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ABSTRACT

This thesis deals with the detection of differential unitary-space time modulation
(DUST) in fast-fading channels. In a fading environment, the standard single-symbol
maximum likelihood (ML) detection of DUST yields an error floor in the BER-versus-
SNR plot. This is due to the incorrect assumption of a constant channel over suc-
cessive matrix-symbol transmissions. Assuming we know the correlation of channel
fades, we design multiple-symbol differential detectors (MSD) and decision-feedback
differential detectors (DFDD) which reduce this error floor inherent to the standard
detector. The suggested detectors are derived under the simplifying assumption of a
single channel change per matrix-symbol (i.e., a block-fading environment as opposed
to continuous-fading). For the special case of diagonal space-time constellations, this
block-fading assumption is no longer required.

To combat the prohibitive exponential complexity of the multiple-symbol ML de-
tector (MSMD) we propose a linear complexity suboptimal MSD that is implemented
using the Viterbi algorithm. For a further reduction of complexity, we also propose
the DFDD, which is derived from the MSMD by replacing all but the latest hypoth-
esized symbol with past decisions. The analysis of the DFDD shows the presence of
a Wiener channel predictor followed by a quasi-coherent ML detector. The perfor-

mance and robustness of the detectors under non-ideal conditions are analyzed via

ii



simulations and theoretical analysis. We find that the DFDD offers a better trade-off

between complexity of detection and BER performance than the MSD.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The rapidly evolving global information infrastructure includes wireless commu-
nication as a key component. The major challenge posed by modern wireless channel
stems from potentially rapid signal-strength attenuation and significantly random
phase distortion of the signal, commonly referred to as “fading”. A typical narrow-
band flat-fading channel can be described in the discrete baseband (i.e., match filtered

and sampled) domain as

Tp = hpSy + Wy (1.1)

where s, is the transmitted signal taken from a finite alphabet, e.g. a QAM con-
stellation, x,, is the received signal, h, is a complex multiplicative fading coefficient
and w, is the additive noise at the receive antenna. In practice, h, and s, are both
unknown at the receiver, and the receiver needs to find s, from z,,.

In additive white Gaussian noise (AWGN) channels, where fading is absent, phase
shift keying (PSK) is traditionally considered to be a power efficient modulation

technique [1]. In PSK, the information is transmitted in the phase of the signal. In
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the fading scenario, the phase uncertainty induced by the channel makes the detection
of the PSK signal impossible unless these unknown phase distortions are corrected at
the receiver*. In communication systems where the fading coefficients change slowly
with time, known training symbols (also known as pilots) are multiplexed with the
unknown symbols at regular intervals. These help to estimate the fading coefficients
for coherent demodulation of the unknown symbols. When the fading coefficients
change rapidly, accurate channel estimation entails the need for many pilots which
is impractical. In these scenarios differential phase shift keying (DPSK) [1,2] can be
effectively used as it outsources the need for channel estimation.

Another form of distortion that impedes successful communication is “amplitude
distortion”. In an AWGN channel the bit error rate (BER) of a system employing
the PSK modulation scheme decreases exponentially with the signal-to-noise ratio
(SNR), while in a Rayleigh-fading channel (i.e., the fading coefficients are complex
Gaussian random variables) with coherent signal detection, the BER. decreases lin-
early with SNR. Though fading may seem as a hindrance, researchers have wisely
come up with means of improving system performance by exploiting the “diversity”
that fading offers. On fading channels, the trade-off between spectral efficiency and
power consumption can be significantly improved by deploying multiple antennas at
the transmitter and/or receiver [3-6]. In fact, in a Rayleigh flat-fading environment,
a transmitter-receiver link has a theoretical capacity that increases linearly with the
smaller of the number of transmit and receive antennas, provided that the complex-
valued fading coefficients between all pairs of antennas are statistically independent
and known at the receiver [3,5].

*In fact, the phase of the received and transmitted signal can be shown to be independent if h,,
and w, are unknown complex Gaussian variables.
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Space-time coding is a bandwidth and power efficient method of communicating
over fading channels that exploits spatial diversity afforded by the use of multiple
transmit antennas [7,8]. Various space-time coding and modulation schemes have
been proposed in literature for use in systems employing multiple transmit antennas.
These schemes attempt to achieve diversity gains and/or increase throughput [7, 8].
While a majority of these techniques have been studied under the assumption of
perfect channel state information (CSI) at the receiver, the class of unitary space-time
modulation [9,10] and differential space-time modulation [11-17] have been designed
for Rayleigh flat-fading channels with no CSI. In this thesis, we focus on differential
unitary space-time modulation (DUST) [11,12,17], which is an important subset of
general differential space-time modulation schemes.

DUST can be viewed as a multiple-antenna extension of DPSK, commonly used in
single antenna systems with no CSI. In DPSK, the information is encoded in the phase
difference between two consecutively transmitted symbols, enabling the recovery of
information using the phase difference between the corresponding two consecutive
observations at the receiver. In DUST, the transmitted symbols are M x M unitary
matrices, where M is the number of transmit antennast. The previously transmitted
matrix-symbol is pre-multiplied by the current information matrix-symbol to form the
current transmitted matrix-symbol. Each received matrix-symbol provides a channel
estimate (or phase reference) to the next received symbol, and thus the standard
single symbol maximum-likelihood (ML) detector [11,12], henceforth termed as the
“standard detector”, attempts to decode the information symbol from a pair of con-
secutive received matrices. There are two major drawbacks to this technique. Due to

tIn DPSK, the transmitted symbols are unit modulus, and therefore can be considered to be
1 x 1 unitary matrices.



the presence of additive noise at the receive antennas, each received symbol provides
a noisy channel estimate for the next symbol thereby increasing the noise power. This
results in the well known 3dB SNR loss as opposed to a coherent detection. Also,
standard detection assumes that the channel experienced by every pair of consecu-
tively received matrices is the same. This would require a channel that is forever
constant—a requirement which is never met in practice. Therefore with standard
detection in continuously-fading channels, both DUST and single antenna DPSK
modulation succumb to an irreducible error floor caused by failure to account for the
channel variations. [18-22].

For DPSK, multiple-symbol ML detection (MSMD) [23] and prediction-based
decision-feedback differential detection (DFDD) [24-26] have been proposed to im-
prove the performance in an AWGN channel. MSMD and DFDD have been extended
to the Rayleigh fading channel [21,22,27], where they reduce and asymptotically

eliminate the error floor encountered by the standard detector.

1.2 Organization & Contributions

In this thesis, we present MSMD and DFDD for DUST in Rayleigh fast-fading
channels—channels for which standard detection is unsuccessful. In deriving the
new detectors, we make the simplifying assumption that the channel changes once
per matrix-symbol (i.e., M channel uses), and that the receiver knows the fading
correlation. However, we observe that the block fading assumption is not essential
when diagonal space-time constellations [11] are used. Under these assumptions,
we derive the exponential complexity optimal and the linear complexity suboptimal

multiple-symbol detectors. We also derive the decision-feedback differential detector



for DUST. Performance of the detectors are analyzed via simulation and theoretical
analysis. Although the detectors are derived assuming a fast block-fading channel,
simulation results show that the new detectors exhibit improved performance over

the standard detector in fast continuously-fading channels.

1.2.1 Multiple-Symbol Detection

In Chapter 3, single and multiple-symbol ML detectors for DUST are derived.
Complexity of these multiple-symbol ML detectors is exponential in the sequence
length as there does not appear to exist any Viterbi-like low-complexity implementa-
tion of the detectors. Therefore, for large sequences we propose a suboptimal detector
which is implemented using the Viterbi algorithm and yields complexity linear in se-
quence length.

The multiple-symbol ML as well as suboptimal detection metrics derived in this
thesis can be expressed as a Hermitian quadratic form of Gaussian vectors. Exact
evaluation of the pair-wise word error probability (PWEP) using the characteris-
tic function and residue theorem approach [21] is difficult as it involves computing
residues of a function at repeated poles. We derive upper and lower bounds on the
PWEP by perturbing the pole locations [28], and find through numerical evaluation
that these bounds are very close to each other. The PWEP is then used to find

approximate bit error rate (BER).
1.2.2 Decision-feedback Differential Detection

In Chapter 4, a decision-feedback detector is derived from the multiple-symbol
ML detector and shown to be equivalent to a Wiener-filter based channel predictor

followed by coherent ML detector. For performance and robustness analysis, exact



and Chernoff bound expressions for pairwise word error probability (PWEP) are
derived for the cases of perfect and imperfect knowledge of fading correlation and
SNR. An approximate expression for BER is derived from the PWEP which is verified
by the simulation results.

It may be worthwhile to mention a related work [29,30], wherein DFDD is proposed
for the specific case of diagonal constellations, as opposed to the general class of
unitary constellations [12, 13, 17] which is our focus. Since diagonal DUST with
M transmit antennas is equivalent to M decoupled single antenna DPSK systems,
results for single antenna DPSK are trivially extended to diagonal DUST in [29, 30].
Unlike [29,30], we also derive the exact PWEP and study the robustness of DFDD

to imperfect parameter knowledge.



CHAPTER 2

BACKGROUND

2.1 Rayleigh Flat-Fading Channel Model

We consider a system with M transmit antennas and P receive antennas that
operates in a Rayleigh flat-fading environment. Each receive antenna is coupled to
each transmit antenna via a statistically independent fading coefficient. The received
signal at each antenna is corrupted by an additive noise that is independent across
antennas as well as the symbol periods. Consider the transmission of M x M matrices
Sn = [S1n S2n --- Smpl* in the n** matriz-symbol interval, such that each matrix-
symbol interval comprises M signaling intervals, and the elements of the k* row of
Sh, S}, are transmitted from the M transmit antennas in the £ signaling interval
within the n'® matrix-symbol interval. Then, collecting the corresponding received

samples at the P receive antennas in the row-vector xj, ,,, we can describe the system
b

as
hk,n,l,l hk,n,l,Q HE hk,n,l,P
% P . hlc,n,?,l hk,n,2,2 cee hk:,n,?,P *
e = A/ 7 Skim : : : : +Wi ., (2.1)
hk,n,M,l hk,n,M,2 EE hk,n,M,P
Hk,n



where Ay, ; is the unit-variance complex Gaussian fading coefficient between 7™

transmit and j* receive antenna during the k' signaling interval within the n'”
matrix-symbol interval, i.e., Hy ,, is the MIMO channel response matrix at the (nM +
k)™ channel use. Wy, is a column vector containing i.i.d unit-variance proper complex
Gaussian entries. The fading coefficients Ay, ; ; are independent with respect to 4 and
J, but correlated over time. The transmitted signal is normalized such that p is the
average SNR at each receive antenna.

Denoting the M x P received matrix during the n® matrix-symbol interval as
Xn = [Xip Xop - Xppl*, and Wy, = [Wip Wap ... Warnl*, (2.1) can be written

compactly as

si, 0° ... 0 Hi,
0" s3, ... O H,,

X, = ﬁ | E,n o " w (2.2)
0 0 ... Si, | | Hun

Under the assumption that the channel remains constant for one matrix-symbol in-
terval, i.e., the channel is block-fading, we have H, = H;, = --- = Hyp,, which

changes (2.2) to

(2.3)

Recall that S, = [S1, So.n --. Smn)*. Even without the block-fading assumption, the
use of diagonal matrices S, implies that the continuous fading model (2.2) simplifies

to

p
X, =/ =S,H® 2.4
n MS" 9+ W, (2.4)

where the k% row of the “equivalent continuous fading channel matrix” H(® is the

k™ row of Hy,, for k =1,..., M. If the MIMO fading process Hy, is independent

8



between antennas, then the equivalent fading process H{" is also independent between
antennas; the process H{, however, is M-fold “faster” than Hj ,. Keeping this in
mind, H{ shall be denoted as H,, from here onwards, and (2.3) will be used as the
system model. Recall that (2.3) is an approximate model when non-diagonal S,, are

used in the continuous fading channel.

2.2 Single Antenna Differential Phase-Shift Keying

In this section we present a brief review of single antenna differential phase shift
keying (DPSK) [1,2]. We consider a system with 1 transmit and 1 receive antenna for
our discussion in this section. Note that (2.3) is a valid system model when DPSK is

used.
2.2.1 Differential Encoding

DPSK is traditionally used in systems where the signal experiences a random, un-
known and slowly varying phase distortion. The information is encoded in the phase
difference of two consecutive symbols. The widely used symbol set (constellation) for

DPSK is
o=l e L={0,1,...,L -1} (2.5)

where L = 2% and R is the data rate in terms of bits per channel use. For transmission
of the information sequence z1, 2, . . ., we select the corresponding information symbol
sequence v, vV,,, . .., and transmit the symbols s, s1, so, ... such that sy = 1 is known

and does not carry any information, and s, = v,, Sp—1.



2.2.2 Standard Single Symbol Detection of DPSK

The transmitted and received signals are related by the single antenna version of

(2.3)

Tp = \/PSn + Wy (2.6)

Using (2.6), Tn—1 = /PSn—1 + Wn_1, Sn = V,,Sn—1, and assuming that the channel

remains constant for two consecutive symbol intervals, i.e., h, = h,_1, we can write

Ty = Ty 1V,, + Wy — Wy 10, (2.7)
—_———
Wp

where 1w, is AWGN with doubled variance since |v,,| = 1. Observe that the problem
of detection of z, is turned into a known channel problem, and it is straightforward

to show that the ML detector is

Z, = arg max R[z) v, T, 1] (2.8)
zn€L

which is the “standard detector” for DPSK.
2.2.3 Multiple-symbol ML Detection of DPSK

Multiple-symbol ML detection of DPSK in AWGN channel was introduced by
Divsalar & Simon [23], and later extended to Rayleigh fading channel by the same
authors [27], Ho [21] and Schober et al. [22]. Collecting =, Tp—1,... , Tpn—m into a

vector, from (2.6) we can write

Tn sSm 0 ... 0 hn, Wp,
Tn—1 0 Sp—1 .- 0 hn—l Wp—1
= \/ﬁ . . . . . + : (29)
Tpn—m 0 0 Sn—m hn—m Wn—m
P e — N —
Xn S, h, Wo

10



The multiple-symbol ML detection, i.e., the optimal joint detection of {zx}p_, 41
can be accomplished by maximizing the density of x,, conditioned on {v,, }}_, .1

given by [31, 32]

1

—xXRx
1) = ————¢ ¥R xn 2.1
) Zn m+1) 7Tm+1det(R) € ( 0)

p(xn‘zna Rn—1s---
where
R= E{XnX;‘Zn, R 7Zn—m+1}

It can be shown that R depends on the information symbols {2z }}_,, _,,,; rather than
the absolute phases {si}}_,_,,- Moreover, det(R) can be shown to be independent

of {2k }s—p_ms1- Thus, the ML detection rule becomes [21]

{Q}Z:n—m—l—l = arg min X;R_lxn (211)
Znyees azn—m+1€£

For performance analysis, an exact expression for the pairwise word error proba-
bility for the detector (2.11) can be derived using the residue theorem approach [21].
Our error performance analysis of MSMD of DUST in Chapter 3 is also applicable to

DPSK, therefore we omit the discussion on the error performance of (2.11) here.
2.2.4 Decision-feedback Detection of DPSK

The biggest disadvantage of the MSMD is the computational complexity, which
is exponential in sequence length m. Although fast algorithms for computation of
the metric in (2.11) has been proposed [33], a simpler way to reduce the complexity
without incurring significant performance loss is to replace all but one hypothesized
symbols in (2.11) by past detected symbols, and then performing symbol by symbol

detection. This scheme is called decision feedback differential detection (DFDD) [22].
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Our derivation and performance analysis of DFDD in Chapter 4 is suitable for general
class of differential unitary constellations, therefore can be applied to DPSK by setting

number of transmit antennas M = 1.

2.3 Differential Unitary Space-Time Modulation

Section 2.2 shows that single antenna differential modulation uses scalar symbols
for modulation. For a system with M transmit antennas, the constellation consists of
M x M space-time matrix-symbols. The M x M matrix-symbol is transmitted from
M transmit antennas in each matriz-symbol interval, which comprises M signaling

intervals.

2.3.1 Differential Encoding

To transmit 7 bits per channel use in an M transmit antenna system, the required
constellation size is L = 2", Suppose we want to transmit the information sym-
bols z1,29,... € L = {0,1,...,L —1}. We select the information matriz-symbols
Veis Vagy - -, € A, where A is the DUST constellation, and V,,_ is unitary. Then, we

transmit the matrix-symbol S,, in the n* matrix-symbol interval such that
Sn =V, Sn 1 n=12... (2.12)

and Sy = I,. Equation (2.12) is the fundamental differential transmission equation
derived in [11]. Since the matrices V,, are unitary, the transmitted matrices S,, are

also unitary.
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2.3.2 Standard Single Symbol ML Detection of DUST

The transmitted matrix S, and the corresponding received matrix X,, are related
by (23) USiIlg (23), Xn—l = \/%Sn—lHn—l + Wn—l, Sn = V;nSn_l, and assum-
ing that the channel remains constant for two consecutive matrix-symbol intervals

(equivalently, 2M signaling intervals), i.e., H,, = H, 1, we obtain

X =V, Xna + Wy =V, W,y (2.13)

Wa

Since V,, is unitary and W,_; contains i.i.d. AWGN entries that are statistically
invariant to unitary transformation, W, contains i.i.d Gaussian entries with variance
twice of those in W,,. From (2.13), it is straightforward to show that the ML detector

for z, is [11]

Zp = arg max R[tr{ XV, X, _1}] (2.14)
Zn€L

Due to increased noise variance in Wn, this detector performs at a 3dB SNR loss
compared to coherent detection. Under the assumption of H,, = H,_;, the Chernoff
upper bound on P, for the detector in (2.14) converges to zero as p — oo [11].
However if the channel changes from one matrix-symbol interval to the next, i.e., if
H, = H, 1+ AH, then (2.13) becomes

—_—

Xn
where the term X'n creates additional “noise” that induces an error floor in BER
curve. Note that the detector in (2.14) ignores channel variation and is therefore
suboptimal in a fading environment. In Chapter 3 & 4 we derive detection rules that

exploit knowledge of the autocorrelation of the time-varying channel coefficients.
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2.3.3 DUST Constellations

The performance of DUST at high SNR with standard detection depends on the
minimum diversity product between all possible pairs of matrices in A [11], defined

as

D(A) = L in |det(V; — Vi) | (2.15)

2 0<j<k<L-1

Keeping this in mind, several constellations for DUST have been designed in [11,12].
The special class of diagonal constellations has been designed in [11] to maximize
D(A) under the constraint that the constellation forms an Abelian group. The el-

ements of the diagonal constellation for an M transmit antenna system are given

by
dTuE 0 0
Vi = 0 : ke L={0,1,...,L—1} (2.16)
0 ... eiTumk
where uy,... ,upy € {0,1,...,L — 1} are chosen to maximize D(.A).

For simulation and numerical examples in this thesis, we consider a system with
two transmit antennas with n = 1, i.e., L = 2" = 4. The optimal diagonal constel-
lations for this case is obtained by setting u; = 1,us = 1 in (2.16) [11]. To evaluate
detection performance with non-diagonal constellations, we generate non-diagonal
constellation from the diagonal constellation by pre-multiplying each element with a
non-diagonal unitary matrix. Because such an operation does not change D(A), the
comparison remains fair. Table 2.1 shows the constellations used in this thesis for

simulation and numerical examples.
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Diagonal Constellation | Non-diagonal Constellation
[1 0] [0.7071  0.7071
Vo = 0 1] Vo= 0.7071 —0.7071}
Vo [5 0] Vo [0.70715  0.7071;
"o 4] " 070715 —0.7071;5
-1 0 [—0.7071 —0.7071
V2= 0 —1] V2= |—0.7071 0.7071}
Vi o [— 0 Vi = [—0.70715 —0.7071j
PTl0 g 57 [-0.70715  0.7071j

Table 2.1: Constellations used in this thesis for simulation and numerical examples
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CHAPTER 3

MULTIPLE-SYMBOL DIFFERENTIAL DETECTIONf

Multiple-symbol differential detection of DPSK has been proposed as an effective
way to reduce the 3dB SNR loss incurred by one-symbol differential detection [23], as
well as to enhance performance in correlated Rayleigh fading channels [21,22]. In this
chapter we extend this idea to DUST and derive m-symbol ML as well as suboptimal

detectors in temporally correlated fading.

3.1 m-Symbol ML Differential Detector

We collect the observation matrix-symbols X, Xp_ma1,--. , X, with the in-
tention of jointly detecting 2, m+1,2n mi2,--- ,2n. Denoting h, = vec(H,), x, =

vec(X,), and w,, = vec(WW,), we can write

Xn Ipr®S, 0 0 h, Wn
~ vl 0 o I S
Xn—m R 0 0 Ip® S"_m » hn—m Wn_m
———— ~~ N —
X, Sn h

—n

Assuming h,, and w,, contain zero-mean unit-variance i.i.d. Gaussian random vari-
ables, we have E[h,h:] = Flw,w}] = I);p. Furthermore, we assume that the channel
is spatially white and temporally correlated, i.e., E[h,h? ,] = ()Inp. Conditioned
t The main results of this chapter also appear in the manuscript [34]
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on Sy—m, Sn—mit,--- 9, X, iS a zero-mean Gaussian vector with auto-correlation

T

matrix

R™ = L8, BB S + Lninur

p * *
= S0 (LB, + Tnsnyur) S, (3.1)

Using the fact that S, ., Spmt1,--. , Sy are unitary and Sy, =V, Sp_1,k =n—m+

1,...,n, R™ can be expressed as
T(),() T(),l Ce TO,m
T T v Tim
R™ = WO T ‘ . where (3.2)
Tmo Tmi - Toom
T’;:z':,‘riaj = (6(7’_]) M) i— ]IP® H zk7

k=n—i+1

and 0(-) is the Kronecker delta function. Note from (3.2) that the distribution of x,,

depends on {V,, }}_,_ ... rather than {Sx};_, .. It can also be shown that,

B0,0 BO,l PR B()ym
B B ... Bi,,
R _ _ _1’0 '1’1 _ 1 where (3.3)
Buo Bni - Bun
* _ (m)*
B =Bi; = Ip® H iy
k=n—i+1

where the coefficients {a(’")} are given by the following lemma.

Lemma 1 The coefficients a(m) satisfy the relation

(m) (m) (m) -1
a(on(;)* CL(()TH) e a?";;l go Cl . gm

m m m
1 My e G | A G G e Gmet (3.4)

A AR Vo '

* *
aé% aﬁ’% ... ag{‘,)m GGy oo G
Alm)
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Proof: Using E[h,h} ,] = (:Iyp and h, =[h} ... hi_ ]*, it is easy to show that

G G o Gm
Elh,h;] = C:l C:O Qn:—1 ®Imp (3.5)
16 G oo ]

Thus,
R™ = 8, (LB, + Tpr ) S
M
=8, (T @1yp)S; (3.6)
where T = ZE™ +1,,,,. Therefore,
R™I= S, (T“")_l ® IMP) S: (3.7)
Expanding (3.7) and using S,_; = ( it VZ’;) Sn—j, © > j we obtain (3.3) &
(3.4). n

Thus the ML detector of {zx}}_, .1 given {X;}p_, .. (equivalently given x,)

becomes
A o
{zk}k:n—m—l—l = arg max p( n‘V:Zn’ ‘/Zn—l’ s 7‘/;n7m+1)
ZnsZn—1,---€EL
—x:RMTIX
= arg max e - “n

ZnsZn—1,---€EL

= arg max R
Zny@n—1,--

m—1m—k—1 i+k
tf{z Zafﬂkﬂ (H Veue ]> n— z‘—k—l}] (3.8)

1=

Note that the multiple-symbol ML detector requires the knowledge of SNR in addition
to fading correlations {(;}}",, because the coefficients {a(m)} depend on p. From
(3.4) it can be easily seen that when channels in subsequent blocks are independent,
ie, ¢ = 0 Vk > 0, then a;";c) = 0 Vj # k, and hence the ML metric in (3.8) is

zero, implying that differential encoding cannot be used—an intuitively satisfying
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observation. Moreover, the detector (3.8) does not depend on the SNR p in case of a

fixed channel, as proven in the following lemma.
Lemma 2 If (;, = 1 Vk, detector (3.8) becomes independent of p.

Proof: To prove the lemma, we need to show that a;7 = a}7) > 0 Vi,5,k,1 €

{0,...,m} & i # j,k # I, because in such a case the detector (3.8) becomes inde-

(m)

pendent of the coefficients a;”’,

and hence p.

When ¢ = 1 Vk the coefficients a7 are given by (see (3.4))

agy ... Ao 1 ... 1
oo 715 o | e | = —Ian
O 1 ... 1

A(m)

Expanding the matrix equation we get the following set of equations

£ (a7 + S ess 07 ) + 0 =0, 0,f = 0,0 om i ] (39)
ﬁ( ke Ok;ézagnz)) +ajy =0,4,j=0,...,m i#] (3.10)
L+ 47) @i + 47 Xhtopmi 0ik = —1, i=0,. (3.11)

It is easy to see that (3.9) implies a(’") = CL;TZ) Vi,j,k=0,...,m& j, k # i. Similarly

(3.10) results in a(m) = ak " Vi, 5,k =0,...,m& j,k # i. Together they imply that
all the off-diagonal elements in A are equal, and hence real, since A is Hermitian.
Subtracting (3.9) from (3.11) we get af;’ = afy —1 Vi = 0,...,m. Using this
and the fact that all off-diagonal elements of A are same, the solution of (3.11) is

4™ — Ly
45 = Ty > O Vi # 7 n

3.2 Examples: 1-, 2-, and 3-symbol ML detectors

For the simulations in Section 3.5, we analyze the performance of 1-, 2-, and 3-
symbol ML detectors. The m-symbol detector (3.8) can be simplified to (3.12), (3.13)
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and (3.14) for m = 1,2 and 3, respectively.

Z, = arg max R{tr[(; XV, X, 1]} (3.12)

Zn€L

{2, 201} = arg max Rtr{af) X; V., Xp1 + a5 X} V., Xnoo (3.13)

Zn—1,2n€L

+ a5y X Ve, Ve, X2}

{Zn,y2n 1,20 2} = arg maxEL R(tr{as3 X 5Va, 2 Xn s (3.14)
Zns2n—1,2n—2

(3) y* (3) y* (3) v
+ a1,2Xn71Vzn71an2 + ao,anVannfl + a1,3Xn71Vzn71 Ven 2Xn-3

+ a(()?:)QX:L‘/;n ‘/anan_2 + a’(():j?iX;‘/zn‘/Zn—l ‘/Zn—2Xn—3}]

While detector (3.12) is similar to detector (2.14), it exploits the known fading cor-
relation ¢;. When (; is real and positive, however, it does not affect the decision rule
and can be removed, making (3.12) identical to (2.14). The main difference between
detectors (3.13), (3.14) and one-symbol detector (3.12) is that (3.13) and (3.14) make
use of additional channel parameters, and hence are expected to perform better than
(3.12).

It is instructive to note that the transmitted matrix symbols S, ; and S,,_;, for

any ¢ < j, are also differentially encoded: ch;i V. _. is a valid source symbol due

n—k
to the group nature of the source alphabet. Therefore all ML detection metrics are
based on weighted sum of sub-metrics of the form X _, (Hf;i mn—k) Xn—j.

Observe that it is not possible to write the detection metric as a sum of terms that

contain strict subsets of the symbol set {V,,,...,V,_ . }; there is always one term

with the form tr{X,*L (Hm_l V,

im0 zn_j)Xn_m}. Thus, maximization of the quantity in (3.8)
can only be accomplished using a brute force search over all symbol combinations,
yielding a complexity exponential in m. In other words, there does not appear to
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exist a Viterbi-like algorithm for m-symbol ML detection that has complexity linear
in m.

Though we have not derived ML detection rules for non-diagonal DUST constel-
lations in continuously-fading channels, the simulation results in Section 3.5 confirm

that the block-fading detectors (3.13) and (3.14) significantly outperform the standard

single-symbol detector (2.14) under fast continuous fading. The coefficients {a;7
used in this case would be recomputed with (, defined such that E[ho,nhan_k] =

CkIMP fOI‘ hO,n = VeC(Ho,n).
3.3 Suboptimal Sequence Detection

Practical applications require the detection of N > 3 symbols. Yet, as we have
seen, the joint ML differential detector for N symbols has a complexity that is ex-
ponential in N. Thus, we are motivated to consider suboptimal N-symbol detection
using some combination of m-symbol ML detectors for, say, m < 3.

It is instructive to note the difference between the N-symbol ML detector and any
suboptimal N-symbol detector constructed from m-symbol ML detectors (m < N).
From (3.8), we see that such suboptimal sequence detectors would use detection met-
rics that linearly combine terms based on subsets of the m-term set {V,,,...,V,,_ ..}
forn € {m —1,...,N —1}. The combining coefficients might, e.g., be taken from
the set {am)}. In contrast, the optimal N-symbol detection metric linearly combines

these terms with additional terms based on subsets of {V, ..,V } that are ig-

N—-17"
nored by the suboptimal detector. In addition, the N-symbol combining coefficients

are {a\")}, which are, in general, different from {a!™'}. Thus, the task of constructin
kil 8 k,l g

a “good” N-symbol detector that employs (at most) m-symbol optimal detections
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(m < N) can be considered equivalent to the approximation of {a}"'} by a sparse

coefficient set.
3.3.1 Non-overlapping Block Detection

A straightforward suboptimal N-symbol detector is the “non-overlapping” block
detector [23], where the (IN+1)-matrix observation sequence is divided into contiguous
subsequences of length m + 1, each of which overlaps its neighbor by one matrix-
observation. m-symbol detection is then performed on each subsequence. This is
equivalent to replacing the coefficients {ag:’l)} with {a}c"fl)} where defined and otherwise
with zeros. Simulation results show that this scheme reduces the error floor in fast-
fading channel significantly. However, it is possible to further improve performance
by dividing the observation sequence into blocks which overlap by more than one

matrix-observation. Such schemes lead to different approximations of the coefficient
set {ag; }-
3.3.2 Overlapping Block Detection

To detect the information sequence {z,})_, from the matrix-observation sequence
{X,}_, using m-symbol detector (m < N), we divide the the sequence {X,})_,
into the sub-sequences X ., = { Xk, Xk41, -+ » Xktm), £ =0,p,2p, ... , N —m, where
p € {1,2,...,m} and p divides N — m. In this case, neighboring sub-sequences
overlap by m — p+ 1 matrix-observations. Note that p = 1 results in maximal overlap
between blocks, whereas the case of p = m is equivalent to non-overlapping block

detection.

v

The information symbol sequence Vi, = {V, VU

2417

s Vawrm) can be de-

tected from the subsequence X} ,, by maximizing the ML detection metric in (3.8),
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denoted henceforth as Loyt (Xkm; Vim). However, optimal joint detection of Vy ,, and
Vpm from X, and &), ,, involves maximization of the increased complexity metric
Lopt (X0, m+p; Vom+p), because the additive noise processes in Ap,, and A, 1, are not
mutually independent (unless p > m). For suboptimal detection of Vy y from X x
we propose the following metric
Louvopt (Xo,vi Von) = > Lopt (Xeami Vim) (3.15)
k=0,p,2p,...,N—m

The overlapping and non-overlapping block detection schemes are illustrated in Fig. 3.1.

Received matrix-sequence Received matrix-sequence

X, X, | x | x | x X x|l x x| X
Xo | X1 | Xy Xo | X1 | X5
Lopt (X0,2; Vo,2) Lopt (Xo,25 Vo,2)
+ Xy | Xz | Xy + X Xy | X3
Lopt (Xa,2; V2 2) Lopt (X1,2; V1,2)
+ Xy | X3 | Xy

Lopi (X2,2; Vo 2)

(a) (b)

Figure 3.1: Suboptimal multiple-symbol detection with N = 4,m = 2 using (a) non-
overlapping block detection scheme, (b) overlapping block detection scheme for p = 1

The suboptimal metric can be maximized using Viterbi algorithm, where at transi-

tions indexed by & = 0,p, 2p, ..., N —m, states are defined by the hypotheses ffk,m,p,
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outgoing branches by l>m+k_p,p_1, and the branch metric is given by Lopt Xk m; f)km)
The complexity thus becomes exponential in m and linear in N. Similar detection
algorithms for single antenna DPSK can be found in [35, 36].

To evaluate the probability of error of the suboptimal detector, we will see in the
next section that it will be helpful to write the suboptimal metric (3.15) in quadratic
form as Lgubopt (Xo,n; Vo,n) = —K*R,(UN)flg, such that the detection is performed by
minimizing x*R™M7'x, where x = [x%,X%_1,...,x3]*. RM™' is constructed as

R~ in (3.3) but with the coefficients {a{’, } replaced by {a{}}, given by

R S 0
~(N ~(N ~(N kxk
al,o al,l .« .. CI,LN
) e
: : .. : E—0.p.2 N m+1xm+1
=U,p,4p;.-- , N =T
~(N) (W) ~ (V) ’ ‘O kX N —tm— ‘
aN,O a’N,l aN,N N—m—kxXN—m—k

(3.16)

where Oy denotes k X k all zero matrix and A™ is defined in (3.4).
3.4 Error Performance

In this section we present the approximate BER performance of the detectors
derived in previous sections. The pair-wise word error probability (PWEP), followed

by approximate BER has been derived using the results from [1,21, 28].
3.4.1 Pair-Wise Word Error Probability

The multiple-symbol detectors derived in this chapter, in general, detect the se-

_ N N .« . . . . . * —1
quence z = {24}, € L£" by minimizing the Hermitian quadratic x*R(z) x over
LN, where x = [x%,...,x%]*. The structure of R(z) " is shown in (3.3), while the

coefficients {aj} are computed using (3.4) and (3.16). p takes an appropriate value
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in (3.16) depending on the detection method, i.e., p = m for non-overlapping block
detection and p < m for overlapping block detection.

Given that the sequence z was transmitted, the detector will detect z, and thus
make a decision error, if the random variable Q = x*(R(2)™" — R(z) " )x is negative.
The PWEP, denoted as Pr(z — z), is therefore given by [21,37]

Pr(z — z) = Pr(Q < 0) Z Res [ )] (3.17)
w=jp

poles w=jp
p>0

where ®g(w) = E[e/“?] is the characteristic function of @, given by [38]

1
® —
o) det (Ivsnymp — jwR™(R(2)"' — R(z)™"))
MP
- 1:[1 1-— ]w)\k
(N+1)M )

I
:l

)@ 3/ (3.18)

k=1

(w)

and the summation is taken over the poles of %T located on the upper half plane

(UHP). {\x};o N+1)MP are eigenvalues of R™(R(2) ' — R(z) ') and are real since both
R™ and R(z) '—R(z) ' are Hermitian. Thus, the poles of Q ) Jie on the imaginary

axis.

(w)

Computing the residues of CDQT is straightforward if the poles on the UHP have

a multiplicity of one. In this case, the residues are given by

o (w) (N+1)MP 1
Res [—L} =— (3.19)
W du=—j/n k:g# Ae(1/ Ak = 1/Ae)

For the functions with repeated poles, computing the residue at a repeated pole
involves higher order derivatives, which can be complicated. Since each M P x M P

matrix sub-block in R™, R(z) " and R(2) ' consists of a Kronecker product of Ip and
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MP are P-fold repetition of the (N +1)M

an M x M matrix, the eigenvalues {)\k},(cjiirl)
eigenvalues of R™ (R(2)™" — R(z)™")|p=1. Hence poles of ®p(w) have multiplicities
equal to multiples of P.

Several methods for evaluation of (3.17), when the characteristic function has
repeated poles, are available [39,40]. We consider the method proposed in [28],
where poles are perturbed by a small amount to eliminate multiplicity. This method
produces a lower bound on the PWEP when all the concerned poles are moved away
from the origin, and an upper bound when moved towards the origin. In our system,
we replace the i"® repetition of p, = —)\ik,pk > 0 by pg *+ i€, e = 0.0025pg, then
apply (3.17) and (3.19) to evaluate the PWEP. Numerical results in Section 3.5 show

that the resulting lower and upper bounds on the probability are very close to each

other, and hence the adopted method produces an accurate estimate of the PWEP.
3.4.2 PWEP: Imperfect Parameter Knowledge Case

The practical application of the detectors derived in this chapter is hindered by the
reliance of the detectors on the knowledge of SNR and fading correlation (;. So far in
our analysis we assume that the detectors have perfect knowledge of these parameters.
However, in practice these parameters are likely to be estimated, and therefore perfect
parameter knowledge is unlikely due to estimation error. In this section we derive the
PWEP expression under imperfect knowledge of these parameters.

As shown in previous sections, the detection metric of the detectors derived in
this chapter can be written as a Hermitian quadratic product of a complex Gaussian
vector, such that the Hermitian matrix is constructed based on the knowledge of

fading correlation and SNR. Recall from Section 3.4.1 that, given that the information
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sequence z was transmitted, the detector will detect z if the random variable ) =
x*(R(z)™! — R(z)"1)x. In this case, both R(z)™! and R(z)™! are constructed using
(3.3), (3.4) and (3.16) such that (3.4) uses the assumed/estimated valued of (; and p,
whereas R™) = FE[xx*| uses the actual (; and p. Then, using the method described

in Section 3.4.1 we can evaluate the PWEP for imperfect parameter knowledge case.
3.4.3 Approximate Bit Error Rate

In practice, bit error probability (BER) is more useful metric than PWEP of
individual error events. To compute an approximation of the BER, or a bound on
the same, we adopt the method used in [21]. We note that the constellation in [11]
is symmetric, and hence the BER will be independent of the transmitted message
sequence z if Gray labeling is used. Thus we assume z = {0,0,...,0}, ie., V, =
I, Vk. Noting that the message sequence z € LV is encoded using nM N bits, an

upper bound on the BER can be obtained as

p o< 1 WNfld () - (k)

VSN ; (z,2'"") Pr(z — z'") (3.20)
where d(-) denotes the Hamming distance between the codewords. However, for a long
sequence, computing the bound (3.20) becomes prohibitively complex. In [21,23] it
has been shown that for DPSK, an accurate approzimation of the BER is obtained
by keeping only the dominant error events in (3.20). Extending these ideas to DUST,
the dominant error events are defined by the sequences which maximize the following

metric

(3.21)

where S, =V, Sk1, S’k = V},ﬁk,l, So = So =TIy.
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Since Sy, = Iy, k = 1,...,N, the sequences {S;}¥ , that maximize (3.21)
have the form {V;,Vj,... ,Vi}, and {In, ..., I, Vi, Ing, ... s s}, where | = 6, =
arg maxyc .oy R[tr(Vi)]. The corresponding information sequences {V;, } 1L, have the
form {V;,Tn, ..., I}, {Tnay - I, Vi, Vi, I, oo I} and {Ipy, ..., Ing, Vi) Note
that, since A is a group, and hence satisfies an inverse property, V; € A = V* € A.

Although the dominant error events defined by the sequences above yield an ac-
curate approximation of the BER for small /N, additional error events need to be
considered to avoid under-estimation of the BER for large N. Therefore we also con-
sider the error events defined by sequences of the above form for [ = 6, such that
0o = arg maxye, (90,3 R[tr(Vi)]. For symmetric constellations, such as single an-
tenna DPSK and multi-antenna diagonal constellations, §; may take multiple values.

In such cases, error events for each distinct 6;, ¢ = 1,2 are considered in (3.20).

3.5 Simulations & Numerical Results

We evaluate the performance of the detectors in two types of channel: the “block
fading channel” (2.3) and the “continuous fading channel” (2.2). The correlation
between fading coefficients £ symbols apart is given by Jo(27 fpTsk) [41] in continuous
fading channels, where fp7; is the normalized Doppler frequency. In block fading
channel, correlation between channel coefficients m matrix-symbols apart is given by
Jo(2m fpTsMm).

As shown in Chapter 2, the use of diagonal constellations in continuous-fading
channels yields the same model as general constellations in block-fading channels,
and hence detector performance with diagonal constellations is identical for these

two channel types. Therefore, we present performance of the detectors with diagonal
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and non-diagonal constellations in continuously fading channel. We consider a system
with two transmit and two receive antennas with n = 1 and the constellation specified

in Table 2.1
3.5.1 Simulation BER: Perfect Parameter Knowledge Case

First we present simulation results that demonstrate the performance improve-
ment of multiple-symbol detectors over standard single-symbol detector. Detection is
accomplished using the “overlapping block detection” method from Section 3.3 with
p =1 and based on 1-, 2-; and 3-symbol ML differential detectors (3.12), (3.13), and
(3.14). Note that, for single-symbol detection, the overlapping and non-overlapping
block detection schemes are identical. Results will be presented for detectors with
exact knowledge of fading correlations, as well as for detectors which assume that the
channel is fixed (marked by “fixed” in the figures). In the figures shown here, “1DD”,
“2DD”, and “3DD” correspond to 1-, 2- and 3- symbol detection, respectively.

Fig. 3.2, where fpT; = 0.1, clearly illustrates the advantage of detectors which
jointly detect multiple symbols and incorporate channel fading parameters. Note that
detector (2.14), which ignores the fading correlation, succumbs to a very high error
floor. Detector (3.12), designed to incorporate fading correlation into single-symbol
detection, performs the same as (2.14) does, since the Rayleigh flat-fading model
used in our simulations leads to (; > 0. Thus, both forms of single-symbol detection
perform very sub-optimally in the fading environment. The 2-symbol detector (3.13)
which incorporates fading correlation exhibits considerably improved performance,

although still succumbing to an error floor. Meanwhile, the 2-symbol detector which
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Figure 3.2: The diagonal constellation in continuous fading channel with fpTs = 0.1.

ignores fading correlation performs even worse than the one-symbol detector. Per-
formance increases dramatically with the 3-symbol detector that incorporates fading,
and decreases with the 3-symbol detector that ignores fading. As hinted by the plot,
even the good 3-symbol detector will succumb to an error floor at high-enough SNR.

The important point, however, is that the error floor has been pushed outside of the

expected operating range.

Figure 3.3, corresponding to normalized Doppler frequencies of fp7T, = 0.05,
mimics the results of Fig. 3.2 but in a less pronounced fashion. Again we see the

improvement associated with multiple-symbol ML differential detectors that incorpo-

rate fading correlation.
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Figure 3.3: The diagonal constellation in continuous fading channel with fpTs = 0.05.

Next, the performance of the detectors has been evaluated in continuously-fading
channels with the non-diagonal constellation to illustrate the performance loss due to
approximation of system model (2.2) by (2.3). Recall that the non-diagonal constella-
tion shown in Table 2.1 is generated by right multiplying the diagonal constellation by
a fixed non-diagonal unitary matrix. Because such an operation does not change the
product distance of the constellation [11], the comparison of diagonal to non-diagonal
constellations is fair.

Figures 3.4 and 3.5 illustrate the performance of the detectors with the non-
diagonal constellation in continuously-fading channels with fp7T; = 0.1 and 0.05,
respectively, and compare them with the performance of 3-symbol detectors with the

diagonal constellation. Although a performance loss is incurred due to neglecting the
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Figure 3.4: The non-diagonal constellation in continuously-fading channel with fpTs = 0.1.

channel variation within the matrix-symbol interval compared to the performance of
the detectors with diagonal constellations, in both cases 3- and 2-symbol detectors
that incorporate knowledge of fading correlations perform much better than the single-
symbol detector.

The above observations lead us to important conclusions about the detectors de-
scribed in this paper. First, multiple-symbol detection is essential to combat fading
channels since the detectors (2.14) and (3.12) are often equivalent. While perform-
ing the suboptimal sequence detection, increasing the sub-block length improves the
performance in terms of SNR loss and increases the robustness to continuous fading

when non-diagonal constellations are used. Generally, the faster the fading, the more
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Figure 3.5: The non-diagonal constellation in continuously-fading channel with fpTy =
0.05.

symbols are required in the sub-blocks to push the error floor out of the operating

range.
3.5.2 Simulation BER: Imperfect Parameter Knowledge Case

The practical application of the detectors derived in the paper is encouraged by
the robustness of these detectors against imperfect knowledge of fading correlation
and SNR p in continuous-fading channels, as demonstrated in the simulation results
below. Diagonal constellations have been used for these simulations.

Figure 3.6 investigates the performance of the 3-symbol detector when the actual
normalized Doppler frequency is 0.075 and the receiver has imperfect knowledge of

fpTs and SNR. As expected, the mismatch between assumed and actual Doppler
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Figure 3.6: 3-symbol detector in continuously-fading channel fpTs = 0.075 (diagonal
constellation)

frequency and SNR results in performance loss. An error floor appears when the
receiver assumed that fpT, = 0.05 and SNR = 15dB. In this case the receiver tried to
mimic the performance of the optimal receiver at 15dB SNR rather than at high SNR
where error floor manifests. In all other cases, the performance loss is characterized
only by SNR loss.

We can conclude from Fig. 3.6 that when the receiver underestimates the speed of
the channel variation and operates assuming low SNR (15 dB), it succumbs to an error
floor, whereas when high SNR (30 dB) is assumed, the performance is much better.
High SNR loss characterizes the performance of the receiver which overestimates the
Doppler spread and operates assuming high SNR (30 dB), while performance is much

better when low SNR (15 dB) is assumed.
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3.5.3 Comparison of Analytical and Simulation Results

Now we present analytical results that investigate the performance of m-symbol
ML detectors for m > 1. As described in Section 3.4, approximate BER was com-
puted assuming that the bit-errors contributed by the highly correlated sequences
dominate. To establish the validity of this assumption, Fig. 3.7 compares analytical
to simulated BER for 1-, 2-, and 3-symbol ML “non-overlapping” block detectors.

Figure 3.7 verifies the fact that the lower and upper bounds on the approximate
BER are very close to each other. Analytical BER closely matches the simulated BER
when BER is low, while analytical results over-estimate the BER for higher BER,
which can be attributed to the fact that the union bound is used to approximate the
BER.

Figure 3.8 demonstrates the validity of analytical BER results for 51-symbol sub-
optimal detector based on 2-symbol (2DD) and 3-symbol (3DD) ML detector. Note
that overlapping and non-overlapping block detection schemes are identical when
single-symbol ML detector is employed, and therefore the BER for single-symbol de-
tector is omitted in Fig. 3.8. Again, we see that analytical results tend to overestimate
the BER when BER is low.

Figure 3.8 shows that analytical BER tends to underestimate the simulated BER,
which can be attributed to the fact that selection of dominant error events is based
on PWEP, whereas contribution of an error event to overall BER depends on product
of the Hamming distance and PWEP. However, the analytical results are still useful
for predicting detector performance trends.

Figure 3.9 compares the analytical performance of 51-symbol ML detector and

suboptimal detector based on 3-symbol sub-blocks for p = 1,3 (i.e., “overlapping”
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Figure 3.7: Comparison of analytical and simulated BER for fp7s = 0.1, non-overlapping
block detection and diagonal constellation
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Figure 3.8: Comparison of analytical and simulated BER for fpTs = 0.1, overlapping block
detection and diagonal constellation
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and “non-overlapping”, respectively) and fpT, = 0.1. The suboptimal “overlapping”
detector (p = 1) provides improved performance over “non-overlapping” detector at
the cost of minor increase in complexity. Both suboptimal detectors succumb to
error floor whereas the optimal 51-symbol detector pushes the error floor outside
the observed SNR range. The computational complexity of the optimal detector is,

however, prohibitive.

Bit Error Rate
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Figure 3.9: Comparison of 51-symbol ML detector and suboptimal detectors based on
3-symbol ML detector: fpTs = 0.1

Now we demonstrate the performance of 3-symbol ML detector based 51-symbol
suboptimal detector for different Doppler frequencies to show the performance degra-
dation due to Doppler spread. Observe in Fig. 3.10 that the performance degrada-

tion due to increased Doppler spread is significant at higher SNR, when the error
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due to channel variation dominates that due to additive noise. Because the effective
symbol-level normalized Doppler spread for DUST is fpT, M, increasing the number

of transmit antennas may degrade the performance.
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Figure 3.10: Performance of 51-symbol suboptimal detector based on 3-symbol ML detector
(p = 1) for different Doppler frequencies

3.6 Conclusions

In this chapter, we have demonstrated, via simulation as well as theoretical error
performance analysis, the efficacy of multiple-symbol ML differential detection that
incorporates channel fading parameters. In fact, we have shown that multiple-symbol
(versus single-symbol) detection is essential to performance enhancement in fading

channels. For detection of long sequences, low-complexity suboptimal detectors have
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been derived which significantly reduce the error floor. Our multiple-symbol detection
rules, which assume the channels to be block fading when non-diagonal constellations
are used, have been shown to improve performance in continuously-fading channels
as well. In addition, they have been shown to be quite robust to imperfect knowledge

of fading correlation and SNR.
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CHAPTER 4

DECISION FEEDBACK DIFFERENTIAL DETECTIONT

In this chapter, we present decision-feedback differential detectors (DFDD) for
DUST in fast Rayleigh-fading channels. As before, we assume that the receiver knows
the fading correlation and SNR. Under this assumption, a decision-feedback detector
is derived from the multiple-symbol ML detector (3.8) and shown to be equivalent
to a Wiener-filter based channel predictor followed by coherent ML detector. We
derive the exact and Chernoff bound expressions for pairwise word error probability
(PWEP) under the cases of perfect and imperfect knowledge of fading correlation and
SNR. An approximate expression for BER is derived from the PWEP which is close

agreement with the simulation results.

4.1 Decision-Feedback Differential Detection

4.1.1 DFDD from Multi-symbol ML Detection

Multiple symbol differential detection of DPSK [21,29] and DUST [Chapter 3]
has been proposed as an effective way to enhance performance in correlated Rayleigh
fading. Recall from Chapter 3 that, assuming the channel to be spatially white and
temporally correlated, the joint ML detector of {2z}7_,_,,,; given the observation

tThe main results of this chapter also appear in the manuscript [42]
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sequence {Xy}p_, .. is

m—1m—k—1 i+k
s \n _ (m)
(&} ke i1 = arg max R |tr a7 o X H vy | Xnick

Zn,2n—1,---€L

k=0 i=0
(4.1
where the combining coefficients {a(m) } are given by
( \
(m) (m) (m)
Qo0 a?,l) a,m G G Cm
(m) m (m)
Q.1 a1 a1m p Q) Cm—1
o [T )
(m) *  (m)* * *
Ao Oigm - aﬁ,’f}m GGy . (o

where (; is defined such that E[h,h* | = (,Inp for hy = vec(Hy). Note that (, =1
since Hj; contains unit-variance entries.

The DFDD can be derived from the m-symbol ML detector (4.1) by feeding back
the past decisions, i.e., replacing the hypotheses {Zk}z;ifm +1 by the previously de-
tected symbols {Z;};Z,;_,,.; in the n"* symbol interval and maximizing the term on
the right of (4.1) with respect to z, alone. Of course, terms on the right of (4.1) that
are not functions of z, can be ignored. We denote the DFDD derived from m-symbol
ML detector as the m-DFDD, given by

tr{mz_ ag 1 X (V;,LHVZ“ ]) n— k—l}] (4.3)

j=1

Z, = arg max R
2n€L

which is the generalization of the DFDD rules for DPSK [22] and diagonal constel-
lations [29] to the general class of unitary constellations. It can be shown that when
H, = H,_y, af)} is real and positive (see Lemma 2). Therefore, for m = 1 and un-
der the assumption that H, = H,_1, (4.3) reduces to the standard detector (2.14),

making (2.14) a special case of the class of detectors derived in this chapter.
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4.1.2 DFDD from MMSE channel prediction

Under the assumption of correct past decisions, i.e., 2y = 2,k =n—m—+1,... ,n—
1, we now derive a DFDD based on MMSE channel prediction. Although our deriva-
tions assume correct past decisions, the DFDD can be implemented in practice using
symbol estimates.

In the symbol interval n we observe X,, for detection of V,, and the observations
{X;}e=l  are collected for estimation of H,. For estimation of H, we assume,

for the moment, that {Sx}?=. , is known (without error) at the receiver. We will
see, however, that the resulting detector will depend on {V, };_,_,. ., rather than
k=n—m"

{Sp}rz! Since Xy = /LS Hy+Wy, k =n—m,... ,n—1, denoting h;, = vec(Hy),

x; = vec(Xy), and wy = vec(Wy), we can write

Xn—1 0 Ip X Sn,1 0 0 hn—l Wp—1
: =37 0 . 0 : + : (4.4)
Xn—m 0 0 Ir® Snfm hn—m Wn—m
&\/_/ - -~ -’ - ~ o ~ ~ J
X,_1 Sn-1 h, W1

~

Assume that the MMSE estimate of h,, h, = vec(H,|""}) is given by h, =
> e, Bixp_y = B*x,, 1, where B = [B} Bj ... ;B ]*. It can be shown straightfor-
wardly that the mean square error J(B) = E[||h, — h,||?] is minimized by selecting

(for proof, see Appendix A.1)

B = \/%sn_l ((T(m—lflg)@IMp) (4.5)

g = [Cl <2 Cm]*

T™ = 1,4 +ﬁ5<m> (4.6)

where 2™ is defined in (4.2) and the minimum mean-square error Jy,;, is given by

Join = MP(1-0%) (4.7)
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0% = %g*TW—U‘lg (4.8)

“W_2m

The choice of the notation 0% will be made clear later. Now define F™ Y =

) /ﬁT(mfl)_lg so that B =38, 1 (F™ " ®Ip). Then, letting & = ,/% + /(1=

0%) >0, we can write [43] (for proof, see Appendix A.2)

[HMP] _ [ (£+1)Inp Lg* Q@Iyp ]
0

\/%MP ] (4.9)

78@Iup T"V®Iup | | o @1,
T Iy p
which implies
agy Tup
Fo D @Typ =& : (4.10)
“’;; Iup

Therefore, the channel estimate h,, is given by

A~

hn = (F(m_l)* X IMP) S;: 1Xn-1

- 52 ag,;c)ﬂ IP ® S:L—k—l) Xn—k—1 (4.11)

Defining the estimation error h,, = h, — h,,, the system model (2.3) can be rewritten

as

X, = /12 (Lp ® V.,) (Ip ® Syo1) B+ /£ (Ip © S,) By + W, (412)

- v
-~

Wn

It is not hard to show that E[h,h] = 0% Iyp and E[h,h:] = 0, which implies
E[h,w?] = 0. It can also be shown that E[w,w!] = o2 % Inp, where 02 =1+ £(1 -
%) (for proof, see Appendix A.3).

Note that computation of the estimate h, requires the knowledge of the symbols
{Sk}r=L _ which are unknown to the receiver, whereas (Ip ® S,_1) h,, depends on the
previously detected (error-free) symbols {V;, };=,_, ... Moreover, since the entries of
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h, are zero-mean i.i.d. Gaussian variables, multiplication by the unitary matrix does
not change its distribution. Therefore, from (4.12), the ML detector of V, for known

(Ip ® S,_1) hy, is (for proof, see Appendix A.4)

%, = arg max®R [X; Ipr®V,,)Ip® S, 1) fln]

Zn€L
m—1 k
tr {5 a'gy;c)—kl X* (‘/Zn H ‘/Zn_j> Xn—k—l}] (413)
k=0 j=1

which is identical to (4.3) under perfect past decisions since & > 0. Since per-

= arg max R
Zn €L

fect past decisions are not available in practice, (4.13) would be implemented using
{2} .1 in place of {z}}_} ., making it identical to (4.3).

Therefore, we have shown that the DFDD rules for DUST derived from multiple-
symbol ML detection and from MMSE-optimal linear prediction are identical under

perfect past decisions.

4.1.3 Comments

1. Though our derivations of DFDD for non-diagonal constellations assume block-
fading channels, simulation results in Section 4.3 confirm that the m-DFDD
for m > 1 derived in this paper significantly outperforms the standard single
symbol detector under fast continuous-fading as well. Note that the coefficients
{a (m)} used in the continuous-fading case would be recomputed with (; defined

such that E[ho,nhs,n_k] = CkIMP for hO,n = VGC(H(),n).

2. The m-symbol ML detection rule (4.1) can be re-written as (for proof, see

Appendix A.5)

~ N _
{2 Yinomp = arg max ®
2ZnsZn—15EL

{Z <nk\“'“>}](4.14>
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n—k—1
Hy wlnit = Y af (SiXo (4.15)
{=n—m

It is easy to show that the m-symbol ML detection rule for detecting {z}7_, .1

from {Xy}p_, . for known S,__1H,_ can be written as (4.14) but with the

n—k—1
n—m

replacement ﬁn_km:’fn_l = H,_}. In fact, if Sn_k_ll-:fn_k| are any channel
estimates such that the sum of the channel estimation error and the additive
noise is white, then (4.14) is still the joint ML detector. Thus we see that the
multi-symbol ML detection rule has an estimator/detector structure, where the

channel estimation is performed using (4.15).

Observe that in the m-symbol ML detection rule, H, j is estimated using a
length-(m — k) channel estimator, i.e., the channels H,, H,_1,... , Hy,_ 1 are
estimated using length-m, m — 1,...,1 estimators, respectively. The perfor-
mance of the ML detector can be improved by increasing the estimator lengths,
which can be easily accomplished by increasing m, which, however, increases
the complexity exponentially. Note that the performance can still be improved
without increasing m by employing equal-length estimators for H,,_, Vk, the
length being equal to m. Such equal length estimators are inherent to the “over-
lapping block detection” scheme of Chapter 3, which can be implemented using
a Viterbi-like algorithm and which performs better than the “non-overlapping

block detection” scheme.

. From (4.11), we see that the channel estimator embedded in the m-DFDD can
be described as a filter with impulse response {agy }i,, input V; = S; X, =
V 17 Hi + SiWi, and output Hy. Recall that {Hy}, the response of a fading

channel, is typically a lowpass random process whose bandwidth is defined by
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the Doppler spread of the channel [41]. Therefore, the filter acts to attenuate

the wideband additive noise S;W} and predict the desired process.

The passband width of the optimal linear predictor will be commensurate with
the desired-process bandwidth in the presence of noise and will shrink as the
noise power increases and expand as noise power decreases. Thus the effect
of under-estimating the Doppler spread can be somewhat countered by over-
estimating the SNR p and vice versa. However, simultaneous over (or under)
estimation of both Doppler spread and SNR can result in severe performance
degradation. Note that the excess prediction error due to over-estimation of
Doppler frequency is directly proportional to the noise power, and therefore
becomes asymptotically negligible as SNR increases. On the other hand, error
due to under-estimation of Doppler frequency does not decrease with increasing
SNR, and so the estimation error succumbs to a floor. Note that, when the
prediction filter length m is small and the receiver under-estimates the Doppler
spread, the performance degradation is small since the filter has a wide “transi-
tion band”. On the other hand, larger m allows a sharper transition band and
hence reduces robustness to Doppler mismatch. These notions are confirmed

by the numerical results in Sections 4.2 & 4.3.

4.2 FError Performance

In this section we first derive the exact PWEP and Chernoff upper bound ex-
pressions for genie-aided (i.e., perfect past decisions) DFDD, and later use them to

approximate the BER. Since the DFDD requires knowledge of fading correlation and
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SNR, we also derive the exact and Chernoff bound expressions for PWEP and ap-

proximate the BER under imperfect knowledge of these parameters.
4.2.1 Exact PWEP: perfect knowledge of (; and p

Defining h,, = é(Ip ® Sp—1)h,, W, = W, /oy, and %, = x,,/0};, We can rewrite

(4.12) as
. _ P L
X, =1\~ Ip®V,,)h, + W, (4.16)
M
where p = ’;H is the “equivalent SNR”. Note that h,, W, ~ CAN(0,Ip) and
w
E[h,w*] = 0.

Given that the symbol V; was sent, the receiver will detect V5, and thus make a

50— /2= e @ Vo) Bl < [ = /17 (Lp ® V1) B

decision error, if

—=Q=y; [ ur —IMP] [i;} <0 (4.17)
K y

where y; = \/% (Ip® (Vi — Vo)) h, + W, and yo = W,, and the PWEP is given

by [44]
Pr(Vi = V2) =Pr(Q <0) = Z Res [—(I)QT(M)] (4.18)

where the summation is taken over the poles in the upper half plane (UHP) and
®g(w) = E[e?“?]. The characteristic function of @, a Hermitian quadratic of Gaussian
vector, is given by [38]

1
& —
Q@) = G o — OBy K)

(4.19)
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where Ry, = E[yy*], given as

% Ip® (Vi =Vo)(Vi = Vo)*) + Inp Imp

IMP IMP

Ry = [ (4.20)

Using det [4 §] = det(A — BD 'C)det(D), it can be shown that (for proof, see

Appendix A.6)

u

M
det(Toyp — jwRyK) = H w—o,% wQ%Uﬁ)P

1%

= ﬁ(—@ w—jpi) (w—gpp)"  (4.21)

where o}, is the k' singular value of V; — V5 and

1 4M

= 11 1 >0 4.22
1 4M

. o= —[1—4/1 <0 4.23

Note that the characteristic function ®¢(w), and hence the PWEP, depend on the
signal only through the singular values of V; — V5. Since the singular values of V; — V5,
and I, — VoV}* are the same, Pr(V; — Va) = Pr(Iy — VL V).

Equation (4.21) implies that the poles of ®g(w) have multiplicities equal to mul-
tiples of P. Assume that ®g(w) has ng < M distinct poles {p; },2, in the UHP, i.e.,
there are ng distinct elements in the set {p; }2L,. Denoting the multiplicity of p; as
Pmy such that Y2, my = M, ®g(w) can be expressed as

2 M " 1
Palw) = (H Folle - jp,;>) LG = (424

Computation of the PWEP using (4.18) involves taking residues at {p; },2,, which

can be complicated since the multiplicities of these poles are greater than 1. A simple

method to evaluate the PWEP in such cases has been proposed in [28], where the
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poles are perturbed by small amount to eliminate multiplicity, and the PWEP is
computed by taking residues at all the simple poles in UHP. This method produces
an lower bound on the PWEP if all the concerned poles are moved away from the
origin, and upper bound when moved towards the origin. In this chapter, the 5

occurrence of p; is replaced by ;51; 3 + (i — 1)€g, yielding the set of simple

Pmk—l—z

poles {px}ME and hence, the PWEP from (4.18) (for proof, see Appendix A.7)

mw%ngé(ﬁ ) 11 (4.25)

pl 2 el () =10k b/ pk)

where an upper bound is obtained by choosing ¢, = —0.0025p,", and a lower bound by
choosing ¢, = 0.0025p;". Numerical results in Section 4.3 confirm that these bounds

are very close to each other, and thus this method produces an accurate estimate of

the PWEP.

4.2.2 Chernoff Bound on the PWEP: perfect knowledge of
G and p

To obtain a better intuitive insight into the performance of DFDD, we now analyze

the Chernoff upper bound on PWEP. Since (4.16) describes a known-channel system

with equivalent SNR p, the Chernoff bound on the PWEP is given by [9]

1 M ﬁ —P
P < — 1+ 4.2
v < 5 1T 1+ ] (4.26)

Observe that the diversity advantage of the system is M P, whereas the performance
is governed by the equivalent SNR p. Recall that p is a function of p, the SNR when
the channel is known perfectly (henceforth termed “coherent SNR”), the length m of
DFDD, and the fading correlations (j.

For numerical examples in this paper, we consider a system with M = 2 transmit
and P = 2 receive antennas. The MIMO channel exhibits Rayleigh fading [41] where
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Figure 4.1: Equivalent SNR g vs coherent SNR p for (a) fpTs = 0.1, (b) m = 3.

the correlation between fading coefficients £ matrix-symbols apart is given by (x =
Jo(2m fpTsMk) and where fpT; is the normalized Doppler frequency. Observe that
fpT,M is the effective normalized Doppler frequency for M x M symbols. As we will
see, the performance of the detectors degrades with increasing Doppler frequency,
therefore, increasing M in a fading channel may degrade the performance.

Figure 4.1 demonstrates the variation of the equivalent SNR p w.r.t. the coherent
SNR p for different fp7T,; and DFDD feedback lengths m. Observe that when either
fpTs is large or m is small, p reaches a ceiling, implying that an error floor will
appear in the BER vs. SNR curve. Fig. 4.1(a) indicates that increasing m has
less pronounced effect on the performance when p in small, whereas the performance

improvement can be significant when p is high. Equation (4.26) and Fig. 4.1(b) imply
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that the slope of the BER vs coherent SNR p curve would decrease with increasing
fpTs, which is in accordance with the result for DPSK reported in [22].

Figure 4.2 examines variations in p versus m and fpT; for p = 15dB. Fig. 4.2
indicates that increasing m beyond, say, m = 10 has an insignificant effect on perfor-
mance. Note also that when fpT; = 0, coherent detection performance is achieved
asymptotically by DFDD. Performance loss due to increased channel variation is de-

picted in Fig. 4.2(b).
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Figure 4.2: Equivalent SNR p vs (a) DFDD length m, (b) fpT, for p = 15dB

4.2.3 Exact PWEP: imperfect knowledge of (; and p

We have seen that the m-DFDD derived in this chapter requires knowledge of the

“coherent SNR” p and the fading correlations {(;}7,. In practice, perfect knowledge
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of these parameters is unlikely, especially in scenarios where channel statistics change
with time. In this section, therefore, we derive exact PWEP when the receiver has
imperfect knowledge of fading correlation and p.

Relative to the “coherent SNR” p, we introduce the assumed SNR p,. Similarly,
we construct the assumed matrices =™, 7™ g, and B, corresponding to =™, 7 g
and B defined earlier. The linear estimator is B, = v/pa/MS,,_1 ((Tém*”*lga) ® Inp)

and the channel estimate is h, = B’x,_,. Using h,, = h, — h,, we can rewrite (4.12)

as
X, = ﬁ(lp RV, )Ip® Sn_1)fln + 1/ ﬁ(IP ® Sn)fln +wy (4.27)

It can be shown that (for details, see Appendix A.8)

E[h,h] = % <g;TC§m-1>‘1T<m—1>T;m—l>‘1ga) Lup (4.28)

>

Vv
a2
Oh

~ =% 2 3 a % iy — ~2
Elw,w,] = ((ﬁu)— R (g T lga>+ﬁah) Lup  (4.29)

-

Qu <

and

z 2F * a4 xrp(m—1)— 22
Bl (o5, )] = | £ (LT g =5, ) rev) (430

-

Vv
2
Twh

v
v

Now defining X, = X,/Gw, hy = (Ip ® Sp_1)hn/6h, Wn = Wp/Gw, and j =

,032/312”, we can write (4.27) as

%, = \/ﬁ(lp ® V,, )hn + Wi (4.31)

92



v
[VEVE 3

such that E[h,h,] = E[W,w.] = Lyp and E[W,h ] = ;“;’” Ip®V,,. The PWEP

Pr(V; — V3) in this case can be computed using the method described in Section 4.2.1

and equations (4.21)-(4.25), but with the replacements (for proof see Appendix A.9)

M [y o P
. o . .
det(Ioyp — jwRyK) = H [%(1 — ) (w = jpi) (w — jp; )] (4.32)
k=1
1 4M
Py = —(1—7 1+T\/M p:l:\/ 1—|—7' M/p +v (1—72)] (4.33)
2 Y 9
POy
where o}, is the k™ singular value of V) —V; and 7 = % Again, the lower and upper

bound on the PWEP are close to each other, producing an accurate approximation

of the PWEP.

4.2.4 Chernoff Bound on the PWEP: imperfect knowledge
of (; and p

In order to further analyze the performance loss due imperfect parameter knowl-

edge, we present the Chernoff bound on the PWEP.

Theorem 1 The Chernoff upper bound on Pr(Vy — V3) is given by
-P

14 o2 ,5 2
P <z 1+ 2k (4L 4.34
r(V1—>V2)_2H +4(1_T2) T (4.34)

k=1

where T = -

Proof: To prove this theorem, we take an approach similar to the approach in [9].

Defining a; = (% + 74/ %)0,% and by = %(1 —72) > 0, (4.33) can be re-written as

1
P = % [Gk +4\/a; + 4bk:| (4.35)
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From (4.32) & (4.35) it is observed that the region of convergence of ®¢(w) = E[e/?]
is max (g — W\/ak +4b;) < Im(w) < ming(gE + —\/ai + 4b). Noting that

c= 2“7’“ is not a function of k, We evaluate the PWEP as

Pr(Q < 0) / folq) dg

oo+jc
/ / e 7P 4 (w) dw dg
OO+]C

oo+jec
- 1o
27r] e @ Q(w) dw
- /00 ! O (w+ je) dw (4.36)
T o) w+je @ J '

where the characteristic function has been inverted by choosing the integration con-
tour Im(w) = ¢, which lies within the region of convergence. From (4.32) and (4.35)

we get

k=1
M ] —-P

_ _J /o J ]

= kl:[l [bk(w o, a; + 4bg) (w + bk a; + 4bk)]
M CL2 —-P

= H 1+ b (w® + ) (4.37)
Py 4b;

get

_ % ﬁ [1 n &} - (4.38)

By replacing aj = ( + 71/ £ )ak and by = o ’5(1 — 72) in (4.38) we obtain (4.34). m
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Under perfect parameter knowledge, i.e., p, = p, 2™ = E™, T = T and
g, = g, it is easy to verify that 3h = 0oy, Gw = oy and oy, = 0, which implies

7 = 0, making (4.34) identical to (4.26). Observe that the performance in the general

1
1—72

case is governed by ( % + 7)?, whereas performance in the perfect knowledge
case is governed by p/M. To analyze the performance degradation due to parameter
mismatch, we define the “equivalent SNR loss” « as

ﬂf@ﬁﬁf% (4.39)

o=
1—172

Figure 4.3 shows the variations in a with respect to the actual Doppler frequency
fpTs, when the actual “coherent SNR” is p = 20dB, the assumed Doppler frequency
is fpTsla = BfpTs, and the assumed “coherent SNR” is p, = 10,30dB. Again, we
assumed M = 2 transmit antennas and (, = Jo(27 fpTsMk). From Fig. 4.3(a) we
find that, when p, = 30dB > p, # < 1, i.e., under-estimating the Doppler frequency
results in lower SNR loss compared to the case of 3 > 1. Figure 4.3(b), where
po = 10dB < p, shows the opposite trend. As predicted in Section 4.1.3 and shown
in Fig. 4.3, when [ < 1, performance can be improved by choosing p, > p and vice-

versa, whereas the performance loss can be significant when p, < p, 3 < 1, or when

pa>p; 3> 1
4.2.5 Approximate Bit Error Rate

In practice, bit error probability (BER) is a more useful metric than PWEP. We
use the Chernoff bound on PWEP and the exact PWEP derived previously together

with the union bound to compute approximate BER. Recalling that nM bits are
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Figure 4.3: SNR loss a for fpTs|a = BfpTs, “coherent SNR” p = 20dB and p, = (a) 30dB,
(b) 10dB

encoded in each transmitted matrix-symbol, the BER can be written as

onM _q onM _q

erno 1 €erno:
Pania™ i Yool D A VPtV = Vi) | (4.40)
=0\ k=0kj

onM _1 onM _q

1
P p 2o | X AW PO S v [ (@)
§=0  \ k=0,k#j

where d(V},V}) is the Hamming distance between the binary representations of V
and Vj, 7; is the probability that the information symbol V; was sent, the superscript
“Chernoff” indicates that Chernoff bound on the PWEP has been used, and (L)/(U)
indicate that the lower and upper bound on the PWEP produced by (4.25) has been
used. We will see in Section 4.3 that Pg(Qié(U) are accurate approximations of the

BER of genie-aided DFDD, whereas Pg(éﬁfgm’ﬂ is a very loose approximation. Recall
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that Pr(V; — V5) = Pr(Iyy — WVJY), that Vi,V € A = VRV € A since A is
a group [11] and hence satisfies closure and inverse properties, and that A becomes
symmetric in terms of Hamming distance if Gray mapping is used. Therefore, the
right hand sides of (4.40) & (4.41) simplify to WLszff—l d(Iy, V;) Pr(Iyy — V})
under the assumption of Gray mapping and equal prior probabilities.

For realizable m-DFDD, the influence of incorrect past-decisions has to be taken
into account for m > 1. In [26] it has been shown that the BER of realizable DFDD is
approximately twice that of genie-aided DFDD for DPSK, since every error is likely to
cause another error due to error propagation. Through numerical evaluation we find

that this approximation extends to DUST as well, which is in accordance with [29].

4.3 Simulations & Numerical Results

As in Chapter 3, in this chapter also we evaluate the performance of the detectors
with two channel types: “block fading” (2.3) and “continuous fading” (2.2). Re-
call that in continuous fading the correlation between coefficients k£ symbols apart
is given by Jo(27 fpTsk) [41], while, in block-fading, the correlation between channel
coefficients m matrix-symbols apart is given by Jo(27 fpTsMm).

As shown in Chapter 2, the use of diagonal constellations in continuous fading
yields the same model as general constellations in block fading, and hence detector
performance is identical in these two cases. Therefore, we focus on detector per-
formance using diagonal and non-diagonal constellations in continuous fading. We
consider a system with two receive and two transmit antennas and use the constella-

tions specified in Table 2.1.
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4.3.1 Bit Error Rate: Perfect Parameter Knowledge Case

In this section we present the simulation as well analytical bit error rate perfor-
mance of DFDD in the perfect parameter knowledge case. DFDD performance with
non-diagonal constellations has also been evaluated and compared with performance
in the case of diagonal constellations.

The simulated BER of genie-aided as well as realizable 1-, 2-; and 6-DFDD in
continuous fading with fp7T; = 0.1 and 0.05 is shown in Fig. 4.4, where the advantage
of m-DFDD, m > 1 over standard single symbol detection is clearly illustrated.
When fpT; = 0.1, 1-DFDD, which is equivalent to standard single symbol detection,
succumbs to very high error floor, whereas the performance is dramatically improved
when 6-DFDD is employed, as predicted by Fig. 4.1(a). Meanwhile, 2-DFDD performs
much better than 1-DFDD while still succumbing to an error floor. Similar, though
less pronounced, trends can be seen in Fig. 4.4(b), where fpT, = 0.05. Figure 4.4
also demonstrates the effect of error propagation via comparison of genie-aided and
realizable DFDD.

Next, the performance of the detectors has been evaluated in continuous fading
with a non-diagonal constellation to illustrate the performance loss due to approx-
imation of system model (2.2) by (2.3). Recall that the non-diagonal constellation
of Table 2.1 is generated by right multiplying the diagonal constellation by a fixed
non-diagonal unitary matrix. Because such an operation does not change the product
distance of the constellation [11], the comparison is fair.

Figure 4.5 illustrates the performance of 1-,2-, and 6-DFDD using the non-diagonal
constellation in continuous fading with fp7, = 0.075 and fp7; = 0.05. Although

a performance loss is incurred due to neglecting the channel variation within the
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Figure 4.4: m-DFDD detection of the diagonal constellation in continuous fading with (a)
foTs = 0.1, (b) fpTs = 0.05

matrix-symbol interval, in both cases 2- and 6-DFDD perform much better than
single symbol detection. Unlike the diagonal constellation case, Fig. 4.5 shows that
6-DFDD provides significant performance gain over 2-DFDD when fpT; = 0.05,
whereas the gain is insignificant for higher fp75.

Now we compare theoretical with simulated BER to verify the validity of the
error analysis in Section 4.2. Since BER and PWEP expressions have been derived
for genie-aided DFDD, and since the approximate BER of realizable DFDD can be
obtained by multiplying the genie-aided BER by 2 [26,29], we present simulation and

theoretical results for only the genie-aided case.
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Figure 4.5: m-DFDD detection of the non-diagonal constellation in continuous fading with
(a) fpTs = 0.075, (b) fpTs = 0.05

Figure 4.6 compares the theoretical and simulated BER of 2- and 6-DFDD using
the diagonal constellation in continuous fading with fp7, = 0.075. Three approxi-
mations to the BER have been presented: an upper bound Pg(éﬁiegmﬂ from (4.40), and
a lower bound P\~ and an upper bound Pégfie from (4.41). Observe that Pg(fn)ie and

genie

PY) are somewhat loose at high BER since (4.41) employs the union bound. Since

genie

Pg(eLn)ie and Pg(gl)ie are very close to each other, we shall only present Pg(gl)ie in the sequel.

4.3.2 Bit Error Rate: Imperfect Parameter Knowledge Case

In this section we present the bit error rate performance of DFDD under imperfect
knowledge of fading correlation and SNR. Fig. 4.7 investigates the analytical as well as

simulated performance of genie-aided 6-DFDD when the actual normalized Doppler
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Figure 4.6: Theoretical and simulated BER of genie-aided m-DFDD: Diagonal constellation
in continuous fading with fpTs = 0.075

frequency is 0.075 and the receiver has imperfect knowledge of fp7T; and SNR p. The
performance assuming perfect knowledge of fp7; and p has been compared to the
performance of detectors with assumed fpT;|, = 0.075,0.05 and p, = 15,30dB. As
expected, the parameter mismatch results in performance loss. Note that 6-DFDD
succumbs to an error floor when it underestimates the Doppler frequency and a loss
in SNR when it overestimates the Doppler frequency. For all but highest levels of
BER, Pg(gl)ie closely matches the simulation results.

Now we analyze the relation between robustness and the DFDD length m. Fig-
ure 4.8 plots the theoretical BER Pg(gl)ie of genie-aided m-DFDD versus m when the

actual normalized Doppler spread is fp7Ty = 0.075 and the SNR is p = 20dB. Ob-

serve that the performance loss due to under-estimation of the Doppler spread is
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severe for large m, as predicted in Section 4.1.3. While over-estimation of Doppler or
under/over-estimation of SNR, also results in performance loss, it is less severe, and
relatively constant over all values of m > 2. Finally, it is observed that m-DFDD is

quite robust against parameter mismatch when m = 2.

(b)
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log;o(BER)

— Simulation R

) A
B 6 Pgenie \ J
O pg = 15dB A
o pe = 30dB

A Perfect Knowledge

7 L L L 7
0 10 20 30 40 0 10 20 30 40

SNR p [dB] SNR p [dB]

Figure 4.7: Genie-aided 6-DFDD with the diagonal constellation in continuous fading with
actual fpTs = 0.075 and assumed fpTs|, = (a) 0.1, (b) 0.05

In this section, we have analyzed the performance of m-DFDD under various
conditions and have shown its improved performance over standard single symbol
detector. We have seen that the performance can be improved by increasing m when

normalized Doppler and SNR are known at the receiver, while increased m increases
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Figure 4.8: Genie-aided m-DFDD with fpTs = 0.075, p = 20dB

the vulnerability of m-DFDD towards under-estimation of Doppler frequency. There-
fore, the choice of DFDD length m in practice should depend on the reliability of the

Doppler frequency estimate, and of course, the complexity.

4.3.3 Comparison of Multiple-Symbol Detection and Decision-
Feedback Detection
We have seen in Chapters 3 & 4 that both MSD and DFDD are capable of reducing
the error floor in a fading channel. In this section, we compare the performance of
DFDD with that of MSD and analyze the performance loss incurred due to replacing
the hypothesized symbols with past decisions in the multiple-symbol ML detector.
Figure 4.9 compares the simulation BER performance of the realizable 3-DFDD,

genie-aided 3-DFDD, non-overlapping and overlapping block detection (p = 1) using
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3-symbol ML detector for fpT; = 0.1,0.075 and the perfect parameter knowledge case.
Observe that both realizable and genie-aided 3-DFDD exhibit similar performance as
the non-overlapping block detection scheme. In fact, when fp7T; = 0.075, performance
of these detection methods are indistinguishable. Meanwhile, the overlapping block

detection scheme demonstrates superior performance over other schemes.

(a) (b)

—— 3-DFDD (Realizable) —— 3-DFDD (Realizable)
— — 3-DFDD (Genie-aided) — — 3-DFDD (Genie-aided)
— - Non-overlapping — - Non-overlapping

++r Overlapping p=1 . Overlapping p =1

log,¢(BER)
N
log;(BER)

0 10 2 20 40 o 10 2 30 40
SNR p [dB] SNR p [dB]

Figure 4.9: Comparison of realizable 3-DFDD, genie-aided 3-DFDD, non-overlapping and
overlapping (p = 1) block detection based on 3-symbol ML detector for (a) fpTs = 0.1, (b)
FoTs = 0.075

Figure 4.10 compares the simulation BER of MSD and DFDD under imperfect
knowledge of fading correlation. Again, the performance of non-overlapping block
detection scheme and 3-DFDD are identical while overlapping block-detection scheme

exhibits superior performance.
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While the complexity of DFDD is significantly less that the complexity of MSD,
their performance are similar. In addition, the DFDD length can be increased to im-
prove the performance without increasing the complexity significantly. Thus, DFDD

deserves preference to MSD for practical implementation.

(2) (b)
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Figure 4.10: Comparison of realizable 3-DFDD, genie-aided 3-DFDD, non-overlapping
and overlapping (p = 1) block detection based on 3-symbol ML detector for perfect SNR
knowledge, actual fpTs = 0.075 and assumed (a) fpTs = 0.1, (b) fpTs = 0.05

4.4 Conclusions

In this chapter we have derived the decision-feedback differential detectors for
DUST in Rayleigh fading channel. Our theoretical and simulation analysis shows
that DFDD is capable of reducing the error floor in fast-fading channels. Although

the DFDDs assume the channel to be block-fading when non-diagonal constellations
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are used, they have been shown to improve the performance in continuous fading
as well. While increasing the DFDD length improves the performance under the
assumption of perfect parameter knowledge, the robustness of the DFDD to imperfect
parameter knowledge has been shown to decrease with increasing the DFDD length.
The performance of m-DFDD and non-overlapping block detection scheme based on

m-symbol ML detector are shown to be almost identical.
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CHAPTER 5

CONCLUSIONS & FUTURE WORK

In this thesis, we have presented novel detection schemes for DUST with signif-
icant performance improvement over the standard detector. The standard detector
succumbs to an error floor in fading channels. The detectors presented in this thesis
reduce and asymptotically eliminate the error floor.

In Chapter 3, we derive the multiple-symbol ML differential detectors and a re-
duced complexity multiple-symbol suboptimal detector that require the knowledge of
channel fading correlation and SNR. Our theoretical and simulation analysis shows
that the detectors are capable of reducing the error floor (encountered by the standard
single symbol detector) in a fading channel. Simulations show that these detectors
are reasonably robust against imperfect parameter knowledge.

Decision-feedback differential detection (DFDD) of DUST has been proposed in
Chapter 4, wherein we have shown that the DFDD derived from the multiple-symbol
ML detector comprises a Wiener-filter based channel predictor followed by coherent
ML detector. Using this result, we interpret the multiple-symbol differential detectors

as joint channel estimator-coherent detector. We derive theoretical BER expressions
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for DFDD that are verified by the simulation results. Comparison between the per-
formance of DFDD and MSD reveals that the increased complexity of MSD is dis-
proportionate with the performance improvement over DFDD. Thus, DFDD should
be preferred to MSD for practical implementation.

There are a number of avenues for further research.
Non-diagonal constellations in continuous-fading

This thesis assumes that the channel is block-fading when non-diagonal constella-
tions are used, which is usually invalid in a fast-fading environment. Thus, derivation
and performance evaluation of detectors for non-diagonal codes in continuous-fading
is an important topic for further research.
Adaptive implementation of the detectors

Since the detectors derived in this thesis require the knowledge of channel fading
correlation and SNR, they are required to be estimated and tracked in practice, es-
pecially in scenarios where channel statistics change with time. Leveraging the work
on adaptive detectors for DPSK [45,46] an adaptive implementation for the DFDD
can be investigated.
Application to frequency-selective fading channels

We have considered flat-fading, i.e., narrowband channels for designing the de-
tectors. Since orthogonal frequency division multiplexing (OFDM) transforms a
frequency-selective channel into a decoupled set of flat-fading channels, our detec-
tors can be combined with OFDM for use in a wideband system. Further research
can conducted based on the existing results for a DPSK-OFDM system [47-51] and

the work reported in this thesis.
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APPENDIX A

DERIVATION DETAILS FOR Chapter 4

A.1 Proof of (4.5)

Since h, ; and w, ; contain zero-mean unit-variance i.i.d. Gaussian random

variables, E[h,h?_,| = GIyp, and x, | = \/47S,-1h, | +Ww,_, (see (4.4)), we have

Elx, 1x, 4] =

n—12n—1

1Y * *
M‘Sﬂ—lE[hnflhnfl]Snfl + ImMP

ﬁ w1 (B @ 1yp) iy + Luup

Sn-1 (ﬁa(m’l) & Iyp + ImMp> S,_, Since S,_; is unitary

Su1 (T V@ Inp) Spy

since T™ = Z50™ 4+ 1,,,1. Again, from (4.4) we have

E[anlh:]

= Vp/MS, 1 Eh, bi]+ Elw, ,h]
= Vp/MS,_1E[h,_ h]

= 4/ ,O/Msn—l(g & IMP) since E[hn_kh;] = C]:IMP

J(B) = E[|h, — hy|’

= tr{E[(h, — B"x,_,)(h, —x; ,B)[}
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= tr{E[h,h;] - B"E[x, ;] - E[h.x;,_,]B + B"E[x,_x;_,]B}

= tr{Inp — Vp/MB*S,_1(g ® Inp) — Vp/M(g" ® Inp)S, B
+B*S, 1 (T(m_l) X IMP) S;le} (Al)

J(

Setting 91B) — (), we get

0 = 28n_1 (T(m_l) X IMP) S:Lle — 2\/ p/MSn_l(g X IMP)
= B = /p/MS,, <T(m_1)71 ® IMP) Sp_1Sn-1(g ® Inp)

= Vp/MS, ((T("H)_lg) ® IMP)

which is (4.5). Substituting it into (A.1),

Juin = tt{Inp — p/M((gT™ " "'g) ® Lip)}

p _p—1
= MP(1 - g'T™"
= MP(l—az)

A.2 Proof of (4.9) & (4.10)

Recalling that F™Y = \/p/MT™ > 'g and £ = 1/% + /(L —0%) >0, we

have the identities

M
\/ o % + DLyp — %((g*F(W”) RIup) = Elyp

V8 ®Iup — (T F ) @Typ = 0

which imply (4.9). Now (4.9) implies

i |- reene %]

—F™=) @ Tp 0

(m) (m) (m)

Qo0 a?,l) Qo.m §
(m) m (m)
o1 %11 --. Oppy 0 o1

= — ) ) . . . MP

(m) * (m) * (m)

aO,m a’l,m e a“nrznm O



Therefore,

® Iyp
— fim=-1) ® IMP

(m)*

%IMP ] . a’O,l

(m) *
(m)*
Qo1

— Fim-1 — é‘ :

(m) *
aO,m

which is another form of (4.10)

A.3 Details of Statistics of fln, fln, and w,,

Since h,, = B*x, 4,
E[h,h;] = BElx, ,x; |B

- B [ﬁsn_l(zm—” ® Lyp)S:_; + Luur| B

- B*Sn_l(T(m_l) ® IMP)S:Z_lB

Substituting B = \/ZS, 1 (T "'g) ® Iyp),

E[h,h;]
- %{((g*T(m_l)_l) ® IMP) Sp 1S (T @ IMP)S;«:flSn—1<(T(m_1)_lg) ® IMP)}
B % {((g*T(m_l)_l) ® IMP) (T @ Inp) ((T(m_l)_lg) ® IMP) }
= 0?& QR Iyp
= O'%[IMP
Now,
E[h,h;] = E[h,(h, —h,)"]

= E[h,h’] - o2 Iup
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= B'E[x,_h}] — o%Iup
= B*F [(\/ p/MS, 1h, | + En—1> h;] — o Lup

= 4/ %B*Sn—l(g ® Inp) — U%IIMP

- % ((g*T@nfﬂ‘l) ® IMP) Sn_1Sn-1(8 ® Inp) — 07 Iup
Y >1<T7(m71)71 I 2 I
78 g) ®@lyp —ogzlup

=0

Since W, = /& (Ip ® Sn)fln +w, and h,, L w,,

_r

Blww;) =+

n

(Ip ® Sp)E[h,hi](Ip ® SF) + Lyp

Now, note that E[h,h*] = 0 implies that E[h,h*] = 0% Ixp. Therefore,

~ o~ A~

E[b,h;] = E[(h, —h,)(h;, — b))
= E[hnh;] + E[ﬂnﬂ;] - E[hnflm - E[flnh;]
= Iyp+oplup —20%Iyp

= (1 — U;fl)IMP

Using the above equation in (A.2), we get

E[f.w:] = [1 + ﬁu —02)] Typ
= O-%/IMP

A.4 Details of (4.13)
We have from (4.12)
2, = arg max R [x;‘1 I1p®V,,)(Ip®S,_1)h,
2 €L
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Substituting (4.11) in the above equation, we get

B m—1
2, = arg rrzax%? X (Ip @V, )Ip® Sp-1)& Z aé"}c)ﬂ (Ir® S;kl)xnkll
#n€ k=1

= arg max® |& Z s xn(Ip @ V) (Ip ® Sn_lS;‘;_k_l)xn_k_ll

2 €L

i m—1
= arg max R {{:ZaékﬂX Vo Sn 1S5 o 1 Xn ke 1}]

2n€L 1
B m—1 k
= arg max R |tr {f aékHX* (Van . ]) ke 1}] (A.3)
Zn€L i k=0 j=1

which is (4.13).

A.5 Proof of (4.14) & (4.15)

n—

m—1m—k—1 i+k
(m)
zz+k+1 H szn j n 1—k—1

k=0 =0

Substituting H’“Lk Vieue; = Sn-iSy_i_y_1 in (4.1), we can write

m—1m—
— (m) *
- 2 : E : a’zz—|—k+1 Sﬂ ZS —i—k— an*’i*kfl
=0

m—1m—i—1

(m) *
- a; 'L—I—k—l—l Sﬂ ZS z—k—an—i—k—l

m—1 m—2—1

— (m)

- E :X zS E : azz+k+1 —i—k— an i—k—1
1=

m—1 n—i—1
- X} iSn_ ( > alm Zspg) (A.4)
] l=n—m

.
il

which describes (4.14) & (4.15). Note that change of order of the summations is

performed in the first step, and £ =n — i — k — 1 is substituted in the final step.
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Now, we re-write (2.3) as Xy = /ZV, SpmiHy + Wi,k = n—m+1,... ,n.

Wn
Wn—m+41
i ———

~
Xn Vn h, W

Assuming that Sy_;H} is known to the receiver, we write

Xn P, Ip®V, 0O 0 (Ip®Sn—-1)hy,
[ : } “\Vu o . : :
Xn-m+1 0 IP®V'Zn—m+1 (IP®Sn—m)hn—m+1
SN———— ~

- - -

The multiple-symbol ML detector is therefore given as

. . [p
{Zk};cl:n—m—l—l = arg min ||§n - Mvnhn“Z

zn,zn_1,...€/$

: [p " [p
= argmin |x,—4/—=V:h, X, — —Vnhn>
zn,zgfl,...e[, <_ M > ( M
= argmax x,V,h, +h Vx,

ZnsZn—1,---€L

= arg max R [X;Vnhn]

ZnyZp—14.EL

m—1
= arg max R [Z X, (Ip ® (Vznkan,k,l)) hnk]

ZnsZn—1,---€EL k=0

m—1
= R [tr {Z X;_szn_kSn_k_lﬂn_k}]
k=0

Observe that the above derivation also applicable when S;_1H} is replaced by the
estimate Sk_lﬁk such that the sum of the channel estimation error and additive

noise is spatio-temporally white, yielding detector (4.14).

A.6 Proof of (4.21), (4.22) & (4.23)
Recall that
rox - [EAre (V= Vo) (i —Va)) + Typ —Tup A5)
v Iup —Iyp '
So,
det(Isz _ ijyK) = det [(l—jw)IMP—jw%(Ip(@(Vl—Vz)(Vl—VQ)*) jwlyp ] (A6)

—jwlpp (1+jw)Inp
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Using det [ 4 §] = det(A — BD™'C)det(D), we have

det(IgMp — ijyK)

[ . P . w?
= det (1 = i) Tuup = gl © (Vi = Va)(Vi = V2)) = waMp] «

det (1 + w?)Iyp — (jw — w?)

M 5 5 P
1—jw— =P
H[ J ak+Mw02}

L e (Vi = V) (i~ 1)) ~ T

i) T

(4.21) follows by applying (az? + bz + ¢) = a(x — —tHP=tac) (g 4 btvb—dac) jp (A7),

A.7 Proof of (4.25)

Perturbing the multiple poles {5, } le by small amounts to eliminate multiplicity,
we get the set of simple poles {p, }1%. Replacing {p; },2, by {p; } M in (4.24), we

obtain the approximate characteristic function
M P up

@Q(W) = (H w#) H % (A.8)

ezlpo-e(w_jpﬁ) =1 (w_]pf)

Residue of —®g(w)/w at w = jp, is given by

_%w] _ [_%(m(w_ jﬁ,‘:)]

_ —1(ﬁ M ))Pﬁ .:+1

3P \ey PoLUPE = 0k) ) oores GDE — 390)

-1 (& M "oup 1
~ TaMPEt (H ) H ~+7~+)

J Py /=1 ﬁo-(?(ﬁ: - p]:) =104k (pk; Dy

Res
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A.8 Details of (4.28), (4.29), & (4.30)

Using B, = \/Wsn_l ((Ta(m‘l)_lgu) ® IMP) and ﬁn = BIx,_; we can write
E[ﬂnf1 ] = B;E[x,_,x;_]B,
= B[S 1 (T @ Inp) S, 1] Ba
=P ((g*T(m D= 1) ® IMP) (T(m_l) ®Iyp) ((Tém‘”_lga) ® IMP)

M
_ pa (g*T(m 1)— lT(m 1)T(m 1)— 1g )IMP

M
= 5 up
which is (4.28). Now recall that w, = \/%(Ip ® Sn)fln + w,, and fln =h, — fln
Therefore,
Elh,h,] = El(h, — h,)(h, — h,)"]
— Elh,h;] - Blb,h,] - E[h,h;] + E[h.h,]
= (1+6,)Lur — 2R{B.Elx,h]}
= (14 60T — 2V/pp /MR { (€277 @ Lur ) S, S,-18 (A.10)
<1+0 —%/ppT?R{g*T(m 2 }) Iyp

and

Ef¥awi] = 2 (1p ® S,)Elhah,)(Tp ® S2) + Tup

i
M
= ]3[ (1+0h — 2/ ppa/M %{g*T(m VT 1%}) Lvp +Tup
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2/ 3 pa . _ A2
= ((ﬁ +1) - A;f R(g T 'ga) + ﬁ%) Ivp

_ \/% (1 © 5,) (Vora G T ™80} — 52) Tup (e (A.10))

which implies (4.30).

A.9 Proof of (4.32) & (4.33)

From (4.31) it can be shown that, given that V; was transmitted, the receiver will
detect Vs, if (4.17) is true, where y; = 4/ % (Ip® (Vi —Vy)) h,, + W, and Yo = W,

Using (4.28), (4.29), (4.30), (4.31), y = [y} yi]*, and defining 7 = 22 V = Vi Vy,

GhOw ’

we can write

R, = Blyy'] = | vrrdhefmem vy Faeav | (a11)

Inp +T\/g(lp ® (Anm — V) Inp
Using det [4 §] = det(A — BD'C)det(D), det(Ip ® A) = (det(A))” and 21, — V —
V* = (Vi — Vo) (Vi — Va)*, it is straight-forward to simplify det(Ioprp — jwRy K) to
det(IgMp - ]wRyK) =
det [1 —Jw(BIM + mJBIM) Vi = Va) (Vi = Vi)'t

PHMA -V - W)W 1] (A1)

Now denoting the k™ singular value of V; — V; as 0,%, we have

M P
det(Iopp — JwRyK) = H [1 — jw(p/M + 17/ p/M)o} + w*p/M(1 — 7'2)0,3]
k=1

(A.13)
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Using (az? + bz + ¢) = a(x — =4 —ac W)(m + v —dac W) in (A.13) we get (4.32) and

(4.33).
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