Philip Schniter (Ohio State/Duke) Sundeep Rangan (NYU) **Alyson Fletcher (UCLA)**

Image Recovery

 \blacksquare Our goal is to recover an N-pixel image $oldsymbol{u}^0$ from $M\ll N$ noisy linear measurements

$$oldsymbol{y} = oldsymbol{\Phi}oldsymbol{u}^0 + oldsymbol{w} \in \mathbb{C}^M$$
 with

 $oldsymbol{u}^{0}$: true image

with $\left\{ egin{array}{c} m{\Phi} : {
m linear measurement operator} \ m{w} : {
m white noise of variance } \sigma_w^2. \end{array}
ight.$

In the sparsity-based approach 1, one writes

$$oldsymbol{y} = oldsymbol{\Phi} oldsymbol{\psi} oldsymbol{c}^0 + oldsymbol{w} \in \mathbb{C}^M$$
 w

with $\left\{ egin{array}{c} m{c}^0 : ext{wavelet coefficients} \ m{\Psi} : ext{inverse wavelet transform} \end{array}
ight.$

and first recovers a sparse estimate $\widehat{m{c}}$ of $m{c}^0$, then later the image $\widehat{m{u}}=0$

- In the plug-and-play approach 2, one repeatedly calls an image denoisi algorithm (e.g., BM3D)
 - $\widehat{u}_t = \text{denoise}(r_t; \sigma_t)$ where $\begin{cases} r_t : \text{noisy version of } u^0 \\ \sigma_t^2 : \text{noise variance} \end{cases}$
- inside an iterative reconstruction algorithm like ADMM or AMP.

Approximate Message Passing (AMP)

For recovery of x^0 from $y = Ax^0 + w$, the AMP algorithm 3 is Input $oldsymbol{y}, oldsymbol{A}, oldsymbol{g}(\cdot; \sigma_t)$ and initialize $\widehat{oldsymbol{x}}_0 = oldsymbol{0}$ and $oldsymbol{v}_{-1} = oldsymbol{0}$. For $t = 0, 1, 2, \ldots, T-1$, $m{v}_t = m{y} - m{A} \widehat{m{x}}_t + rac{N}{M} lpha_t m{v}_{t-1}$ Onsager-corrected residual $oldsymbol{r}_t = \widehat{oldsymbol{x}}_t + oldsymbol{A}^{\mathsf{H}} oldsymbol{v}_t$ back-projection $\sigma_t^2 = M^{-1} \| oldsymbol{v}_t \|^2$ variance update $\widehat{\boldsymbol{x}}_{t+1} = \boldsymbol{g}(\boldsymbol{r}_t; \sigma_t)$ denoising $\alpha_{t+1} = \langle \boldsymbol{g}'(\boldsymbol{r}_t; \sigma_t) \rangle$ divergence Return $\widehat{m{x}}_T$

where the divergence is defined as

$$\langle \boldsymbol{g}'(\boldsymbol{r}_t; \sigma_t) \rangle = \frac{1}{N} \operatorname{tr} \left[\frac{\partial \boldsymbol{g}}{\partial \boldsymbol{r}}(\boldsymbol{r}_t; \sigma_t) \right]$$

■ With large i.i.d. Gaussian A:

• AMP has a rigorous state-evolution (SE) 4 when g is Lipschitz and separable:

$$[\boldsymbol{g}(\boldsymbol{r};\sigma)]_j = g(r_j;\sigma) \; \forall j.$$

- The SE fixed points are "good" in that they match the replica prediction (recentl proven correct 5) under an i.i.d. signal and MMSE scalar denoiser g.
- Good empirical performance in plug-and-play case, as in Metzler/Maleki/Baraniul

• With other **A**:

- \blacksquare AMP can diverge when A is (mildly) mean-perturbed, ill-conditioned, or structure
- Damping or sequential updating helps convergence over a limited range of A.
- Even if it converges, AMP's fixed points are suboptimal with non-i.i.d. Gaussian

References

- **1** A. Chambolle, R. A. DeVore, N. Y. Lee, and B. J. Lucier, "Nonlinear wavelet image processing: Varia problems, compression, and noise removal through wavelet shrinkage," IEEE Trans. Image Process.,
- 2 S. V. Venkatakrishnan, C. A. Bouman, and B. Wohlberg, "Plug-and-play priors for model based reconstruction," GlobalSIP 2013.
- 3 D.L. Donoho, A. Maleki, and A. Montanari, "Message passing algorithms for compressed sensing," I 2009.
- 4 M. Bayati and A. Montanari, "The dynamics of message passing on dense graphs, with applications compressed sensing," IEEE Trans. Info. Thy, 2011.
- **5** G. Reeves and H.D. Pfister, "The replica-symmetric prediction for compressed sensing with Gaussian is exact," *ISIT*, 2016.
- 6 C. A. Metzler, A. Maleki, and R. G. Baraniuk, "From denoising to compressed sensing," *IEEE Trans.* Thy, 2016. (See also arXiv:1406.4175 and http://dsp.rice.edu/software/DAMP-toolbox.)
- J. Vila, P. Schniter, S. Rangan, F. Krzakala, and L. Zdeborová, "Adaptive damping and mean remov generalized approximate message passing algorithm," ICASSP, 2015.
- 8 S. Rangan, P. Schniter, and A. K. Fletcher, "Vector Approximate Message Passing," arXiv:1610.0308
- 9 A. M. Tulino, G. Caire, S. Verdú, and S. Shamai (Shitz), "Support recovery with sparsely sampled fre matrices," IEEE Trans. Info. Thy., 2013.
- 10 B. Roman, B. Adcock and A. C. Hansen, "On asymptotic structure in compressed sensing," arXiv:14

Plug-and-	Day Image Recovery using VeTHE OHIO STATE UNIVERSITYUNIVERSITY	Ctor AMP BASP Support
	Vector AMP (VAMP)	Whitened VAMP for
$M \ll N$ noisy linear	• For recovery of x^0 from $y = Ax^0 + w$, the VAMP algorithm 8 is	To apply VAMP to ima "whiten" the signal:
mage measurement operator noise of variance σ_w^2 .	For $t = 1, 2,, T$, $\widetilde{\boldsymbol{x}}_t = \widetilde{\boldsymbol{g}}(\widetilde{\boldsymbol{r}}_t; \widetilde{\sigma}_t)$ LMMSE estimation $\widetilde{\alpha}_t = \langle \widetilde{\boldsymbol{q}}'(\widetilde{\boldsymbol{r}}_t; \widetilde{\sigma}_t) \rangle$ divergence	$y = \Phi \Psi \operatorname{Diag}(\tau)$ and use plug-and-play of
elet coefficients rse wavelet transform, later the image $\widehat{\boldsymbol{u}} = \Psi \widehat{\boldsymbol{c}}$	$\boldsymbol{r}_{t} = (\widetilde{\boldsymbol{x}}_{t} - \widetilde{\alpha}_{t}\widetilde{\boldsymbol{r}}_{t})/(1 - \widetilde{\alpha}_{t}) $ $\sigma_{t}^{2} = \widetilde{\sigma}_{t}^{2}\widetilde{\alpha}_{t}/(1 - \widetilde{\alpha}_{t}) $ $\widehat{\boldsymbol{x}}_{t} = \boldsymbol{q}(\boldsymbol{r}_{t}; \sigma_{t}) $ denoising	$\widehat{\boldsymbol{s}}_t = \boldsymbol{g}(\boldsymbol{r}_t, \sigma_t) = D$ For $\boldsymbol{\Psi}$ we use any orthor +22dB approximation of
calls an image denoising	$\begin{array}{l} \alpha_t = \left\langle \boldsymbol{g}'(\boldsymbol{r}_t; \sigma_t) \right\rangle & \text{divergence} \\ \widetilde{\boldsymbol{r}}_{t+1} = (\widehat{\boldsymbol{x}}_t - \alpha_t \boldsymbol{r}_t)/(1 - \alpha_t) & \text{Onsager correction} \\ \widetilde{\sigma}_{t+1}^2 = \sigma_t^2 \alpha_t/(1 - \alpha_t) & \text{variance update} \end{array}$	Since the U, V matrice we solve (1) approximation
Disy version of u° Dise variance DMM or AMP.	Return \widehat{x}_T where, given the SVD $A = U \operatorname{Diag}(s) V^{H}$, the LMMSE stage does $\simeq (\simeq \simeq) = (\simeq^2 A^{H} A \simeq \simeq^2 \pi)^{-1} (\simeq^2 A^{H} \simeq \simeq^2 \simeq)$ (1)	$\widetilde{\boldsymbol{g}}(\widetilde{\boldsymbol{r}},\widetilde{\sigma}) = \begin{bmatrix} \sigma \boldsymbol{A} \\ \sigma_w \boldsymbol{I} \end{bmatrix}$ The divergence $\widetilde{\alpha}_t$ is approximately a set of the set
	$\boldsymbol{g}(\boldsymbol{r},\sigma) = \left(\sigma^{2}\boldsymbol{A}^{T}\boldsymbol{A} + \sigma_{w}^{2}\boldsymbol{I}\right) \left(\sigma^{2}\boldsymbol{A}^{T}\boldsymbol{y} + \sigma_{w}^{2}\boldsymbol{r}\right) $ $= \boldsymbol{V}\left(\widetilde{\sigma}^{2}\operatorname{Diag}(\boldsymbol{s})^{2} + \sigma_{w}^{2}\boldsymbol{I}\right)^{-1}\left(\widetilde{\sigma}^{2}\operatorname{Diag}(\boldsymbol{s})\boldsymbol{U}^{H}\boldsymbol{y} + \sigma_{w}^{2}\boldsymbol{V}^{H}\widetilde{\boldsymbol{r}}_{t}\right) $ (1)	$\widetilde{\alpha}_t = \frac{\sigma_w^2}{N} \operatorname{tr} \left[\left(\widetilde{\sigma}_t^2 \boldsymbol{A} \right) \right]$
P algorithm \blacksquare is 0 and $oldsymbol{v}_{-1}=oldsymbol{0}$.	$\langle \widetilde{\boldsymbol{g}}(\widetilde{\boldsymbol{r}},\widetilde{\sigma}) \rangle = N^{-1} \operatorname{tr} \left[(\widetilde{\sigma}^2 \boldsymbol{A}^{H} \boldsymbol{A} + \sigma_w^2 \boldsymbol{I})^{-1} \right] \sigma_w^2 = \frac{1}{N} \sum_{w=0}^{N-1} \frac{\sigma_w^2}{\widetilde{\sigma}^2 s_n^2 + \sigma_w^2}$	where $\mathrm{E}\{oldsymbol{p}_koldsymbol{p}_k^{H}\}=oldsymbol{I}$. H
corrected residual back-projection variance update	 We say that A is right-rotationally invariant if a V is a Haar-distributed random matrix (i.e., uniformly distributed on the set of unitary matrices). The other SVD quantities, U and s, are deterministic and arbitrary This model includes mean-perturbed and ill-conditioned A 	 The divergence α_t is ap Metzler/Maleki/Baranie Finally, we employ a da to converge for any stri
denoising divergence	 With large, right-rotationally invariant A: VAMP has a rigorous state-evolution (SE) 3 when g is Lipschitz and separable. The SE fixed points are "good" in that, with an i.i.d. signal x_j and MMSE scalar denoiser g, they match the replica prediction from 9. Excellent empirical performance in plug-and-play case (see below). 	Image Recovery wit ■ Experiment setup: ■ DFT Φ, subsampling pate
$\left[\sigma_t \right) ight].$	 With structured V: VAMP can diverge, especially when V^Hx⁰ is not i.i.d. Gaussian! This occurs, e.g., when V is the DFT matrix and x⁰ is a natural image! 	 SNR=40dB 128 × 128 images {<i>lena</i>, db1 wavelet decomposition PSNR results averaged or
ipschitz and separable:	Image Recovery with i.i.d. Gaussian Φ (after 20 iterations)BM3D-AMPBM3D-VAMP	$\blacksquare FSINK VS IVI / IV and FS$ 34 $\blacksquare VAMPire-BM3D$
replica prediction (recently ar denoiser <i>g</i> . Metzler/Maleki/Baraniuk 6.	²⁵ ²⁰ ²⁰ ²⁰ ²⁰ ²⁰ ²⁰ ²⁰ ²⁰	32 LASSO via SPGL1 30 30 28 28 28 28 28 28 28 28 28 28
a limited range of A . with non-i.i.d. Gaussian A .	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	26 24 22 22 22
vavelet image processing: Variational <i>IEEE Trans. Image Process.</i> , 1998. ay priors for model based	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	 0.1 0.2 0.3 measurement rate M/ Example image recovery original
ms for compressed sensing," <i>PNAS</i> nse graphs, with applications to	BM3D-AMP 25.2 11.3s 30.0 10.0s 32.5 10.1s 35.1 11.0s 37.4 12.3s BM3D-VAMP 25.2 11.6s 30.0 9.8s 32.5 9.5s 35.2 10.1s 37.7 10.7s Image Recovery with Φ Diag(e) PE Diag(+1) 10 iterations	
pressed sensing with Gaussian matrices pressed sensing," <i>IEEE Trans. Info.</i> oftware/DAMP-toolbox.) tive damping and mean removal for the	Here, $\frac{M}{N} = 0.2$, <i>s</i> logarithmically spaced, $P =$ random permutation, $F =$ DFT2. <u>condition no.</u> 1 10 10 ² 10 ³ 10 ⁴	 Example image recovery original
age Passing," <i>arXiv:1610.03082</i> . overy with sparsely sampled free random compressed sensing," <i>arXiv:1406.4178</i> .	ℓ_1 -AMP22.40.03<0 $-$ <0 $-$ <0 $ \ell_1$ -VAMP22.90.0522.30.0520.80.0419.60.0418.80.04BM3D-AMP29.14.2s26.64.6s7.6 $-$ 7.4 $-$ 7.1 $-$ BM3D-VAMP29.04.2s29.14.1s27.45.1s25.65.2s245.2s	

BASP Frontiers Workshop 2017 Supported by NSF grant 1527162

Whitened VAMP for Image Recovery (VAMPire)

• To apply VAMP to image recovery with non-random (e.g., Fourier) Φ , we "whiten" the signal:

$$oldsymbol{y} = \underbrace{\Phi \Psi \operatorname{Diag}(oldsymbol{ au})}_{oldsymbol{A}} oldsymbol{s}^0 + oldsymbol{w}$$
 for $\left\{egin{array}{c} oldsymbol{s}^0 : ext{whitened} \ oldsymbol{ au} : ext{wavelet states}
ight\}$

- and use plug-and-play denoising in the whitened-coefficient space: $\widehat{\boldsymbol{s}}_t = \boldsymbol{g}(\boldsymbol{r}_t, \sigma_t) = \text{Diag}(\boldsymbol{\tau})^{-1} \boldsymbol{\Psi}^{\mathsf{H}} \text{denoise}(\boldsymbol{\Psi} \text{Diag}(\boldsymbol{\tau}) \boldsymbol{r}_t; N^{-1/2} \| \boldsymbol{\tau} \| \sigma_t).$
- For Ψ we use any orthonormal wavelet transform, and for au we assume +22dB approximation coefs and -7dB/level detail coefs.
- Since the U, V matrices of the resulting A are no longer fast transforms, we solve (1) approximately via preconditioned LSQR:

$$\widetilde{\boldsymbol{g}}(\widetilde{\boldsymbol{r}},\widetilde{\sigma}) = \begin{bmatrix} \widetilde{\sigma} \boldsymbol{A} \\ \sigma_w \boldsymbol{I} \end{bmatrix}^+ \begin{bmatrix} \widetilde{\sigma} \boldsymbol{y} \\ \sigma_w \widetilde{\boldsymbol{r}} \end{bmatrix} = \operatorname{Diag}(\boldsymbol{\tau})^{-1} \begin{bmatrix} \boldsymbol{\Phi} \Psi \widetilde{\sigma} \\ \operatorname{Diag}(\boldsymbol{x}) \end{bmatrix}$$

• The divergence $\tilde{\alpha}_t$ is approximated using the Monte-Carlo approximation

$$\widetilde{\alpha}_t = \frac{\sigma_w^2}{N} \operatorname{tr} \left[\left(\widetilde{\sigma}_t^2 \boldsymbol{A}^{\mathsf{H}} \boldsymbol{A} + \sigma_w^2 \boldsymbol{I} \right)^{-1} \right] \approx \frac{1}{NK} \sum_{k=1}^{K} \boldsymbol{I}_k$$

where
$$\mathrm{E}\{oldsymbol{p}_koldsymbol{p}_k^{\sf H}\}=oldsymbol{I}$$
. Here again, preconditioned LS

- The divergence α_t is approximated a Monte-Carlo approximation inspired by Metzler/Maleki/Baraniuk 6, but different due to the form of $g(\cdot)$.
- Finally, we employ a damping scheme under which VAMP has been proven to converge for any strictly convex \widetilde{g} and g.

Image Recovery with Subsampled 2D-Fourier Φ

- **Experiment setup**:
- **DFT** Φ , subsampling pattern from Roman/Adcock/Hansen 10 ■ SNR=40dB
- 128×128 images {lena, barbara, boat, fingerprint, house, peppers}
- db1 wavelet decomposition, D = 2 levels
- **PSNR** results averaged over 10 realizations and six images above **PSNR** vs M/N and PSNR vs iteration:

• Example image recovery at M/N = 0.3: LMMSE original

• Example image recovery at M/N = 0.1: original LMMSE

LASSO via SPGL1

wavelet coefs standard deviations

 $\begin{bmatrix} \mathbf{y}\widetilde{\sigma}/\sigma_w \\ \widetilde{\mathbf{r}} \end{bmatrix}$ $\widetilde{\sigma}/\sigma_w \ (oldsymbol{ au})^{-1}$

 $oldsymbol{p}_k egin{bmatrix} \widetilde{\sigma}_t oldsymbol{A} \ \sigma_w oldsymbol{I} \end{bmatrix}^+ egin{bmatrix} oldsymbol{0} \ \sigma_w oldsymbol{p}_k \end{bmatrix}^+ egin{bmatrix} oldsymbol{0} \ \sigma_w oldsymbol{p}_k \end{bmatrix}^+,$ SQR can be used.

VAMPire-BM3D M/N=0.5 - M/N=0.4 - M/N=0.3 - M/N=0.2 - M/N=0.1 iteration

