
−1 + [qrnd]

−1)−1

1 + 1−λ0

λ0

N (0;r̂nd,q
r
nd)

N (0;µ0−r̂nd,σ
2

0
+qrnd)

− x̂2
nd.

(3.50)

The derivations for (3.49) and (3.50) are simply the scalar version of the derivations

for (2.43) and (2.45).

Note that (3.48) is not the same distribution as the multivariate Bernoulli-Gaussian

given in (2.35), but this distribution allows the D-dimensional input estimation prob-

lem to be broken up into D scalar estimation problems, with the trade-off of not

being able to enforce row-sparsity in X.

3.3.2 Output estimators: inference of ẑm

As shown in Section 2.2.2, we must compute

ẑm = E{zm | ym = ym,pm = p̂m;Q
p
m} (3.51)

=

∫
RD zmpy | z(ym | zm)N (zm; p̂m,Q

p
m) dzm∫

RD py | z(ym | zm)N (zm; p̂m,Q
p
m) dzm

(3.52)

and

Qz
m = var{zm | ym = ym,pm = p̂m;Q

p
m} (3.53)

=

∫
RD zmz

T
mpy | z(ym | zm)N (zm; p̂m,Q

p
m) dzm∫

RD py | z(ym | zm)N (zm; p̂m,Q
p
m) dzm

− ẑmẑ
T
m. (3.54)

Unfortunately, just as in the MAP case, assuming diagonal Qp
m does not allow (3.52)

and (3.54) to decouple into D scalar problems due to the form of py | z. However,

35

approximating Qp
m as diagonal and ignoring the off diagonal terms in Qz

m will make

(3.52) and (3.54) easier to approximate.

There are three specific quantities we must compute to evaluate (3.52) and (3.54).

Note that we ignore the subscript m for brevity for the remainder of this section.

First, we must compute the scaling constant C, i.e.,

C =

∫

z∈RD

py|z(y|z)
D∏

d=1

N (zd; p̂d, q
p

d) dz. (3.55)

Second, the posterior mean of zd, i.e.,

ẑd = C−1

∫

z∈RD

zd py|z(y|z)
D∏

d′=1

N (zd′ ; p̂d′ , q
p

d′) dz. (3.56)

And lastly, the posterior variance of zd, i.e.,

qzd = C−1

∫

z∈RD

z2d py|z(y|z)
D∏

d′=1

N (zd′ ; p̂d′ , q
p

d′) dz − (ẑd)
2. (3.57)

The integrals in (3.55), (3.56) and (3.57) are intractable, so we have derived several

approximate techniques to evaluate them, which we explain in the following subsec-

tions. Since all of the methods are only approximations, we will conclude this section

with a performance evaluation where we test their accuracy and runtime.

Testing model Before presenting our methods of computing (3.55), (3.56) and

(3.57), we will introduce our data generation model that we use for testing. Let our

MMSE estimator be denoted by ẑmmse = f(y, p̂,Qp). We generate data as follows.

1. Choose p̂ and Qp.

2. Generate ztrue ∼
∏D

d=1N (zd; p̂d, q
p

d).

3. Generate ytrue ∼ py | z(y | ztrue).

36

4. Compute ẑmmse = f(ytrue, p̂,Q
p).

5. Compute the mean squared error (MSE) via MSE = ‖ztrue − ẑmmse‖22.

Since we are averaging over z and y, we are approximating the Bayes’ Risk associated

with the MMSE estimator in (3.56).

If we use the trivial estimator ẑtriv = p̂ then our normalized MSE (defined by

MSE/qp) is 1. We can use this as a baseline: if our estimator achieves a normalized

MSE of more than one, then our estimator is doing more harm than good. In the

sequel, p̂ = [1, 0, 0, 0]T, Qp = qpID and D = 4. This represents a realistic and

commonly occurring state within the MMSE-SHyGAMP algorithm.

Numerical integration

Just as in HyGAMP, the most basic approach to evaluating the integrals in (3.55),

(3.56) and (3.57) is by numerical integration. As in MMSE-SHyGAMP, we use a

D-dimensional hyper-rectangular grid where each dimension d has J grid points uni-

formly spaced between [p̂d − α
√

qpd , p̂d + α
√

qpd]. We evaluated the MSE/qp over a

grid of J and α in order to gain insight on appropriate parameter values. Based on

the results shown in Figure 3.1, numerical integration should have an α of at least

3 and J greater than 6. The larger the scaling, the more points that are needed to

ensure accuracy, however, the number of integration points ought to be kept as small

as possible since this method requires JD points for the integration.

37

2 3 4 5 6 7 8
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

M
S

E
/q

p

α = 1
α = 2
α = 3
α = 4

J

Figure 3.1: MSE/qp vs the number of points per dimension J for different window sizes
α of the estimator shown in (3.56) using the numerical integration method described
in Section 3.3.2. Our test data is generated using the model described in Section 3.3.2
with qp = 1.

Importance sampling

We also revisit importance sampling for MMSE-SHyGAMP, which was previously

described in Section 2.2.2. Here, we use a new sampling distribution of

pz(z̃) =
D∏

d=1

N (z̃d; p̂d, q
p

d). (3.58)

We evaluated this estimator’s MSE/qp versus the number of sample points J for

various qp, as seen in Figure 3.2, and from this experiment we determined J = 1500

was an appropriate default.

38

10
1

10
2

10
3

10
4

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

M
S

E
/q

p

qp = 1e−4

qp = 1e−3

qp = 1e−2

qp = 1e−1

qp = 1e0
trivial

J

Figure 3.2: MSE/qp vs J for various qp using the importance sampling method de-
scribed in Section 3.3.2. Our test data is generated using the model described in
Section 3.3.2.

Taylor series approximation

In a different approach to computing (3.55), (3.56), and (3.57), we approximate

the multinomial logistic likelihood with a second order Taylor series about the point

z = p̂, which leads to closed-form solutions for the (approximate) posterior mean

and variance. We note that this method breaks down when elements in Qp & 10

because the quadratic approximation to the multinomial logistic likelihood becomes

poor away from p̂. Let f(z) , py | z(y | z). After the Taylor series approximation, the

39

general form of the posterior is

pz | y,p(z | y, p̂;Qp) ∝
(
f(p̂) +

D∑

j=1

∂f(p̂)

∂zj
(zj − p̂j)

+
1

2

D∑

j=1

D∑

k=1

∂2f(p̂)

∂zj∂zk
(zj − p̂j)(zk − p̂k)

)
×

D∏

d=1

N (zd; p̂d, q
p

d), (3.59)

where the first factor comes from the Taylor approximation to the likelihood and the

second factor is the prior distribution. The normalizing constant is then approximated

by

C ≈ f(p̂) +
1

2

D∑

d=1

∂2f(p̂)

∂z2d
qpd . (3.60)

The approximate posterior mean is given by

ẑi ≈ C−1

(
f(p̂) p̂i +

∂f(p̂)

∂zi
(qpi) +

1

2

D∑

j=1

∂2f(p̂)

∂zj
2 (p̂iq

p
j)

)
, (3.61)

and the approximate variance is given by

qzi ≈ C−1

(
f(p̂) (p̂2i + qpi) + 2

∂f(p̂)

∂zi
p̂iq

p
i +

1

2

∂2f(p̂)

∂zi
2 qpi (3q

p
i + p̂2i)

+
1

2

∂2f(p̂)

∂zi
2 (p̂2i + qpi)

D∑

j=1,6=i

qpj

)
− ẑ2i . (3.62)

The derivations for (3.60), (3.61) and (3.62) are in Appendix B.1.

Gaussian posterior approximation

In another method to approximate ẑ and Qz, we approximate (2.4) with a Gaus-

sian distribution. We aim to write

log pz | y,p(z | y, p̂;Qp) ≈ 1

2
zTWz + bTz + c (3.63)

=
1

2
(z +W−1b)TW (z +W−1b) + c− 1

2
bTWb, (3.64)

with negative definite W . The approximate posterior mean vector is given by ẑ =

−W−1b and the approximate posterior covariance matrix is given by Qz = [−W]−1.

40

The log of the posterior is

log pz | y,p(z | y, p̂;Qp) =
(

D∑

d=1

(
− 1

2qpd
(zd − p̂d)

2 +
1√
2πqpd

)
+ log

exp(zy)∑D
d=1 exp(zd)

)
. (3.65)

Notice all of the terms are already quadratic except for the last term, the log like-

lihood. After approximating f(z) , log
(

exp(zy)∑D
d=1

exp(zd))

)
with a second order Taylor

series about the point p̂, elements of W in are given by

Wij = 2
∂2f(p̂)

∂zi∂zj
if i 6= j

Wij = 2
∂2f(p̂)

∂zi∂zj
− 1

qpi
if i = j,

and elements of b in (3.63) are given by

bi =
p̂i
qpi
−

D∑

j=1

p̂j
∂2f(p̂)

∂zi∂zj
+

∂f(p̂)

∂zi
.

The derivations for W and b can be found in Appendix B.2. Similar to the Taylor

series approximation method, this method breaks down when elements in Qp are

relatively large.

Gaussian-mixture approximation

The final method we tried for evaluating (3.55), (3.56), and (3.57) is similar to

the Taylor series method but is based on Gaussian-mixtures (GM). It is known that

the logistic cdf 1/(1+ exp(−x)) is well approximated by a mixture of a few Gaussian

cdfs, which leads to an efficient method of approximating (3.52)-(3.54) in the case

of binary logistic regression (i.e., D = 2) [27]. We now develop an extension of this

method for the MLR case (i.e., D ≥ 2).

41

To facilitate the GM approximation, we work with the difference variables

δ
(y)
d ,

{
zy − zd d 6= y

zy d = y
. (3.66)

Their utility can be seen from the fact that (recalling (1.5))

py|z(y|z) =
1

1 +
∑

d 6=y exp(zd − zy)
(3.67)

=
1

1 +
∑

d 6=y exp(−δ
(y)
d)

, l(y)(δ(y)), (3.68)

which is smooth, positive, and bounded by 1, and strictly increasing in δ
(y)
d . Thus,1

for appropriately chosen {αl, µkl, σkl},

l(y)(δ) ≈
L∑

l=1

αl

∏

k 6=y

Φ

(
δk − µkl

σkl

)
, l̂(y)(δ), (3.69)

where σ
(k)
kl > 0, αl ≥ 0, and

∑
l αl = 1. In practice, the GM parameters {αl, µkl, σkl}

could be designed off-line to minimize, e.g., the total variation distance

supδ∈RD |l(y)(δ)− l̂(y)(δ)|.

Recall from (3.55)-(3.57) that our objective is to compute quantities of the form

∫

RD

(eT
dz)

i py|z(y|z)N (z; p̂,Qp) dz , S
(y)
di (3.70)

where i ∈ {0, 1, 2} and ed is the dth column of ID. To exploit (3.69), we change the

variable of integration to

δ(y) = T yz (3.71)

with

T y =



−Iy−1 1(y−1)×1 0(y−1)×(D−y)

01×(y−1) 1 01×(D−y)

0(D−y)×(y−1) 1(D−y)×1 −ID−y


 (3.72)

1Note that, since the role of y in l̂(y)(δ) is merely to ignore the yth component of the input δ, we

could have instead written l̂(y)(δ) = l̂(Jyδ) for y-invariant l̂(·) and Jy constructed by removing the
yth row from the identity matrix.

42

to get (since det(T y) = 1)

S
(y)
di =

∫

RD

(
eT
dT

−1
y δ
)i
l(y)(δ)N

(
δ;T yp̂,T yQ

pT T
y

)
dδ. (3.73)

Then, applying the approximation (3.69) and

N
(
δ;T yp̂,T yQ

pT T
y

)
= N

(
δy; p̂y, q

p
y

)
×
∏

k 6=y

N
(
δk; δy − p̂k, q

p

k

)
(3.74)

to (3.73), we find that

S
(y)
di ≈

L∑

l=1

αl

∫

R

N
(
δy; p̂y, q

p
y

)[∫

RD−1

(
eT
dT

−1
y δ
)i

×
∏

k 6=y

N
(
δk; δy − p̂k, q

p

k

)
Φ

(
δk − µkl

σkl

)
dδk

]
dδy. (3.75)

Noting that T−1
y = T y, we have

eT
dT

−1
y δ =

{
δy − δd d 6= y

δy d = y
. (3.76)

Thus, for a fixed value of δy = v, the inner integral in (3.75) can be expressed as a

linear combination of terms like

∫

R

δiN
(
δ; v − p̂, q

)
Φ

(
δ − µ

σ

)
dδ , Ti (3.77)

with i ∈ {0, 1, 2}, which can be computed in closed form. In particular, defining

x , v−p̂−µ√
σ2+q

, we have

T0 = Φ(x) (3.78)

T1 = (v − p̂)Φ(x) +
qφ(x)√
σ2 + q

(3.79)

T2 =
(T1)

2

Φ(x)
+ qΦ(x)− q2φ(x)

σ2 + q

(
x+

φ(x)

Φ(x)

)
(3.80)

which can be obtained using the results in [28, §3.9]. The outer integral in (3.75) can

then be approximated via numerical integration over a grid of J values. Next, we will

determine appropriate values of L and J .

43

Figure 3.3 shows the GM method’s MSE for one through four mixture components

when the number of integration points is fixed at seven. It can be seen that going from

one to two mixture components offers a large decreases in MSE, while two to three is

a modest decrease in MSE and three to four is almost no change in MSE. Figure 3.4

shows the estimator MSE for various numbers of numerical integration points when

the number of mixture components is fixed at two. We see decreases in MSE up

until approximately J = 6. Figure 3.5 shows the effect of the number of mixture

components on runtime. The runtime increases linearly with the number of mixture

components, however the marginal increase in runtime is small. Figure 3.6 shows the

effect on runtime as the number of numerical integration points increases. Similar to

the effect on runtime versus the number of mixture components, the runtime increases

linearly but the marginal increase is small.

Estimator performance comparison

We have now shown five different methods for computing the output estimator in

MMSE-SHyGAMP. In this section we will evaluate the accuracy and runtime of each

method.

Table 3.1 shows the default parameters for each method. To test the perfor-

mance of the estimators with their default parameters, each estimator implementa-

tion method’s MSE was evaluated using the procedure described in Section 3.3.2, for

values of qp between 10−3 and 103. The results of this test are in Figure 3.7.

Each data point in both experiments is an average of 5e6 trials. We can see

that the Taylor series and Gaussian posterior approximation methods break down

when qp is large. Furthermore, the numerical integration, importance sampling, and

44

1 2 3 4
0.882

0.884

0.886

0.888

0.89

0.892

0.894

L

M
S

E
/q

p

Figure 3.3: MSE/qp versus the number of GM Components L. Our test data is
generated using the model described in Section 3.3.2. qp = 1.

Gaussian-mixture methods are tightly bundled, but the Gaussian-mixture method is

slightly better for all qp, so we will look to runtime to see which method is the best.

Figure 3.8 plots average runtime, over 2000 trials and for fixed M = 500, versus

D for the different MMSE estimator implementation methods. From this figure, we

see the Taylor series method is the fastest, followed by the Gaussian-mixture method.

Since the Taylor series method is not robust to qp, and the Gaussian-mixture method

is accurate for all qp, we use the Gaussian-mixture method as our default for the

MMSE output estimator.

45

2 3 4 5 6 7 8 9 10
0.5

1

1.5

2

2.5

3

3.5

4

M
S

E
/q

p

J

Figure 3.4: MSE/qp versus the number of numerical integration points J in the
Gaussian mixture method. Our test data is generated using the model described in
Section 3.3.2. qp = 1.

3.3.3 Parameter selection for MMSE-SHyGAMP

Recall, in MMSE-SHyGAMP, we propose to use the Bernoulli-Gaussian prior in

(3.48), which has parameters λ0, µ0, and σ2
0. Rather than use cross-validation to tune

these parameters, we use the EM-GM-AMP framework described in [29] to tune the

parameters online2.

The parameters λ0 and σ0 require careful initialization for the EM learning pro-

cedure to work. We use the following approximate inequality to help set λ0:

M log2D & KD log2

(
N

K

)
, (3.81)

2We note that we choose to fix µ0 = 0.

46

1 2 3 4
0.32

0.33

0.34

0.35

0.36

0.37

0.38

L

ru
nt

im
e

Figure 3.5: Cumulative runtime versus the number of GM components L for 1000
trials.

where λ0 =
K
N
. Note that here, K is referring to the number of non-zero rows of the

“true” weight-matrix, and in practice is unknown. The left side of (3.81) is the entropy

of the training data; the labels contain log2D bits of information since we assume the

class labels have a uniform distribution and there are M of them, hence M log2D.

The right hand side of (3.81) comes from combinatorics. A simplified model is to

assume each weight vector contains K non-zero entries, leading to
(
N
K

)
combinations

in each of the D weight vectors, which is lower-bounded by
(
N
K

)K
. Since there are D

weight vectors, a lower bound on the total entropy is KD log2
(
N
K

)
, hence the right

side of (3.81). M , N and D are known, so we will choose K0 as one less than the

smallest value of K where (3.81) doesn’t hold and we require K0 ≤ N . Then, we will

set λ0 = min{M
N
, 1} and σ2

0 = ĉ2

Nλ0(σ̂2
a)

2 , where ĉ and σ̂2
a correspond to the norm of

47

2 3 4 5 6 7 8 9 10
0.3

0.32

0.34

0.36

0.38

0.4

0.42

ru
nt

im
e

J

Figure 3.6: Total runtime versus the number of numerical integration points J for
1000 trials.

the mean and cloud variance of each class (see the description of our data model in

Section 1.3.1), and are estimated from the training data.

3.4 Conclusion

In this Chapter we designed two new algorithms based on simplifications to the

Hybrid-GAMP algorithms for MAP and MMSE estimation. In particular, we ap-

proximated all covariance matrices as diagonal. This in part led to MAP-SHyGAMP

requiring a less complex implementation of the sparsity-promoting Laplacian prior.

Furthermore, the diagonal covariance approximation combined with a scalar vari-

ance approximation led to a SURE-based online parameter tuning technique for the

Laplacian prior in MAP-SHyGAMP.

48

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

qp

M
S

E
/q

p

Numerical Int.
Imp. Sampling
Taylor Series
Gaus. Post.
Gaus. Mixture
Trivial

Figure 3.7: MSE/qp vs qp of the estimator shown in (3.56) using the implementation
methods described in Section 3.3.2. The default parameters for each implementation
method (shown in Table 3.1) were used. The data was created with the standard
testing model described in Section 3.3.2. Each data point is an average of 5e6 trials.

Description Parameters Default Value
Numerical Integration α - scaling 4

J - grid size 7
Importance Sampling J - number of samples 1500
Taylor Series Approximation
to (2.5)

n/a n/a

Gaussian Approximation to
(2.4)

n/a n/a

Gaussian Mixture Approxima-
tion to (3.68)

L - number of mixture

components

2

J - grid size 7

Table 3.1: Summary of the default parameters of the estimator implementation tech-
niques in MMSE-SHyGAMP.

49

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

D

ru
nt

im
e

Numerical Int.
Imp. Sampling
Taylor Series
Gaus. Post.
Gaus. Mixture

Figure 3.8: Cumulative runtime of 500 realizations of each MMSE output estimation
method versus the dimensionality of the variables, D. Each point is an average of
T = 2000 trials.

50

In MMSE-SHyGAMP, we developed a Gaussian-mixture approach to implement-

ing the output estimator that was as accurate as other approaches but less compu-

tationally complex. Also, in MMSE-SHyGAMP, we tuned the parameters associated

with the Bernoulli-Gaussian prior online using EM.

51

Chapter 4: Classification Experiments

In this chapter we show how well our SHyGAMP algorithms perform relative to

two state-of-the-art sparse multinomial logistic regression algorithms: GLMNET [15]

and SBMLR [16]. Our performance metrics are classification error rate and runtime,

and we test the algorithms on both synthetic and real data. In all of our experiments,

we used ℓ1 regularization in MAP-SHyGAMP, and the Bernoulli-Gaussian prior in

MMSE-SHyGAMP. Both MAP and MMSE-SHyGAMP employed online parameter

tuning, as described in Section 3.2.3 and Section 3.3.3. GLMNET also used ℓ1 regu-

larization, but the weight of the regularizing term must be tuned via cross-validation;

we used 10-fold cross-validation over a grid of 100 lambda values. SBMLR can tune

its parameters online, thus did not require cross-validation. The runtimes we report

include the time spent performing cross-validation (if applicable).

4.1 Synthetic data

Data generation model In our synthetic data experiments, our data was gener-

ated according to the model specified in Section 1.3.1. Specifically, we generated D

different length-N , K-sparse, random, orthogonal class means of norm c whose non-

zero entries were determined by the K ×K unitary matrix, U , scaled by c. U was

generated by taking the singular value decomposition of an i.i.d. Gaussian random

52

matrix. We note that each class mean had the same support. Finally, Gaussian noise

with covariance matrix σ2
aI was added to the means generated from the previous steps

to obtain the rows of the feature matrix A. The parameters σ2
a and c were chosen to

meet a particular Bayes’ error rate (BER), based on (1.27).

Effects of M , N , K on performance We performed three synthetic data simu-

lations, where in each simulation one parameter of the data was varied while the rest

remained fixed. In the first simulation, we fixed D = 4, N = 10000, and K = 10 and

varied M from 100 to 5000. The classification error rates of the different algorithms

are shown in Fig. 4.1 and their runtimes are shown in Fig. 4.2. From these plots,

we can see that MMSE-SHyGAMP won in error, followed by MAP-SHyGAMP. Also,

MMSE-SHyGAMP and MAP-SHyGAMP won in runtime (their times are very close)

as M grew large.

In the second simulation, we fixed D = 4, M = 200, and K = 10 while we

varied N from 103 to 105.5 ≈ 320000. The classification error rates of the different

algorithms are shown in Fig. 4.3 and their runtimes are shown in Fig. 4.4. From

these plots, we can see that MAP-SHyGAMP always beat SBMLR and GLMNET

in error, while MMSE-SHyGAMP sometimes beat MAP-SHyGAMP. Also, for large

N , MAP-SHyGAMP was generally the fastest algorithm, only occasionally losing to

MMSE-SHyGAMP.

In the third and final simulation, we fixed D = 4, M = 300, and N = 30000 while

we varied K from 5 to 30. The classification error rates of the different algorithms

are shown in Fig. 4.5 and their runtimes are shown in Fig. 4.6. From these plots,

we can see that MMSE-SHyGAMP won in error, followed by MAP-SHyGAMP. Also,

53

MAP-SHyGAMP won in runtime, followed by MMSE-SHyGAMP. Lastly, all of the

algorithms’ runtimes were reasonably invariant to K.

10
2

10
3

0.1

0.12

0.14

0.16

0.18

0.2

MMSE SHyGAMP
MAP SHyGAMP
SBMLR
GLMNET
BER

er
ro
r

M

Figure 4.1: Classification error rate vs M for D = 4, N = 10000, and K = 10. Each
data point is an average of 12 trials.

4.2 fMRI Multi-Voxel Pattern Analysis

The next experiment was performed on the Haxby dataset [2]. This dataset con-

sists of feature/label pairs where the features are fMRI brain images (with N = 31398

voxels per image) and the labels are cognitive tasks. The goal is to perform feature

selection, i.e., determine which areas if the brain can be used to predict each cognitive

task. In this application, classification error rate can be used as a metric to determine

if the learned brain-areas yield accurate task predictions.

54

10
2

10
3

10
0

10
1

10
2

10
3

MMSE SHyGAMP
MAP SHyGAMP
SBMLR
GLMNET

ru
n
ti
m
e

M

Figure 4.2: Algorithm runtime vs M for D = 4, N = 10000, and K = 10. Each data
point is an average of 12 trials.

Each task corresponds to the human subject looking at a particular class of object

(e.g., cat, house, chair). The dataset includes 120 fMRI images per object class, for a

maximum of M = 840. We wish to test our classification algorithms on this dataset

because the number of potentially discriminating features far outnumbers the number

of training samples.

In our experiment, for a particular subset of classes, we performed 25 trials, where

in each trial we selected 10% of the data at random to be used as test data and used

the other 90% as training data. The average test-error-rate and runtime for two

different subsets of classes are shown in Table 4.1. From this table, we can see that

GLMNET was best w.r.t. error, followed by SBMLR, then MAP-SHyGAMP, and

lastly MMSE-SHyGAMP. However, we urge caution in interpreting the results in

55

10
3

10
4

10
5

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

N

MMSE SHyGAMP
MAP SHyGAMP
SBMLR
GLMNET
BER

er
ro
r

Figure 4.3: Classification error rate vs N for D = 4, M = 200, and K = 10. Each
data point is an average of 12 trials.

Table 4.1. The number of test samples is very few, and so the test-error-rate estimate

has a very high variance. In any case, we do note that the runtimes of MMSE and

MAP SHyGAMP were much faster than those of the competitors.

4.3 Text mining

Our next experiment is intended to test our algorithms on a dataset which is

very high dimensional, has a large number of classes, and a large number of training

samples. The RCV1 dataset [4] provides us with this opportunity. In this dataset,

classes are news article categories and features are word frequency per article. We

used a subset of the first 25 classes of the total dataset, with dimensions N = 47236,

Mtrain = 14147, Mtest = 469571, and D = 25.

56

10
3

10
4

10
5

10
−1

10
0

10
1

10
2

10
3

N

MMSE SHyGAMP
MAP SHyGAMP
SBMLR
GLMNET

ru
n
ti
m
e

Figure 4.4: Algorithm runtime vs N for D = 4, M = 200, and K = 10. Each data
point is an average of 12 trials.

This dataset is sparse and has non-zero-mean features, which provides an addi-

tional complication for algorithms such as SHyGAMP, which assume approximately

i.i.d. zero-mean A. For example, due to memory limitations we could not z-score

the training data. However, other algorithms had even more difficulty. For exam-

ple, GLMNET diverged, which we conjecture was due to the sparsity in the feature

matrix.

In this experiment, we looked at the test error rate vs runtime for MMSE-SHyGAMP,

MAP-SHyGAMP and SBMLR. We did not run GLMNET on this dataset. For the

algorithms under test, we plot their test error rate vs runtime in Fig. 4.7. From this

plot, we can see that MAP-SHyGAMP converged the fastest, followed by MMSE-

SHyGAMP, and SBMLR was the slowest.

57

5 10 15 20 25 30

0.1

0.12

0.14

0.16

0.18

0.2

0.22

K

MMSE SHyGAMP
MAP SHyGAMP
SBMLR
GLMNET
BER

er
ro
r

Figure 4.5: Classification error rate vs K for D = 4, M = 300, and N = 30000. Each
data point is an average of 12 trials.

4.4 Micro-array gene expression

Next, we looked at micro-array gene expression data. This dataset was taken

from [5] and consists of M = 180 samples each consisting of N = 54613 micro-array

gene expression values. The samples are split into D = 4 different classes: one control

class and three classes representing different types of glioma.

Our classification experiment on this dataset consisted of 100 trials where in each

trial we held out 25% of the data at random to be used for testing and used the

other 75% as training data. The average classification error rates, runtimes, and

estimated sparsities over the 100 trials are shown in Table 4.2. From this data, we

see MMSE-SHyGAMP was the fastest, but the worst in error. MAP-SHyGAMP

58

5 10 15 20 25 30
10

0

10
1

10
2

K

MMSE SHyGAMP
MAP SHyGAMP
SBMLR
GLMNET

ru
n
ti
m
e

Figure 4.6: Algorithm runtime vs K for D = 4, M = 300, and N = 30000. Each
data point is an average of 12 trials.

was the second fastest and the best in error. GLMNET learned a sparser solution

than MAP-SHyGAMP, and MAP-SHyGAMP and SBMLR agreed very closely in

estimated sparsity. However, we urge caution in interpreting the results in Table 4.2.

The number of test samples is very few, and so the test-error-rate estimate has a very

high variance (note the test-error-rate standard deviation in Table 4.2).

4.5 Conclusion

In conclusion, we have demonstrated that MMSE and MAP-SHyGAMP are com-

petitive with the algorithms SBMLR and GLMNET w.r.t. both error and runtime, on

both synthetic and real data. Furthermore, we have seen that the online parameter

59

Five Class Seven Class
Algorithm Error (SD) % Runtime (s) Error (SD) % Runtime (s)
MMSE SHyGAMP 9.8 (4.5) 12.35 16.2 (4.6) 16.99
MAP SHyGAMP 4.9 (3.1) 18.95 10.9 (3.2) 26.93
SBMLR 4.4 (2.9) 33.90 10.1 (2.6) 83.83
GLMNET 2.7 (2.3) 93.48 6.7 (3.0) 213.78

Table 4.1: Average classification results and runtimes on the Haxby dataset, for 25
trials. The number in parenthesis is the standard deviation of the test-error-rate. The
classes used in the five-class case were ‘cat’, ‘house’, ‘shoe’, ‘face’, and ‘chair’. The
classes used in the seven-class case were ‘cat’, ‘house’, ‘shoe’, ‘face’, ‘chair’, ‘scissors’,
and ‘bottle’.

Algorithm Error (SD) (%) Runtime (s) K̂99 K̂ℓ0

MMSE SHyGAMP 34.0 (7.1) 8.36 10.60 218 452.00
MAP SHyGAMP 31.5 (7.1) 14.39 36.94 57.86
SBMLR 31.8 (6.9) 20.69 39.39 58.79
GLMNET 32.5 (6.5) 29.56 23.17 35.48

Table 4.2: Classification results, runtimes, and estimated sparsities on the Sun
dataset. The number in parenthesis indicates the standard deviation of the test-
error-rate. Each data point is an average of 100 trials. K̂99 indicates the estimated
sparsity by taking the number of weights which make up 99% of the Frobenius norm
of X̂. K̂ℓ0 is the number of non-zero coefficients in X̂.

tuning methods employed by MMSE and MAP-SHyGAMP are both computationally

efficient and effective at minimizing the test error rate.

60

10
1

10
2

10
3

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

MMSE SHyGAMP
MAP SHyGAMP
SBMLR

te
st

er
ro
r
ra
te

runtime

Figure 4.7: Test-error-rate vs runtime on the RCV1 dataset.

61

Chapter 5: Conclusions

In this thesis, we presented a novel approach to multi-class linear classification by

applying HyGAMP to both an MMSE and a MAP formulation of the multinomial

logistic regression problem. However, in order to make our algorithms competitive

with state-of-the-art algorithms, we had to approximate HyGAMP, which resulted

in Simplified-HyGAMP (SHyGAMP). In SHyGAMP, we were able to use existing

methods based on EM and SURE to tune parameters of our model, which let us avoid

an expensive cross-validation tuning procedure. Lastly, we compared our algorithms

to two state-of-the-art multinomial logistic regression algorithms and saw ours were

very competitive; in almost every case our algorithms had a lower runtime, and

in most cases our algorithms achieved nearly the same or better error rates as the

competition.

62

Appendix A: Derivation for the Bayes’ error rate

This appendix contains the derivation for the Bayes’ error rate (BER) (denoted

by εB) given in (1.27). The BER is the probability of error that is achieved with

Bayes’ optimal classifiers. We are interested in this quantity given the parameters of

our data model, c and σ2
a. Recall z = XTa. Let X = 1

σ2
a
[µ1, ...,µD] (i.e., our weight

vector xd = 1
σ2
a
µd for all d) in accordance with (1.32)). Then, the joint distribution

of z | y is

N (z;XTµy,X
Tσ2

aIDX). (A.1)

Due to the equal length and mutually orthogonal class mean assumption, z | y has

a mean containing all zeros except for c2

σ2
a
in the yth position and covariance matrix

c2

σ2
a
ID, which is invariant to y.

The average probability of classification error is

εB = Pr(ŷ(a) 6= y) (A.2)

=
D∑

d=1

Pr(ŷ(a) 6= d | y = d)Pr(y = d) (A.3)

=
1

D

D∑

d=1

Pr(ŷ(a) 6= d | y = d)︸ ︷︷ ︸
,εB | y=d

(A.4)

63

The error probability conditioned on y can be written as

εB | (y = d) = 1− Pr(ŷ(a) = d | y = d) (A.5)

= 1− Pr(d = argmax
d′

zd′ | y = d) (A.6)

= 1− Pr(zd > z1, zd > z2, ..., zd > zd−1, zd > zd+1, ..., zd > zD | y = d)
(A.7)

The events {zd > zd′}d′ 6=d in the joint probability expression above are not independent

because they all involve the random variable zd. We break the dependence among

terms by conditioning on zd and averaging over its distribution.

εB | (y = d) =

1−
∫

pzd(z)Pr(z > z1, z > z2, ..., z > zd−1, z > zd+1, ..., z > zD | y = d) dz (A.8)

By conditioning on y = d, the random variables {zd′}d′ 6=d are distributed i.i.d.

N (0, c2/σ2
a) and thus

εB | (y = d) = 1−
∫

pzd(z)︸ ︷︷ ︸
N (z;c2/σ2

a,c
2/σ2

a)

D∏

d′=1,6=d

Pr(z > zd′ | y = d)︸ ︷︷ ︸
Φ(z

c/σa
)

dz (A.9)

This simplifies to

εB | (y = d) = 1−
∫
N (z;

c

σa

, 1)Φ(z)D−1 dz (A.10)

Finally, since the previous expression is independent of y we have εB = εB | (y = d).

64

Appendix B: Derivations for Output Estimator

Approximations in MMSE-SHyGAMP

B.1 Derivation for the Taylor series approximation

This appendix contains the derivation for (3.60), (3.61) and (3.62). Let f(z) ,

exp(zy)∑D
d=1

exp(zd)
. By approximating f(z) with a second order Taylor series, we obtain

pz|y,p(z | y, p̂;Qp) ≈ C−1

(
f(p̂) +

D∑

j=1

∂f(p̂)

∂zj
(zj − p̂j)

+
1

2

D∑

j=1

D∑

k=1

∂2f(p̂)

∂zj∂zk
(zj − p̂j)(zk − p̂k)

) D∏

d=1

N (zd; p̂d, q
p

d) (B.1)

The terms in the gradient of f(·) are given by:

∂f(z)

∂zy
=

exp(zy)
∑D

d=1,6=y exp(zd)

(
∑D

d=1 exp(zd))
2

(B.2)

∂f(z)

∂zi 6=y

=
− exp(zy + zi)

(
∑D

d=1 exp(zd))
2

(B.3)

And the terms in the Hessian that are needed in the final computations are given by:

∂2f(z)

∂z2y
=

exp(zy)
∑D

d=1,6=y exp(zd)(
∑D

d=1,6=y exp(zd)− exp(zy))

(
∑D

d=1 exp(zd))
3

(B.4)

∂2f(z)

∂z2i 6=y

=
− exp(zy + zi)(

∑D
d=1,6=i exp(zd)− exp(zy))

(
∑D

d=1 exp(zd))
3

(B.5)

(It will be seen later why the off-diagonal terms of the Hessian are not needed).

65

In order to compute the scale constant C the following integrals must be evaluated

(by distributing the product of normal distributions over the sum in (B.1)): the

constant term distributed over the multivariate normal:

∫

z

f(p̂)
D∏

d=1

N (zd; p̂d, q
p

d) dz (B.6)

= f(p̂); (B.7)

the linear terms:

∫

z

D∑

j=1

∂f(p̂)

∂zj
(zj − p̂j)

D∏

d=1

N (zd; p̂d, q
p

d) dz (B.8)

=
D∑

j=1

∂f(p̂)

∂zj

∫

z

(zj − p̂j)
D∏

d=1

N (zd; p̂d, q
p

d) dz (B.9)

=
D∑

j=1

∂f(p̂)

∂zj

∫

zj

(zj − p̂j)N (zj; p̂j , q
p
j) dzj

∫

z\zj

D∏

d=1,6=j

N (zd; p̂d, q
p

d) dz \ zj (B.10)

= 0 since the first central moment of a Gaussian is 0; (B.11)

and lastly the quadratic terms:

∫

z

1

2

D∑

j=1

D∑

k=1

∂2f(p̂)

∂zj∂zk
(zj − p̂j)(zk − p̂k)

D∏

d=1

N (zd; p̂d, q
p

d) dz (B.12)

=
1

2

D∑

j=1

D∑

k=1

∂2f(p̂)

∂zj∂zk

∫

z

(zj − p̂j)(zk − p̂k)
D∏

d=1

N (zd; p̂d, q
p

d) dz (B.13)

=
1

2

∑

d

∂2f(p̂)

∂z2d
qpd (B.14)

since when j 6= k the integral equals 0.

Given (B.7), (B.11), and (B.14), the normalizing constant can be approximated by:

C ≈ f(p̂) +
1

2

D∑

d=1

∂2f(p̂)

∂z2d
qpd . (B.15)

66

Now we must compute the components of the first moment. The constant term is

∫

z

zif(p̂)
D∏

d=1

N (zd; p̂d, q
p

d) dz (B.16)

= f(p̂) p̂i. (B.17)

The linear terms are

∫

z

zi

D∑

j=1

∂f(p̂)

∂zj
(zj − p̂j)

D∏

d=1

N (zd; p̂d, q
p

d) dz (B.18)

=

∫

z

zi
∂f(p̂)

∂zi
(zi − p̂i)

D∏

d=1

N (zd; p̂d, q
p

d) dz+

∫

z

zi

D∑

j=1,6=i

∂f(p̂)

∂zj
(zj − p̂j)

D∏

d=1

N (zd; p̂d, q
p

d) dz (B.19)

=
∂f(p̂)

∂zi

∫

z

(z2i − zip̂i)
D∏

d=1

N (zd; p̂d, q
p

d) dz+

∫

z

zi

D∑

j=1,6=i

∂f(p̂)

∂zj
(zj − p̂j)

D∏

d=1

N (zd; p̂d, q
p

d) dz (B.20)

=
∂f(p̂)

∂zi
(qpi + p̂2i − p̂2i)+

D∑

j=1,6=i

∂f(p̂)

∂zj

∫

zi

ziN (zi; p̂i, q
p
i) dzi

∫

z\zi
(zj − p̂j)

D∏

d=1,6=i

N (zd; p̂d, q
p

d) dz \ zi

(B.21)

=
∂f(p̂)

∂zi
(qpi)+

D∑

j=1,6=i

∂f(p̂)

∂zj
p̂i

∫

zj

(zj−p̂j)N (zj; p̂j, q
p
j) dzj

∫

z\{zi,zj}

D∏

d=1,6=i,j

N (zd; p̂d, q
p

d) dz \ {zi,zj}

(B.22)

=
∂f(p̂)

∂zi
(qpi). (B.23)

67

And finally, the quadratic terms are

∫

z

zi
1

2

D∑

j=1

D∑

k=1

∂2f(p̂)

∂zj∂zk
(zj − p̂j)(zk − p̂k)

D∏

d=1

N (zd; p̂d, q
p

d) dz (B.24)

=
1

2

D∑

j=1

D∑

k=1

∂2f(p̂)

∂zj∂zk

∫

z

zi(zj − p̂j)(zk − p̂k)
D∏

d=1

N (zd; p̂d, q
p

d) dz (B.25)

= 0 when j 6= k

when j = k = i

=
1

2

∂2f(p̂)

∂zi
2

∫

z

(z3i − 2p̂iz
2
i + p̂2i zi)

D∏

d=1

N (zd; p̂d, q
p

d) dz (B.26)

=
1

2

∂2f(p̂)

∂zi
2 (p̂3i + 3p̂iq

p
i − 2p̂i(p̂

2
i + qpi) + p̂3i) (B.27)

=
1

2

∂2f(p̂)

∂zi
2 (p̂iq

p
i) (B.28)

else when j = k; j, k 6= i

=
1

2

∑

j 6=i

∂2f(p̂)

∂zj
2

∫

z

zi(z
2
j − 2zj p̂j + p̂2j)

D∏

d=1

N (zd; p̂d, q
p

d) dz (B.29)

=
1

2

∑

j 6=i

∂2f(p̂)

∂zj
2 (p̂i(p̂

2
j + qpj − 2p̂2j + p̂2j)) (B.30)

=
1

2

∑

j 6=i

∂2f(p̂)

∂zj
2 (p̂iq

p
j) (B.31)

putting the two together, the first moment of the quadratic term is

=
1

2

D∑

j=1

∂2f(p̂)

∂zj
2 (p̂iq

p
j). (B.32)

Given (B.17), (B.23), and (B.32), the approximate mean of the posterior is now given

by

ẑi ≈ C−1

(
f(p̂) p̂i +

∂f(p̂)

∂zi
(qpi) +

1

2

D∑

j=1

∂2f(p̂)

∂zj
2 (p̂iq

p
j)

)
. (B.33)

68

Lastly, the components of the second moment must be computed. The constant

term is

∫

z

z2i f(p̂)
D∏

d=1

N (zd; p̂d, q
p

d) dz (B.34)

= f(p̂) (p̂2i + qpi). (B.35)

The linear terms are

∫

z

z2i

D∑

j=1

∂f(p̂)

∂zj
(zj − p̂j)

D∏

d=1

N (zd; p̂d, q
p

d) dz (B.36)

=

∫

z

z2i
∂f(p̂)

∂zi
(zi − p̂i)

D∏

d=1

N (zd; p̂d, q
p

d) dz+

∫

z

z2i

D∑

j=1,6=i

∂f(p̂)

∂zj
(zj − p̂j)

D∏

d=1

N (zd; p̂d, q
p

d) dz (B.37)

= 2
∂f(p̂)

∂zi
p̂iq

p
i . (B.38)

69

And the quadratic terms are

∫

z

z2i
1

2

D∑

j=1

D∑

k=1

∂2f(p̂)

∂zj∂zk
(zj − p̂j)(zk − p̂k)

D∏

d=1

N (zd; p̂d, q
p

d) dz (B.39)

=
1

2

D∑

j=1

D∑

k=1

∂2f(p̂)

∂zj∂zk

∫

z

z2i (zj − p̂j)(zk − p̂k)
D∏

d=1

N (zd; p̂d, q
p

d) dz (B.40)

= 0 when j 6= k

if i = j = k

=
1

2

∂2f(p̂)

∂zi
2

∫

z

(z4i − 2z3i p̂i + p̂iz
2
i)

D∏

d=1

N (zd; p̂d, q
p

d) dz (B.41)

=
1

2

∂2f(p̂)

∂zi
2 qpi (3q

p
i + p̂2i) (B.42)

if i 6= j; j = k

=
1

2

∑

j 6=i

∂2f(p̂)

∂zj
2

∫

z

z2i (zj − p̂j)
2

D∏

d=1

N (zd; p̂d, q
p

d) dz (B.43)

=
1

2

∂2f(p̂)

∂zj
2 (p̂2i + qpi)

∑

j 6=i

qpj . (B.44)

So, given (B.35), (B.38), and (B.44), the approximate variance is given by

qzi ≈ C−1

(
f(p̂) (p̂2i + qpi) + 2

∂f(p̂)

∂zi
p̂iq

p
i +

1

2

∂2f(p̂)

∂zi
2 qpi (3q

p
i + p̂2i)

+
1

2

∂2f(p̂)

∂zj
2 (p̂2i + qpi)

D∑

j=1,6=i

qpj

)
− ẑ2i . (B.45)

B.2 Derivation for the Gaussian posterior approximation

This appendix contains the derivation for the results in Section 3.3.2 in which we

approximate the approximate posterior given in (2.4) with a Gaussian distribution.

70

We will rewrite the approximate posterior as

pz | y,p(z | y, p̂;Qp) = exp(log pz | y,p(z | y, p̂)) (B.46)

= exp

(
D∑

d=1

(
− 1

2qpd
(zd−p̂d)2+

1√
2πqpd

)
+log

exp(zy)∑D
d=1 exp(zd)

)
.

(B.47)

Constants in the exponent can be ignored because they do not affect the mean or vari-

ance. The last term in the exponent, f(z) , log exp(zy)∑D
d=1

exp(zd)
, must be approximated

with a quadratic. The terms in the gradient are given by:

∂f(z)

∂zy
= 1− exp(zy)∑D

d=1 exp(zd)
(B.48)

∂f(z)

∂zi 6=y

= − exp(zi)∑D
d=1 exp(zd)

(B.49)

And the terms in the Hessian are given by:

∂2f(z)

∂z2i
= −

exp(zi)
∑D

d=1,6=i exp(zd)

(
∑D

d=1 exp(zd))
2

(B.50)

∂2f(z)

∂zi∂zj
=

exp(zi + zj)

(
∑D

d=1 exp(zd))
2

(B.51)

The approximate posterior is now further approximated by

pz | y,p(z | y, p̂;Qp) ≈ C−1 exp

(
D∑

i=1

− 1

2qpi
(zi − p̂i)

2 + f(p̂) +
D∑

i=1

∂f(p̂)

∂zi
(zi − p̂i)

+
1

2

D∑

j,k=1

∂2f(p̂)

∂zj∂zk
(zj − p̂j)(zk − p̂k)

)
, (B.52)

where C−1 is an arbitrary normalizing constant. Equation (B.52) can be simplified

by multiplying out terms and absorbing constants into C−1.

pz | y,p(z | y, p̂;Qp) ≈ C−1 exp

(
D∑

i=1

− 1

2qpi
z2i +

D∑

i=1

p̂i
qpi
zi +

D∑

i=1

∂f(p̂)

∂zi
zi

+
1

2

D∑

j,k=1

∂2f(p̂)

∂zj∂zk
(zjzk − zj p̂k − zkp̂j)

)
(B.53)

71

After grouping like variables the equations for A and b are

Aij =
∂2f(p̂)

∂zi∂zj
− 1

qpi
if i = j (B.54)

Aij =
∂2f(p̂)

∂zi∂zj
if i 6= j (B.55)

bi =
p̂i
qpi
−

D∑

j=1

p̂j
∂2f(p̂)

∂zi∂zj
+

∂f(p̂)

∂zi
. (B.56)

72

Bibliography

[1] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, New York,
2007.

[2] J. Haxby, M. Gobbini, M. Furey, A. Ishai, J. Schouten, and P. Pietrini. Dis-
tributed and overlapping representations of faces and objects in ventral temporal
cortex. Science, 293:2425–2430, 2001.

[3] S. Ryali, K. Supekar, D. A. Abrams, and V. Menon. Sparse logistic regression
for whole-brain classification of fmri data. NeuroImage, 51:752–764, 2010.

[4] D. Lewis, Y. Yang, T. Rose, and F. Li. RCV1: A new benchmark collection for
text categorization research. Journal of Machine Learning Research, 5:361–397,
April 2004.

[5] H. Sun, A. Hui, Q. Su, A. Vortmeyer, Y. Kotliarov, S. Pastorino, A. Passaniti,
J. Menon, J. Walling, R. Bailey, M. Rosenblum, T. Mikkelsen, and H. Fine.
Neuronal and glioma-derived stem cell factor induces angiogenesis within the
brain. Cancer Cell, 9:287–300, 2006.

[6] E. P. Xing, M. I. Jordan, and R. M. Karp. Feature selection for high-dimensional
genomic microarray data. Intl Wkshp. Mach. Learn., pages 601–608, 2001.

[7] J. J. Hull. A database for handwritten text recognition research. IEEE

Trans. Pattern Anal. Mach. Intell., 16(5):550–554, 1994. Data taken from
http://www.gaussianprocess.org/gpml/data/.

[8] H. V. Poor. An Introduction to Signal Detection and Estimation. Springer, New
York, 2nd edition, 1994.

[9] B. Krishnapuram, L. Carin, M. Figueiredo, and A. Hartemink. Sparse multino-
mial logistic regression: Fast algorithms and generalization bounds. IEEE Trans.

Pattern Anal. Mach. Intell., 27(6):957–968, June 2005.

[10] A. Papoulis. Probability, Random Variables, and Stochastic Processes. McGraw-
Hill, New York, 3rd edition, 1991.

73

[11] Sundeep Rangan. Generalized approximate message passing for estimation with
random linear mixing. arXiv:1010.5141, October 2010.

[12] Sundeep Rangan, Alyson K. Fletcher, Vivek K Goyal, and Philip Schniter.
Hybrid approximate message passing with applications to structured sparsity.
arXiv:1111.2581, November 2011.

[13] M. E. Tipping. Sparse Bayesian learning and the relevance vector machine. J.

Mach. Learn. Res., 1:211–244, 2001.

[14] A. Genkin, D. D. Lewis, and D. Madigan. Large-scale Bayesian logistic regression
for text categorization. Technometrics, 49(3):291–304, August 2007.

[15] J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized
linear models via coordinate descent. J. Statst. Softw., 33(1):1–22, January 2010.

[16] G. C. Cawley, N. L. C. Talbot, and M. Girolami. Sparse multinomial logistic
regression via Bayesian L1 regularisation. In Proc. Neural Inform. Process. Syst.

Conf., pages 209–216, 2007.

[17] L. Meier, S. van de Geer, and P. Bühlmann. The group lasso for logistic regres-
sion. J. Roy. Statist. Soc. B, 70:53–71, 2008.

[18] Yves Grandvalet. Least absolute shrinkage is equivalent to quadratic penaliza-
tion. In Proc. Int. Conf. Artific. Neural Netw., pages 201–206, 1998.

[19] David J. C. MacKay. The evidence framework applied to classification networks.
Neural Comput., 4:720–736, 1992.

[20] Justin Ziniel, Philip Schniter, and P. Sederberg. Binary classification and fea-
ture selection via generalized approximate message passing. IEEE Trans. Signal

Process., 63(8):2020–2032, 2015.

[21] Robert Tibshirani. Regression shrinkage and selection via the lasso. J. Roy.

Statist. Soc. B, 58(1):267–288, 1996.

[22] D. R. Hunter and K. Lange. A tutorial on MM algorithms. The American

Statistician, 58(1):30–37, 2004.

[23] D. Hunter and R. Li. Variable selection using MM algorithms. Ann. Statist.,
33(4):1617–1642, 2005.

[24] D. Bertsekas. Nonlinear Programming. Athena Scientific, 2nd edition, 1999.

[25] R. Bracewell. The Fourier Transform and Its Applications. McGraw-Hill, 3rd
edition, 1999.

74

[26] Ali Mousavi, Arian Maleki, and Richard G. Baraniuk. Parameterless, optimal
approximate message passing. arXiv:1311.0035, November 2013.

[27] L. A. Stefanski. A normal scale mixture representation of the logistic distribution.
Stats. Prob. Letters, 11(1):69–70, 1991.

[28] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learn-

ing. MIT Press, Cambridge, MA, 2006.

[29] J. P. Vila and P. Schniter. Expectation-maximization Gaussian-mixture approx-
imate message passing. IEEE Trans. Signal Process., 61(19):4658–4672, Oct.
2013.

75

	Abstract
	Acknowledgments
	Vita
	List of Figures
	List of Tables
	Introduction
	Linear classification
	Designing the weight matrix
	Assumed data model
	Definition
	Bayes' optimal classifier
	Justification for the multinomial logistic likelihood

	Application of approximate message passing algorithms
	Prior work
	Contributions
	Thesis outline

	Hybrid-GAMP for Multinomial Logistic Regression
	Background on Hybrid-GAMP
	Hybrid-GAMP for multinomial logistic regression
	Multinomial logistic regression via MAP-HyGAMP
	Multinomial logistic regression via MMSE-HyGAMP

	Conclusion

	Simplified Hybrid-GAMP for Multinomial Logistic Regression
	Scalar variance SHyGAMP
	Multinomial logistic regression via MAP-SHyGAMP
	Input estimators: inference of bold0mu mumu xxxxxx"0362bold0mu mumu xxxxxxn
	Output estimators: inference of bold0mu mumu zzzzzz"0362bold0mu mumu zzzzzzm
	Parameter selection for MAP-SHyGAMP

	Multinomial logistic regression via MMSE-SHyGAMP
	Input estimators: inference of bold0mu mumu xxxxxx"0362bold0mu mumu xxxxxxn
	Output estimators: inference of bold0mu mumu zzzzzz"0362bold0mu mumu zzzzzzm
	Parameter selection for MMSE-SHyGAMP

	Conclusion

	Classification Experiments
	Synthetic data
	fMRI Multi-Voxel Pattern Analysis
	Text mining
	Micro-array gene expression
	Conclusion

	Conclusions
	Appendices
	Derivation for the Bayes' error rate
	Derivations for Output Estimator Approximations in MMSE-SHyGAMP
	Derivation for the Taylor series approximation
	Derivation for the Gaussian posterior approximation

	Bibliography

