Biline

Subrata Sarkar (Ohio State) **Philip Schniter (Ohio State)**

(supported by NSF

Bilinear Recovery Problem

Observations:

 $oldsymbol{X}$: unknown random matrix in $\mathbb{R}^{N imes L}$ $oldsymbol{A}_1, \ldots, oldsymbol{A}_Q$: known matrices in $\mathbb{R}^{M imes N}$ b_1, \ldots, b_Q : unknown deterministic parameters W: white Gaussian noise.

 $oldsymbol{Y} = \sum_{i}^{Q} b_i oldsymbol{A}_i oldsymbol{X} + oldsymbol{W}$

Prior:

 $X_{nl} \stackrel{\text{i.i.d}}{\sim} p_X(\cdot; \boldsymbol{\theta}_X)$ deterministic unknown parameters $\boldsymbol{\theta}_X$. $W_{ml} \stackrel{\text{i.i.d}}{\sim} \mathcal{N}(0, \sigma_w^2)$ unknown variance σ_w^2 .

Goal: jointly infer X and estimate $\theta \triangleq \{b, \theta_X, \sigma_w^2\}$ **Approach**: combine variational inference with ML estimation. **Applications**: Self-calibration, CS+matrix uncertainty, dictionary learning

Variational Inference

- For now, let's suppose that θ is known.
- We would like to compute the posterior density

$$p(\boldsymbol{X}|\boldsymbol{Y}) = \frac{p(\boldsymbol{X};\boldsymbol{\theta})p(\boldsymbol{Y}|\boldsymbol{X};\boldsymbol{\theta})}{Z(\boldsymbol{\theta})} \text{ for } Z(\boldsymbol{\theta}) \triangleq \int p(\boldsymbol{X};\boldsymbol{\theta})p(\boldsymbol{Y}|\boldsymbol{X};\boldsymbol{\theta})$$

but the high-dimensional integral in $Z(\boldsymbol{\theta})$ is difficult to compute.

• We can avoid computing $Z(\boldsymbol{\theta})$ through variational optimization: $p(\mathbf{X}|\mathbf{Y}) = \arg\min D(b(\mathbf{X})||p(\mathbf{X}|\mathbf{Y}))$ where $D(\cdot||\cdot)$ is KL divergended

$$= \arg\min_{b} \underbrace{D(b(\boldsymbol{X}) \| p(\boldsymbol{X}; \boldsymbol{\theta})) + D(b(\boldsymbol{X}) \| p(\boldsymbol{Y} | \boldsymbol{X}; \boldsymbol{\theta})) + D(b(\boldsymbol{X}) \| p(\boldsymbol{Y} | \boldsymbol{X}; \boldsymbol{\theta})) + D(b_{1}(\boldsymbol{X}) \| p(\boldsymbol{X}; \boldsymbol{\theta})) + D(b_{2}(\boldsymbol{X}) \| p(\boldsymbol{Y} | \boldsymbol{X}; \boldsymbol{\theta})) + D(b_{1}(\boldsymbol{X}; \boldsymbol{\theta})) + D(b_{2}(\boldsymbol{X}) \| p(\boldsymbol{Y} | \boldsymbol{X}; \boldsymbol{\theta})) + D(b_{1}(\boldsymbol{X}; \boldsymbol{\theta})) + D(b_{2}(\boldsymbol{X}) \| p(\boldsymbol{Y} | \boldsymbol{X}; \boldsymbol{\theta})) + D(b_{2}(\boldsymbol{X}) \| p(\boldsymbol{X} | \boldsymbol{X}; \boldsymbol{\theta})) + D(b_{2}(\boldsymbol{X} | \boldsymbol{X}; \boldsymbol{\theta})) + D(b_{2}(\boldsymbol{X}$$

but the density constraint keeps the problem difficult.

such that $b_1 = b_2 = q$,

Expectation consistent approximation (EC) 1 relaxes the density cons to moment-matching constraints:

$$p(\boldsymbol{X}|\boldsymbol{Y}) \approx \underset{b_{1},b_{2},q}{\operatorname{arg\,min}} J(b_{1},b_{2},q;\boldsymbol{\theta})$$

such that $\forall l \begin{cases} \mathbb{E}\{\boldsymbol{x}_{l}|b_{1}\} = \mathbb{E}\{\boldsymbol{x}_{l}|b_{2}\} = \mathbb{E}\{\boldsymbol{x}_{l}|q\} \\ \operatorname{tr}[\operatorname{Cov}\{\boldsymbol{x}_{l}|b_{1}\}] = \operatorname{tr}[\operatorname{Cov}\{\boldsymbol{x}_{l}|b_{2}\}] = \operatorname{tr}[\operatorname$

The stationary points of EC are the densities $b_1(\boldsymbol{X}) \propto \prod_{l=1}^L p(\boldsymbol{x}; \boldsymbol{\theta}) \mathcal{N}(\boldsymbol{x}_l; \boldsymbol{r}_{1,l}, \boldsymbol{I}/\gamma_{1,l}) \\ b_2(\boldsymbol{X}) \propto \prod_{l=1}^L p(\boldsymbol{y}_l | \boldsymbol{x}_l; \boldsymbol{\theta}) \mathcal{N}(\boldsymbol{x}_l; \boldsymbol{r}_{2,l}, \boldsymbol{I}/\gamma_{2,l}) \text{ s.t. } \begin{cases} \mathbb{E}\{\boldsymbol{x}_l | b_1\} = \mathbb{E}\{\boldsymbol{x}_l | b_1\} \\ \operatorname{tr}[\operatorname{Cov}\{\boldsymbol{x}_l | b_1\}] \end{cases}$ $= \operatorname{tr}[\operatorname{Cov}\{\boldsymbol{x}_l | b_2\}]$ $q(oldsymbol{X}) = \prod_{l=1}^L \mathcal{N}(oldsymbol{x}_l; \widehat{oldsymbol{x}}_l, oldsymbol{I}/\eta_l)$

Vector AMP (VAMP)

- There exist several algorithms (e.g., EC, ADATAP 2, S-AMP 3) who points coincide with the EC stationary points, but often they don't cor
- An exception is Vector AMP 4, which can be derived using a form of approximate message passing on the vector-valued factor graph

$$p(oldsymbol{X}_1;oldsymbol{ heta})$$

$$\begin{array}{c|c} & \mathbf{X}_1 & \mathbf{X}_2 \\ \hline & \mathbf{X}_1 & \mathbf{X}_2 \\ \hline & \mathbf{\delta}(\mathbf{X}_1 - \mathbf{X}_2) \end{array} \end{array} p(\mathbf{Y} | \mathbf{X}_2; \boldsymbol{\theta})$$

In particular, VAMP is provably convergent under either

- 1) strictly log-concave prior $p(\mathbf{X}; \boldsymbol{\theta})$ and arbitrary \mathbf{A} (after damping
- 2) iid prior $p(\mathbf{X}; \boldsymbol{\theta})$ and large, right-rotationally invariant \mathbf{A} .

ear F	Recovery using Adaptiv
1716388)	THE OHIO STATE UNIVE
	VAMP algorithm
	Initialize $\{\mathbf{R}_1, \gamma_1\}$ and define the estimation functions $\boldsymbol{g}_1(\boldsymbol{r}_{1,l}, \gamma_{1,l}) \triangleq \mathbb{E}\{\boldsymbol{x}_l b_1; \boldsymbol{r}_{1,l}, \gamma_{1,l}\}$ or any Lipschitz fun $\boldsymbol{g}_2(\boldsymbol{r}_{2,l}, \gamma_{2,l}) \triangleq \mathbb{E}\{\boldsymbol{x}_l b_2; \boldsymbol{r}_{2,l}, \gamma_{2,l}\}$
	$ \begin{aligned} \widehat{\boldsymbol{x}}_{1,l} \leftarrow \boldsymbol{g}_1(\boldsymbol{r}_{1,l},\gamma_{1,l}), \forall l \\ \eta_{1,l} \leftarrow \gamma_{1,l} N / \operatorname{tr}[\partial \boldsymbol{g}_1(\boldsymbol{r}_{1,l};\gamma_{1,l}) / \partial \boldsymbol{r}_{1,l}], \forall l \\ \boldsymbol{r}_{2,l} \leftarrow (\eta_{1,l} \widehat{\boldsymbol{x}}_{1,l} - \gamma_{1,l} \boldsymbol{r}_{1,l}) / (\eta_{1,l} - \gamma_{1,l}), \forall l \\ \gamma_{2,l} \leftarrow \eta_{1,l} - \gamma_{1,l}, \forall l \end{aligned} $
	$ \begin{aligned} \widehat{\boldsymbol{x}}_{2,l} \leftarrow \boldsymbol{g}_{2}(\boldsymbol{r}_{2,l},\gamma_{2,l}), \forall l & \text{LMMSE es} \\ \eta_{2,l} \leftarrow \gamma_{2,l} N / \operatorname{tr}[\partial \boldsymbol{g}_{2}(\boldsymbol{r}_{2,l};\gamma_{2,l}) / \partial \boldsymbol{r}_{2,l}], \forall l & \\ \boldsymbol{r}_{1,l} \leftarrow (\eta_{2,l} \widehat{\boldsymbol{x}}_{2,l} - \gamma_{2,l} \boldsymbol{r}_{2,l}) / (\eta_{2,l} - \gamma_{2,l}), \forall l & \text{pse} \\ \gamma_{1,l} \leftarrow \eta_{2,l} - \gamma_{2,l}, \forall l & \end{aligned} $
ıg,	Expectation maximization (EM)
	• We now return to the case where $oldsymbol{ heta} = \{oldsymbol{b}, oldsymbol{ heta}_X, \sigma_w^2\}$ is unknow
	The maximum-likelihood (ML) estimate is $\widehat{\boldsymbol{\theta}} = \arg \max p(\boldsymbol{Y}; \boldsymbol{\theta}) = \arg \min \{-\ln p(\boldsymbol{Y}; \boldsymbol{\theta})\}$
$oldsymbol{ heta})\mathrm{d}oldsymbol{X},$	 EM algorithm iteratively minimizes a tight upper bound on -
	$\widehat{\boldsymbol{\theta}}^{t+1} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \mathbb{E} \left\{ -\ln p(\boldsymbol{X}, \boldsymbol{Y}; \boldsymbol{\theta}) \boldsymbol{Y}; \widehat{\boldsymbol{\theta}}^{t} \right\}$ $= \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \left\{ -\ln p(\boldsymbol{X}, \boldsymbol{Y}; \boldsymbol{\theta}) + D(h^{t}(\boldsymbol{X}) _{p}(\boldsymbol{X} \boldsymbol{Y}; \boldsymbol{\theta})) \right\}$
ice	$= \arg \min \left(\min p(\mathbf{I}, \mathbf{v}) + \underbrace{D(\mathbf{v}(\mathbf{X}) p(\mathbf{X} \mathbf{I}, \mathbf{v}))}_{0} \right)$
$H(b(\mathbf{X}))$ - $H(q(\mathbf{X}))$	with $b^{t}(\mathbf{X}) = p(\mathbf{X} \mathbf{Y}; \mathbf{\theta}^{t})$ — The upper bound can also be rewritten in terms of Gibbs free $Q(\mathbf{\theta}, b^{t}) \triangleq -\ln p(\mathbf{Y}; \mathbf{\theta}) + D(b^{t}(\mathbf{X}) p(\mathbf{X} \mathbf{Y}; \mathbf{\theta}))$ $= D(b^{t}(\mathbf{X}) p(\mathbf{X}; \mathbf{\theta})) + D(b^{t}(\mathbf{X}) p(\mathbf{Y} \mathbf{X}; \mathbf{\theta}))$ $= J(b^{t}, b^{t}, b^{t}; \mathbf{\theta})$
	which yields a variational interpretation of EM 5.
	Variance Auto-Tuning
straint	 In VAMP, the precisions {γ_{1,l}, γ_{2,l}}^L_{l=1} are imperfect when θ So we estimate these precisions jointly with θ. E.g., for para (γ₁, θ̂_X) ← arg max p(R₁; γ₁, θ_X) under r_{1,l}=x_l+N(0, I/γ₁, θ_X)
$\operatorname{Cov}\{\boldsymbol{x}_l q\}].$	 In practice, inner iterations of EM are used to solve the above auto-tuning" problem. Under identifiability conditions, this leads to asymptotically and the solutions.
$egin{aligned} & b_2 \end{bmatrix} = \widehat{oldsymbol{x}}_l \ \end{aligned}$	The proposed Rilinear Adaptive (RAd)-VAME
$= N/\eta_l.$	 Recall that VAMP iteratively computes a posterior approxim
	minimizing $J(b_1, b_2, q; \theta)$ (under moment constraints) with k
ose fixed onverge. f	 Likewise, EW iteratively estimates θ by minimizing J(θ, θ, l, l, the posterior approximation b^t(X) = p(X Y; θ^t) is available In BAd-VAMP, we combine VAMP, EM, and variance auto-t In the denoising (i = 1) and LMMSE (i = 2) steps of VAMF and jointly estimate (γ, θ) by running several inner iterations ∀l : x̂_{i,l} ← g_i(r_{i,l}, γ_{i,l}; θ̂_i), η_{i,l} ← γ_{i,l}N/ tr[∂g_i(r_{i,l}, γ_{i,l}; θ̂_i), ∀l : γ_{i,l} ← (¹/_N x̂_{i,l} - r_{i,l} ² + 1/η_{1,l})⁻¹
g),	$q_i(oldsymbol{X}) \propto \prod_{l=1}^L f_i(oldsymbol{x}_{i,l};oldsymbol{ heta}_i) \mathcal{N}(oldsymbol{x}_l;oldsymbol{r}_{i,l},oldsymbol{I}/\gamma_{i,l})$

ve Vector-AMP

RSITY

Asilomar 2019

nction

denoising

asurement

estimation

eudo-prior

wn.

ee energy

 $+H(b^t(\boldsymbol{X}))$

is imperfect.

meters $oldsymbol{ heta}_X$: $(\gamma_{1,l}), \ \boldsymbol{x}_l \sim p(\cdot; \boldsymbol{\theta}_X)$

ve "variance

consistent θ_X 6.

Algorithm

nation $b^t(oldsymbol{X})$ by known $oldsymbol{ heta}$.

 $b^t; \boldsymbol{\theta}), \text{ assuming}$ le.

tuning.

P, we infer $oldsymbol{X}$ ns of

. 1 / $\partial oldsymbol{r}_{i,l}$]

(auto-tunin)

(denoisin)

(belief updat

$$\begin{aligned} \widehat{\boldsymbol{\theta}}_i \leftarrow \arg \max_{\boldsymbol{\theta}_i} \sum_{l=1}^{L} \mathbb{E} \left[\ln f_i(\boldsymbol{x}_{i,l}, \boldsymbol{\theta}_i) | q_i \right] \\ \text{with } i \in \{1, 2\}, \ \boldsymbol{\theta}_1 = \boldsymbol{\theta}_X, \boldsymbol{\theta}_2 = \{\boldsymbol{b}, \sigma_w^2\} \text{ and} \\ f_1(\boldsymbol{x}, \boldsymbol{\theta}_1) = p(\boldsymbol{x}; \boldsymbol{\theta}_X), \quad f_2(\boldsymbol{x}, \boldsymbol{\theta}_2) = \mathcal{N} \left(\boldsymbol{y}; \sum_{i=1}^{Q} f_i(\boldsymbol{x}, \boldsymbol{\theta}_i) \right) \end{aligned}$$

Numerical Experiments

CS with Matrix Uncertainty: Recover N=256-length sparse x and $b_i \stackrel{\text{I.I.d.}}{\sim} \mathcal{N}(0,1)$ from M-length $\boldsymbol{y} = (\boldsymbol{A}_0 + \sum_{i=1}^{10} b_i \boldsymbol{A}_i) \boldsymbol{x} + \boldsymbol{w}$, where $[\boldsymbol{A}_i]_{m,n} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0,1)$,

Dictionary Learning: Given Y, the goal is to estimate $A \And X$ s.t. $Y \approx AX$.

Median NMSE versus condition number $\kappa(\mathbf{A})$ for $\mathbf{A} \in \mathbb{R}^{64 \times 64}$, i.i.d. Bernoulli-Gaussian \boldsymbol{X} with $\epsilon = 0.2$, training length L = 1331, and SNR = 40 dB.

BAd-VAMP is much more robust to $\kappa(A)$ than EM-BiGAMP 10.

Self-Calibration in Tomography: Reconstruct image x and calibration parameters $b_i \sim \mathcal{N}(1, \sigma_b^2)$ from measurements $\boldsymbol{y} = \begin{bmatrix} b_1 \boldsymbol{\Psi}_{\omega_1}^\mathsf{T} \dots b_{25} \boldsymbol{\Psi}_{\omega_{25}}^\mathsf{T} \end{bmatrix}^\mathsf{T} \boldsymbol{x} + \boldsymbol{w}$, where $\boldsymbol{\Psi}_{\omega}$ is the Radon transform for angle ω and $\sigma_b = 0.06$. BM3D was used for $g_1(\cdot)$ BAd-VAMP: 38.54

PSNR (dB) of 64×64 Shepp-Logan phantom from 25 equally spaced tomographic projections.

References

- **1** M. Opper and O. Winther, "Expectation consistent approximate inference," J. Mach. Learning Res., 2005. 2 M. Opper and O. Winther, "Adaptive and self-averaging Thouless-Anderson-Palmer mean-field theory for
- probabilistic modeling," *Phy. Rev. E*, 2001. **3** B. Çakmak, O. Winther, and B.H. Fleury, "S-AMP: Approximate message passing for general matrix ensembles," ISIT 2014.
- **4** S. Rangan, P. Schniter, and A. K. Fletcher, "Vector approximate message passing," *arXiv:1610.03082*. **5** R. Neal and G. Hinton, "A view of the EM algorithm that justifies incremental, sparse, and other variants," in
- Learning in Graphical Models, 1998. 6 A. K. Fletcher, M. Sahraee-Ardakan, S. Rangan, and P. Schniter, "Rigorous dynamics and consistent
- estimation in arbitrarily conditioned linear systems," Proc. NeurIPS, 2017.
- 7 H. Zhu, G. Leus, and G. B. Giannakis, "Sparsity-cognizant total least-squares for perturbed compressive sampling," IEEE TSP, 2011. .
- **8** J. T. Parker, P. Schniter, "Parameteric bilinear generalized approximate message passing", *IEEE JSTSP*, 2016. 9 A. K. Fletcher, P. Pandit, S. Rangan, S. Sarkar, and P. Schniter, "Plug-in estimation in high-dimensional linear
- inverse problems: A rigorous analysis," Proc. NeurIPS, 2018.
- 10 J. T. Parker, P. Schniter and V. Cevher, "Bilinear generalized approximate message passing", *IEEE TSP*, 2014. 11 Y. Romano, M. Elad, and P. Milanfar, "The little engine that could: Regularization by denoising (RED)," SIAM J. Imaging Science, 2017.

(EM update)

 $ig] b_j oldsymbol{A}_j oldsymbol{x}, \sigma_w^2 oldsymbol{I}$)

 $oldsymbol{x}$ is sampled from the Bernoulli-Gaussian distribution, $\epsilon = 0.04$, $x_i \sim (1 - \epsilon)\delta(x) + \epsilon \mathcal{N}(x; 0, 1)$

Plots show median NMSE on signal $\widehat{m{x}}$ and parameter b estimates versus

BAd-VAMP performs much better than WSS-TLS 7 and on par with EM-PBiGAMP 8 and VAMP-Lift 9.