

Phil Schniter and Ted Reehorst

Supported by NSF grants IIP-0968910 and CCF-1716388 and NIH grant R01HL135489

Inverse Problems in Imaging

Consider the basic inverse problem in imaging:

Recover \boldsymbol{x}^{0} from measurements $\boldsymbol{y} = \text{corrupted}(\boldsymbol{A}\boldsymbol{x}^{0}),$

- where A is a known linear operator.
- Corruptions include noise, quantization, loss of phase, Poisson photons, etc.
- The operator A depends on the application:
- deblurring
- super-resolution
- compressive imaging
- inpainting
- etc

Optimization-Based Recovery and MAP Estimation

A common approach to recovering the image x is through posing and solving an optimal x

$$\widehat{\boldsymbol{x}} = \arg\min_{\boldsymbol{x}} \left\{ \ell(\boldsymbol{x}; \boldsymbol{y}) + \lambda \rho(\boldsymbol{x}) \right\} \text{ with } \begin{cases} \ell(\boldsymbol{x}; \boldsymbol{y}) : \text{ loss function} \\ \rho(\boldsymbol{x}) : \text{ regularization} \\ \lambda > 0 : \text{ tuning parameter} \end{cases}$$

This can be interpreted as Bayesian MAP estimation:

$$\widehat{\boldsymbol{x}}_{\mathsf{map}} = \arg\min_{\boldsymbol{x}} \left\{ -\ln p(\boldsymbol{y}|\boldsymbol{x}) - \ln p(\boldsymbol{x}) \right\} \text{ with } \begin{cases} p(\boldsymbol{y}|\boldsymbol{x}): & \mathsf{likelihood} \\ p(\boldsymbol{x}): & \mathsf{prior} \end{cases}$$

The loss function $\ell(\cdot; \boldsymbol{y})$ is usually straightforward to choose. But how do we choose the regularization $\rho(\cdot)$?

Plug-and-Play ADMM

• A common approach to convex optimization is ADMM: For some $\beta > 0$ and k = 1,

$$x_k = \arg\min_{x} \left\{ \ell(x; y) + \frac{\beta}{2} ||x - v_{k-1} + u_{k-1}||^2 \right\}$$

$$\boldsymbol{v}_{k} = \arg\min_{\boldsymbol{v}} \left\{ \rho(\boldsymbol{v}) + \frac{\beta}{2} \|\boldsymbol{v} - \boldsymbol{x}_{k} + \boldsymbol{u}_{k-1}\|^{2} \right\} \triangleq \operatorname{prox}_{\rho/\beta}(\boldsymbol{x}_{k} - \boldsymbol{v}_{k})$$
$$\boldsymbol{u}_{k} = \boldsymbol{u}_{k-1} + \boldsymbol{x}_{k} - \boldsymbol{v}_{k}$$

- The prox operation performs denoising (eg, soft-thresholding when $\rho(\boldsymbol{x}) = \|\boldsymbol{x}\|_1$).
- In 2013, Bouman et al. proposed plug-and-play (PnP) ADMM, where the prox is replaced and play is replaced and play and play is replaced and play is replaced. sophisticated image denoiser $f(\cdot)$, such as BM3D.

Regularization by Denoising (RED)

■ In 2017, Romano, Elad, and Milanfar proposed a new family of PnP algorithms that estimate $\widehat{m{x}}$ that obeys

$$abla \ell(\widehat{oldsymbol{x}};oldsymbol{y}) + \lambdaig(\widehat{oldsymbol{x}} - oldsymbol{f}(\widehat{oldsymbol{x}})ig) = oldsymbol{0}$$

They claimed these algorithms result from optimization under the regularizer

$$\rho_{\mathsf{red}}(\boldsymbol{x}) \triangleq \frac{1}{2} \boldsymbol{x}^{\top} (\boldsymbol{x} - \boldsymbol{f}(\boldsymbol{x}))$$

- and thus coined the approach Regularization by Denoising (RED).
- They furthermore claimed that $ho_{\mathsf{red}}(\cdot)$ was convex with practical image denoisers $m{f}(\cdot)$
- Experiments in the RED paper suggest advantages for RED over PnP-ADMM:

Regularization by Denoising: Clarifications and New Interpretations

	The RED algorithms are not explained by the RED regu
	 Visualize by probing in two random directions: x_{α,β} = x̂ + αr₁ + βr₂. Contours show cost: C_{red}(x_{α,β}) ≜ 1/(2σ²) y - x_{α,β} ² + ρ_{red}(x_{α,β}). Arrows show claimed RED gradient: 1/σ²(x_{α,β}-y)^T[r₁ r₂]+λ(x_{α,β}-f(x_{α,β}))^T[r₁ r₂]. Figures show that 1) zero of gradient field is not at cost minimizer, and 2) cost may not be convex!
	Clarifications on the RED Gradient
optimization problem: n heter	In the full paper, we established that • differentiability of $f(\cdot)$ implies $\nabla \rho_{red}(x) \stackrel{D}{=} x - \frac{1}{2}f(x) - \frac{1}{2}[J]$ • adding local-homogeneity (LH), i.e., $f((1 + \epsilon)x) = (1 + \epsilon)f(x)$ $\nabla \rho_{red}(x) \stackrel{D,LH}{=} x - \frac{1}{2}[Jf(x)]x - t$ • adding Jacobian symmetry (JS) finally leads to $\nabla \rho_{red}(x) \stackrel{D,LH,JS}{=} x - f(x) \dots$ which yield
	But practical denoisers are not LH and JS! And there exists no reg
1.2.3	How can we explain the RED algorithms?
_, _, _, .,	The RED algorithms solve $ abla \ell(\widehat{m{x}};m{y}) + \lambdaig(\widehat{m{x}} - m{f}(\widehat{m{x}})ig) = m{0}$ and wor
$oldsymbol{u}_{k-1})$	Can we justify this approach? Even when $oldsymbol{f}(\cdot)$ is not locally homog
). replaced by a	 Yes! Using score matching, a framework first described by Hyvärine 1 kernel density estimation, 2 Tweedie's formula, 3 score matching.
	Kernel Density Estimation (KDE)
nat find the image	Given training data $\{\boldsymbol{x}_t\}_{t=1}^T$, consider forming the empirical pr $\widehat{p}_{\mathbf{X}}(\boldsymbol{x}) = \frac{1}{T} \sum_{t=1}^T \delta(\boldsymbol{x} - \boldsymbol{x})$ A better match to the true $p_{\mathbf{X}}$ is obtained via Parzen windowin $\widetilde{p}_{\mathbf{X}}(\boldsymbol{x}; \nu) = \frac{1}{T} \sum_{T}^T \mathcal{N}(\boldsymbol{x}; \boldsymbol{x}_t, \nu \boldsymbol{I}) = \int_{\mathbb{T}^N} \mathcal{N}(\boldsymbol{r}; \boldsymbol{x}, \nu \boldsymbol{I})$
$oldsymbol{f}(\cdot).$	$ = Using the smoothed prior \widetilde{p}_{\mathbf{X}} for MAP image recovery, we get$
	$\widehat{\boldsymbol{x}} = \arg\min_{\boldsymbol{x}} \left\{ \ell(\boldsymbol{x}; \boldsymbol{y}) - \ln \widehat{p} \right\}$

Tweedie's Formula

- Assuming differentiable $\ell(\cdot; \boldsymbol{y})$, the MAP estimation problem is solved by $\mathbf{0} = \nabla \ell(\boldsymbol{x}; \boldsymbol{y}) - \nabla \ln \widetilde{p}_{\mathbf{X}}(\boldsymbol{x}; \nu).$
- Tweedie's formula (see [Robbins'56]) says that $\nabla \ln \widetilde{p}_{\mathbf{X}}(\boldsymbol{x}; \nu) = \frac{1}{\nu} (\boldsymbol{f}_{\mathsf{mmse},\nu}(\boldsymbol{x}) - \boldsymbol{x}),$
- with $f_{mmse,\nu}(r)$ the MMSE denoiser of $r \sim \widehat{p_{X}}$ from $r = r + \mathcal{N}(0, \nu I)$.
- Together, these results match the RED fixed-point equation $oldsymbol{0} =
 abla \ell(oldsymbol{x};oldsymbol{y}) + \lambda ig(oldsymbol{x} - oldsymbol{f}_{\mathsf{mmse},
 u}(oldsymbol{x})ig)$ with $\lambda = rac{1}{u}$
- for the specific denoiser $f_{\mathsf{mmse},\nu}$. What about generic denoisers f?

BASP Frontiers Workshop 2019

- $J \boldsymbol{f}(\boldsymbol{x})]^{\top} \boldsymbol{x}.$ (\boldsymbol{x}) , gives $\frac{1}{2}[J\boldsymbol{f}(\boldsymbol{x})]^{\top}\boldsymbol{x}.$
- lds the RED algorithms.
- gularizer ho_{red} for a non-JS denoiser $oldsymbol{f}!$
- rk well.
- geneous or Jacobian symmetric?
- nen in 2005. We explain this in 3 steps:

rior

 $\boldsymbol{x}_t).$

ng or KDE:

```
\widehat{p}_{\mathbf{X}}(\boldsymbol{x}) \,\mathrm{d} \boldsymbol{x}.
                                             "smoothed prior"
```

 $\widetilde{p}_{\mathbf{X}}(\boldsymbol{x}; \nu) \}$

Score-Matching by Denoising

$$\widehat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} \mathbb{E}\{\|\boldsymbol{x} - \boldsymbol{f}_{\boldsymbol{\theta}}(\boldsymbol{r})\|^{2}\}$$
$$= \arg\min_{\boldsymbol{\theta}} \mathbb{E}\{\|\boldsymbol{x} - \boldsymbol{f}_{\mathsf{mmse},\nu}(\boldsymbol{r})\|$$
$$= \arg\min_{\boldsymbol{\theta}} \mathbb{E}\{\|\boldsymbol{f}_{\mathsf{mmse},\nu}(\boldsymbol{r}) - \boldsymbol{f}_{\boldsymbol{\theta}}(\boldsymbol{r})\| = \arg\min_{\boldsymbol{\theta}} \mathbb{E}\{\|\underline{\nabla}\ln\widetilde{p}_{\mathsf{X}}(\boldsymbol{r};\nu) - \underline{f}_{\boldsymbol{\theta}}(\boldsymbol{r})\| = \arg\min_{\boldsymbol{\theta}} \mathbb{E}\{\|\underline{\nabla}\ln\widetilde{p}_{\mathsf{X}}(\boldsymbol{r};\nu) - \underline{f}_{\boldsymbol{\theta}}(\boldsymbol{r})\| = \operatorname{argmin}_{\boldsymbol{\theta}} \mathbb{E}\{\|\underline{\nabla}\ln\widetilde{p}_{\mathsf{X}}(\boldsymbol{r})\| = \operatorname{argmin}_{\boldsymbol{\theta}} \mathbb{E}\{\|\underline{\nabla}\|\| = \operatorname{argmin}_{\boldsymbol{\theta}} \mathbb{$$

- Key points:

- and DnCNN.
- Related work:
- of an energy function.

Fast RED Algorithms

Until now we focused on how to explain the RED method, which solves

Now we focus on algorithms that try to *solve* this equation.

- In the RED paper by Romano, Elad, and Milanfar, three algorithms were described: **1** steepest-descent
- 2 ADMM with I inner iters (to solve $\arg \min_{\boldsymbol{x}} \{\lambda \rho_{\mathsf{red}}(\boldsymbol{x}) + \frac{\beta}{2} \|\boldsymbol{x} \boldsymbol{r}_t\|^2 \}$)
- **3** a heuristic "fixed-point" method.

We proposed three new algorithms:

- **PG**: Proximal gradient with stepsize L > 0.
- **DPG**: "Dynamic" proximal gradient that schedules L with the iterations.
- APG: Accelerated proximal gradient, similar in spirit to FISTA.

In the de-blurring experiment on the right, APG is about $3 \times$ faster than the "fixed-point" method.

Convergence to a Fixed Point

Theorem:

If $\ell(\cdot)$ is proper, convex, and continuous; $f(\cdot)$ is non-expansive; L > 1; and RED-PG has at least one fixed point, then RED-PG converges to a fixed point.

Proof:

Uses α -averaged operators and the Mann iteration.

Conclusions

- RED algorithms seem to work well in practice.
- But, in practice, they are not minimizing any cost function. Practical denoisers $f(\cdot)$ are not LH and JS. Non-JS f implies that there exists no regularizer ρ s.t. $\nabla \rho(x) = x - f(x)$.
- The RED methodology can be explained as "score-matching by denoising".
- We proposed new RED algorithms with faster recovery
- guaranteed convergence to a fixed point.
- For more details (e.g., an equilibrium analysis), please see:

Recall *f*_{mmse,ν} = arg min_{*f*} E{||*x* - *f*(*r*)||²} for {*r* = *x* + N(0, ν*I*) *x* ~ *p*_X.
Since *f*_{mmse,ν} is expensive to implement, we typically use some approximation *f*_{*h*} with e.g., deep network $\|^{2}$ + $\mathbb{E} \left\{ \|\boldsymbol{f}_{\mathsf{mmse},\nu}(\boldsymbol{r}) - \boldsymbol{f}_{\boldsymbol{\theta}}(\boldsymbol{r}) \|^{2} \right\}$ via orthog principle $\boldsymbol{r}_{\boldsymbol{\theta}}(\boldsymbol{r}) \|^2 \}$ $(r - f_{\theta}(r)) \|^{2}$ via Tweedie's formula RED log-prior Thus RED algorithm with general denoiser f_{θ} can be interpreted as "score matching." **1** RED algs solve $\mathbf{0} = \nabla \ell(\mathbf{x}; \mathbf{y}) + \lambda (\mathbf{x} - \mathbf{f}_{\theta}(\mathbf{x}))$ where $\lambda (\mathbf{x} - \mathbf{f}_{\theta}(\mathbf{x}))$ approximates the score $-\nabla \ln \widetilde{p}_{\mathbf{X}}(\mathbf{x}; \nu)$. **2** This SMD interpretation holds for any $\widehat{p_X}$, any denoiser class f_{θ} (i.e., may be non-JS and/or non-LH), and any θ . **3** SMD arises naturally via non-parametric estimation (i.e., KDE). Matches construction of *learned* denoisers liked TNRD

In 2014, Alain and Bengio showed that learned auto-encoders are be explained by score-matching and *not* by minimization ■ In 2017, Bigdeli and Zwicker used Tweedie's formula to interpret autoencoding-based image priors.

 $\mathbf{0} =
abla \ell(\widehat{oldsymbol{x}};oldsymbol{y}) + \lambda ig(\widehat{oldsymbol{x}} - oldsymbol{f}(\widehat{oldsymbol{x}})ig).$

10³