Adaptive Compressive Noncoherent Change Detection

Phil Schniter

International BASP Frontiers Workshop Villars-sur-Ollon

1/30/2013

Outline:

- 1. Noncoherent Change Detection
- 2. Compressive Noncoherent Change Detection
- 3. Adaptive Sensing

Change Detection:

- Given a reference signal (or image) $r \in \mathbb{C}^N$ and a signal-under-test $x \in \mathbb{C}^N$, how do we detect the pixels that are changed?
- Set up a model:

$$\begin{aligned} \forall n: \ x_n &= s_n c_n + (1 - s_n)(r_n + d_n) \ \text{ with } \textit{unknown...} \\ \begin{cases} s_n \in \{0, 1\} & \text{change indicators} \\ c_n & \text{values of changed pixels} \\ d_n & \text{small variations at "unchanged" pixels,} \end{cases} \\ \end{aligned}$$

• Various optimal detectors can be formulated as a likelihood ratio test:

$$\mathsf{LR}(x_n, r_n) = \frac{p(x_n, r_n | s_n = 1)}{p(x_n, r_n | s_n = 0)} = \frac{p_C(x_n)}{p_D(x_n - r_n)}$$

• Intuition: look for outliers in **difference signal** $x_n - r_n$.

Noncoherent Change Detection:

- Now suppose that *r* and *x* are **phase incoherent**.
- One application is radar image change detection in foliage, where pixel phases can vary significantly across looks due to wind-induced motion.
- A possible model is:

$$\forall n: x_n = s_n c_n + (1 - s_n)(r_n e^{j\theta_n} + d_n)$$

where $\theta_n \sim \text{i.i.d } \mathcal{U}[0, 2\pi)$ implies complete phase uncertainty.

• Change detection is still a textbook problem,

$$\mathsf{GLR}(x_n, r_n) : \frac{p_C(x_n)}{\min_{\theta_n} p_D(x_n - r_n e^{j\theta_n})} = \frac{p_C(|x_n|)}{p_D(|x_n| - |r_n|)} \text{ for circular } C \& D.$$

Intuition: look for outliers in magnitude difference $|x_n| - |r_n|$.

Compressive Noncoherent Change Detection:

Now consider noisy compressive linear observations $y \in \mathbb{C}^M$ with M < N:

$$oldsymbol{y} = oldsymbol{A}oldsymbol{x} + oldsymbol{w}, \quad oldsymbol{w} \sim \mathcal{CN}(oldsymbol{0},
u^w oldsymbol{I})$$

Challenges:

• The signal x is not directly observed:

 \Rightarrow Cannot implement standard noncoherent detection without $|x_n|$.

• The signal x is generally **non-sparse/compressible**:

 \Rightarrow Cannot use standard sparse-reconstruction to recover x from y.

Opportunities:

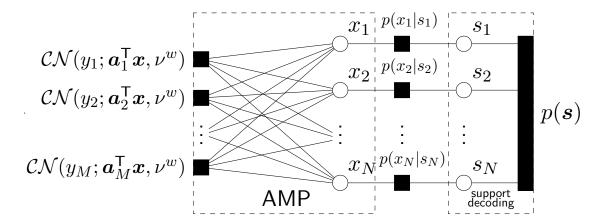
- With sparse changes, we know most magnitudes $|x_n|$, approximately, and thus have a strong prior on x.
- In practice, the change-pattern *s* is not i.i.d, but **spatially clustered**.

Proposed Approach:

We assume the generative mixture model

$$\begin{aligned} x_n &= s_n c_n + (1 - s_n)(r_n e^{j\theta_n} + d_n) \quad \text{and} \quad \boldsymbol{y} = \boldsymbol{A}\boldsymbol{x} + \boldsymbol{w} \\ \begin{cases} s_n &\sim \{0, 1\} \text{ Markov} \\ c_n &\sim \mathcal{CN}(0, \nu^r) \text{ i.i.d} \\ d_n &\sim \mathcal{CN}(0, \nu^d) \text{ i.i.d}, \ \nu^d \ll \nu^r \\ \theta_n &\sim \mathcal{U}[0, 2\pi) \text{ i.i.d} \end{cases} \quad \begin{cases} \boldsymbol{w} \sim \mathcal{CN}(\boldsymbol{0}, \nu^w \boldsymbol{I}) \end{cases} \end{aligned}$$

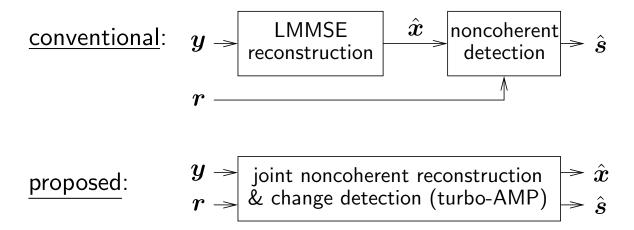
leading to the factor graph



and then perform inference via "turbo" approximate-message-passing.

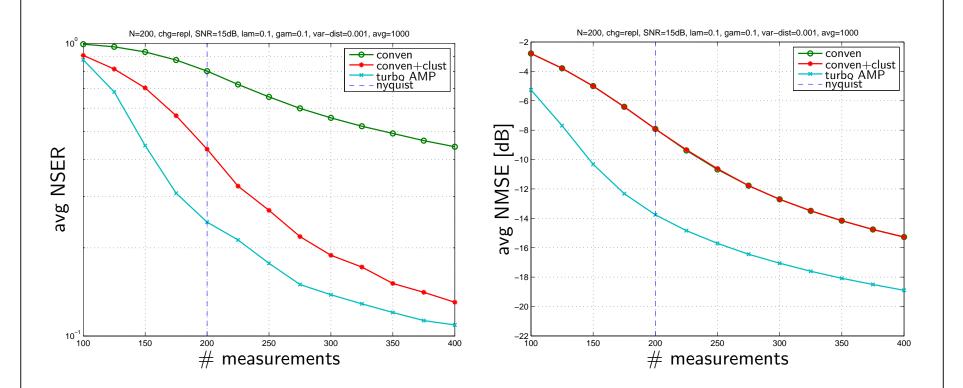
Numerical Example:

• We compare two schemes:



- Simulation parameters:
 - signal length N = 200,
 - changes: 1D Markov chain with rate 0.1 and avg cluster length = 11.
 - reference-to-disturbance ratio $\frac{\nu_r}{\nu_d} = 30$ dB,
 - signal-to-noise ratio = 15 dB,
 - sensing matrix: $\{A_{mn}\} \sim \text{ i.i.d } \mathcal{N}(0, M^{-1})$

Numerical Example:



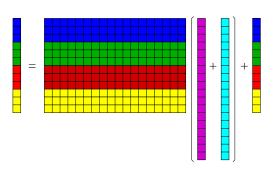
• AMP-based joint reconstruction-and-change-detection outperforms the conventional method in both NSER and NMSE, even when the conventional detector can exploit clustered changes.

Adaptive Sensing:

• Now consider the **multi-step** observation model

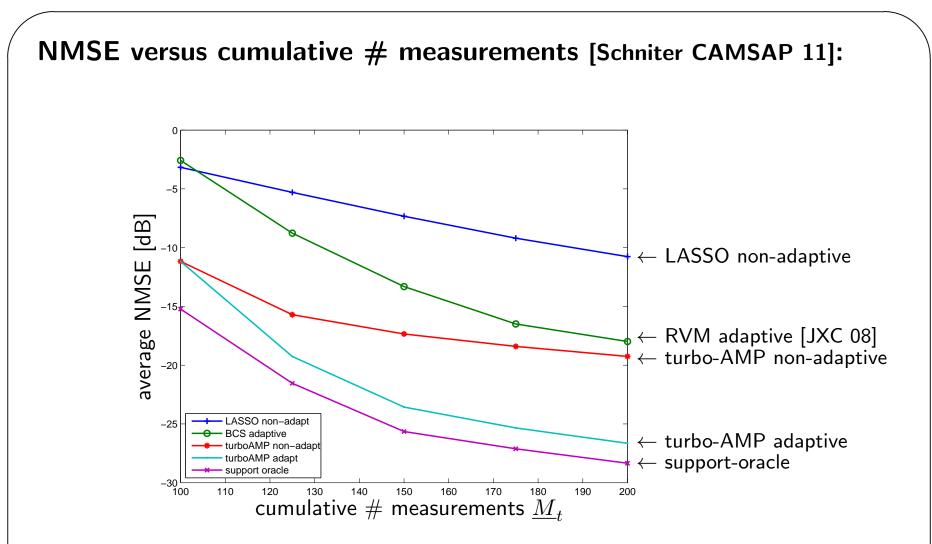
$$\boldsymbol{y}_t = \boldsymbol{A}_t \boldsymbol{x} + \boldsymbol{w}_t, \qquad t = 1 \dots T$$

and the adaptation of $oldsymbol{A}_t$ (s.t. $\|oldsymbol{A}_t\|_F^2 \leq \mathcal{E}$)



using knowledge gained from previous measurements $\underline{y}_{t-1} \triangleq \{y_{\tau}\}_{\tau=1}^{t-1}$.

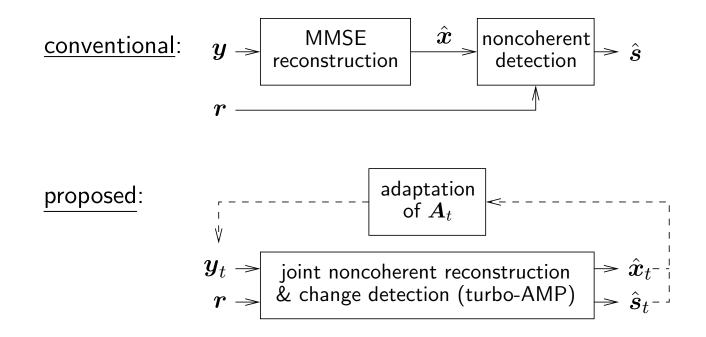
- To infer \boldsymbol{x} , the approach known as Bayesian experimental design chooses \boldsymbol{A}_t to maximize the mutual information $I(\boldsymbol{X}; \boldsymbol{Y}_t)$ between random vectors $\boldsymbol{X} \sim p(\boldsymbol{x} | \boldsymbol{y}_{t-1})$ and $\boldsymbol{Y}_t \sim p(\boldsymbol{y}_t | \boldsymbol{y}_{t-1}; \boldsymbol{A}_t)$.
- For Gaussian signal and noise, we previously established that the design of MI-maximizing A_t is a waterfilling problem [Schniter CAMSAP 11].
- Since turbo-AMP produces an accurate Gaussian posterior approximation, it partners well with waterfilling-based adaptation. For structured-sparse signal recovery, this combination has been shown to yield recovery-MSE near oracle bounds [Schniter CAMSAP 11].



- Note gains from structured sparsity, adaptivity, and the combination.
- Adaptive turbo-AMP performs 1.5 dB from the support-oracle bound!

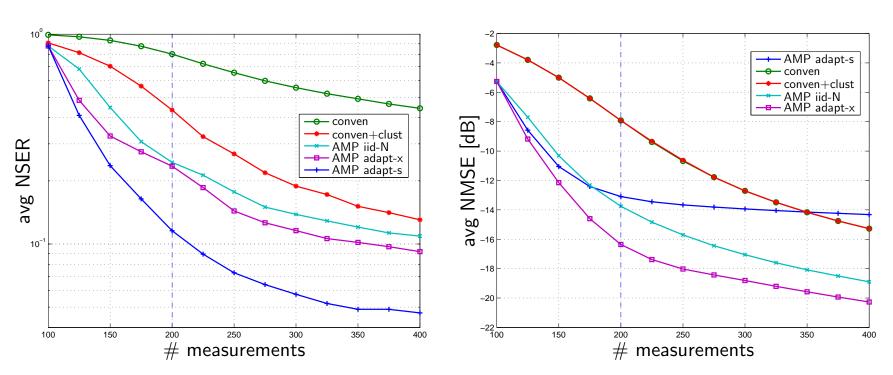
Waterfilling-based Adaptation for Noncoherent Change Detection:

• We now add waterfilling-based adaptive sensing to our noncoherent change detection scheme.



- To minimize signal-recovery normalized MSE (NMSE), we perform waterfilling based on a Gaussian approximation of $p(\boldsymbol{x}|\boldsymbol{y}_{t-1})$.
- To minimize the normalized change-support error rate (NSER), we perform waterfilling based on a Gaussian approximation of $p(s|\underline{y}_{t-1})$.

Numerical Example:



Notice that:

- the matrices designed to improve the recovery of the change pattern *s* do significantly improve the NSER (left), and
- those designed to improve the recovery of signal x do improve NMSE (right),
- but not vice versa!