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Traditional Clustering Problem Statement

Given a dataset of T N -dimensional feature vectors X = [x1, ...,xT ] ∈ R
N×T , estimate K

N -dimensional cluster centers C = [c1, ..., cK ] ∈ R
N×K that minimize sum of squared errors (SSE):

SSE =

T∑

t=1

min
k
‖xt − ck‖22. (1)

However, finding C to minimize the SSE in (1) is NP-hard.

K-means is a commonly applied heuristic approach.

K-means generally works well wrt minimizing the SSE, except its complexity is O(NKTl), where l is
the number of iterations, which is prohibitive for large T .

Sketched Clustering

Sketched clustering [Kerivan 16] is an alternate approach possibly more efficient than K-means.

Let y ∈ C
M be the “sketch” of X, where

ym =
1

T

T∑

t=1

exp(jwT
mxt) (2)

for some set of N -dimensional frequency vectors W = [w1, ...wM ].

The sketch in (2) can be interpreted as the empirical characteristic function of the dataset X.

CLOMPR [Kerivan 17] is the state-of-the-art Sketched Clustering algorithm, which solves

{Ĉ, α̂} = argmin
C,α

M∑

m=1

∣∣∣ym −
K∑

k=1

αk exp(jw
T
mck)

∣∣∣
2

(3)

via a greedy optimization approach.

In practice, ĈCLOMPR works well wrt SSE compared to ĈK-means, despite no link between (3) and (1).

CLOMPR’s complexity is O(MNK2l +MNT ), which includes the cost of computing y.

Note that once y is computed, X is not stored during CLOMPR, so the memory requirement is
significantly reduced.

CLOMPR’s authors have developed several approaches for randomly generating the frequencies wm and
have observed around M ≈ 10KN frequencies necessary for accurate performance.

Sketched Clustering via Approximate Message Passing

We choose to model the feature vectors xt with a Gaussian Mixture where the mixture centers are the
“true” cluster centers, i.e. ,

xt ∼
K∑

k=1

αkN (ck,Σk). (4)
Then, for large T ,

ym =
1

T

T∑

t=1

exp(jwT
mxt) ≈ E{exp(jwT

mxt)} =
K∑

k=1

αk exp
(
jwT

mck︸ ︷︷ ︸
,zmk

−wT
mΣkwm︸ ︷︷ ︸
,τmk

/2
)
, (5)

and so

py|z(ym | zm) = δ

(
ym −

K∑

k=1

αk exp
(
jzmk − τmk/2

))
, (6)

where {τmk} and {αk} are treated as hyperparameters.

If we assume py|z(ym | zm) are independent across m and assume pC(C) =
∏N

n=1 pc(cn), we obtain

py,C(y,C) =

M∏

m=1

py|z(ym |wT
mC)

N∏

n=1

pc(cn). (7)

With (7), we treat sketched clustering as an inference problem rather than an optimization problem.

In particular, we approximate
Ĉ = E

{
pC | y(C |y)

}
, (8)

using the Simplified-Hybrid-GAMP (SHyGAMP) algorithm [Byrne 16].

The SHyGAMP algorithm is based on the more general HyGAMP algorithm [Rangan 17]. The only
difference between the two is SHyGAMP restricts the messages that are passed to have diagonal
covariance matrices, which drastically reduces computational complexity.
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Description of SHyGAMP

SHyGAMP approximates sum-product loopy belief propagation on factor graphs of the form:

py|z
cn

ym
pc

SHyGAMP iteratively passes messages back and forth between the pc and py|z nodes until convergence.

Messages are approximated as K-dimensional Gaussian pdfs with diagonal covariance structure.

This iterative message passing allows an NK-dimensional inference problem is broken into many
K-dimensional inference problems.

SHyGAMP’s complexity for sketched clustering is O
(
K(M +N)l +MNT

)
.

The SHyGAMP algorithm can be divided into “linear” and “non-linear” steps.

At each iteration the non-linear steps require computing the mean and covariance of the estimands using
the following approximate posterior distributions:

pc|r(cn|r̂n;Qr
n) ∝ pc(cn)N (cn; r̂n,Q

r
n) (9)

and
pz|y,p(zm|ym, p̂m;Q

p
m) ∝ py|z(ym|zm)N (zm; p̂m,Q

p
m), (10)

where the quantities p̂m, Q
p
m, r̂n, and Qr

n are computed during the linear steps.

The SHyGAMP Algorithm

Require: frequency matrix W , sketch y, pdfs pc|r and pz|y,p from (9)-(10), initializations r̂n(0), Q
r
n(0).

Ensure: t←0; ŝm(0)←0.
1: repeat
2: ∀n : ĉn(t)← E

{
cn

∣∣ rn = r̂n(t−1);Qr
n(t−1)

}

3: ∀n : Qc
n(t)← cov

{
cn

∣∣ rn = r̂n(t−1);Qr
n(t−1)

}

4: ∀m : Q
p
m(t)←∑N

n=1W
2
nmQc

n(t)

5: ∀m : p̂m(t)←∑N
n=1Wnmĉn(t)−Q

p
m(t)ŝm(t−1)

6: ∀m : ẑm(t)← E
{
zm

∣∣ ym,pm = p̂m(t);Q
p
m(t)

}

7: ∀m : Qz
m(t)← cov

{
zm

∣∣ ym,pm = p̂m(t);Q
p
m(t)

}

8: ∀m : Qs
m(t)← [Q

p
m(t)]−1 − [Q

p
m(t)]−1Qz

m(t)[Q
p
m(t)]−1

9: ∀m : ŝm(t)← [Q
p
m(t)]−1

(
ẑm(t)− p̂m(t)

)

10: ∀n : Qr
n(t)←

[∑M
m=1W

2
nmQs

m(t)
]−1

11: ∀n : r̂n(t)← ĉn(t) +Qr
n(t)

∑M
m=1Wnmŝm(t)

12: t← t + 1

13: until Terminated

Computation of SHyGAMP Non-linear Steps

The key technical challenge in applying SHyGAMP to sketched clustering is computing Lines 6-7 of the
SHyGAMP algorithm when py|z has the form in (6).

We have developed a method based on approximating py|z(ym|zm) with a Generalized von Mises
distribution and evaluating the necessary integrals with the Laplace Approximation.

Parameter Tuning

Our Gaussian Mixture model in (4) requires properly selecting αk and τmk in (6).

Currently, we assume τmk is invariant to m.

Allowing τmk to vary with m increases the generalizability of the model, but is more difficult to learn.
Exploring this is one avenue for future work.

One approach to tuning αk and τk is via approximate EM:

{α̂, τ̂} = argmax
α≥0,αT1=1,τw≥0

M∑

m=1

∫

RK
N (zm; ẑm,Qz

m) log p(ym|zm) dzm, (11)

which can be optimized at every SHyGAMP iteration (immediately after Line 7) using
gradient-projection.

An alternate approach based on Bethe Free Energy Minimization [Schniter 15] is currently in
development.

Comparison Between SHyGAMP, CLOMPR++ and K-means++

Data generation model

True xt ∼
∑K

k=1 αkN
(
ck, IN

)
for ck ∼ N

(
0N , (1.5 N

√
K)2IN

)
, and αk = 1

K ∀ k.
Simulation: SSE vs M

For each N ∈ {50, 100} and K ∈ {5, 10}, we tested several sketch lengths M ∈ [KN, 10KN ].

We report the Median SSE and Median Runtime for SHyGAMP, CLOMPR++ and K-means++ over 10
trials. For SHyGAMP and CLOMPR++, we report runtime only when SSE < 2×SSE(K-means++).
Compared to CLOMPR++, SHyGAMP has lower SSE and is faster at all tested M .
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K = 10, N = 50:
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K = 10, N = 100:
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Simulation: Classification Error vs Runtime

Dimensions N = 20 and K = 30. Training set with T = 104 samples.

Recovered cluster-centers used for classification on a test set with T = 5× 106 samples.

SHyGAMP and CLOMPR++ traces vary sketch size M logarithmically within [KN, 100KN ].

K-means traces vary training subset size, in {T
26
, T
25
, ..., T}, for a fixed # replicates in {256, ..., 4096}.

Results are the median of 5 trials (each trial used the same true centroids, but random train/test sets).

SHyGAMP converged to the Bayes’ Error Rate (BER) faster than K-means and CLOMPR++.
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