Bilinear Generalized Approximate Message Passing (BiG-AMP) for Matrix Completion

Jason T. Parker and Phil Schniter

Joint work with Jeremy Vila, Subhojit Som, and Volkan Cevher

(With support from NSF CCF-1218754, DARPA/ONR N66001-10-1-4090, NSF IIP-0968910, and an AFOSR lab task.)

Three Important Matrix Recovery Problems:

Matrix Completion (MC):

Recover <u>low-rank</u> matrix X from AWGN-corrupted <u>incomplete</u> observations $Y = \mathcal{P}_{\Omega}(X + W)$.

• Robust Principle Components Analysis (RPCA):

Recover $\underline{\mathsf{low-rank}}$ matrix $m{X}$ and $\underline{\mathsf{sparse}}$ matrix $m{S}$ from AWGN-corrupted observations $m{Y} = m{X} + m{S} + m{W}$.

• Dictionary Learning (DL):

Recover overcomplete dictionary $m{A}$ and sparse matrix $m{S}$ from AWGN-corrupted observations $m{Y} = m{A} m{S} + m{W}$.

The following extensions may also be of interest:

- RPCA and DL with incomplete observations and/or <u>structured</u> sparsity.
- ullet Any of the above with a <u>non-additive noise</u> model (e.g., quantized Y).

Our contribution:

• We propose a novel unified approach to these matrix-recovery problems that leverages the recent framework of approximate message passing (AMP).

- While previous AMP algorithms have been proposed for the **linear model**:
 - Infer $m{s} \sim \prod_n p_S(s_n)$ from $m{y} = m{\Phi} m{s} + m{w}$ with AWGN $m{w}$ and known $m{\Phi}$

[Donoho/Maleki/Montanari'10]

or the generalized linear model:

- Infer $s \sim \prod_n p_S(s_n)$ from $y \sim \prod_m p_{Y|X}(y_m|x_m)$ with hidden $x = \Phi s$ and known Φ

[Rangan'10]

our new algorithm is formulated for the **generalized bilinear model**:

- Infer $m{A}\sim\prod_{m,r}p_A(a_{mr})$ and $m{B}\sim\prod_{r,n}p_B(b_{rn})$ from $m{Y}\sim\prod_{m,n}p_{Y|X}(y_{mn}|x_{mn})$ with hidden $m{X}=m{A}m{B}$ [Parker/Schniter/Cevher'11,12]
- Our work is still in-progress. Today we will focus on results for Matrix Completion. A journal submission with RPCA and DL examples is in preparation. Preliminary results are encouraging; stay tuned!

Outline:

1. **Brief review** of popular approaches to matrix-completion and robust PCA:

- Convex
- Greedy
- Bayesian

2. Bilinear Generalized AMP (BiG-AMP).

- What is it?
- What are AMP's approximations?
- How to apply to MC, RPCA, DL?

3 Preliminary results:

- Phase transition curves
- NMSE and runtime
- Practical examples: image completion, video surveillance

Convex-Optimization for Matrix-Completion & Robust PCA:

• Consider the combined MC-and-RPCA problem:

Recover low-rank $m{X}$ and sparse $m{S}$ from AWGN-corrupted incomplete observations $m{Y} = \mathcal{P}_{\Omega}(m{X} + m{S} + m{W}).$

• Optimization approach:

$$\min_{\boldsymbol{X},\boldsymbol{S}} \left\{ \operatorname{rank}(\boldsymbol{X}) + \gamma \|\boldsymbol{S}\|_{0} \right\} \text{ s.t. } \|\mathcal{P}_{\Omega}(\boldsymbol{X} + \boldsymbol{S}) - \boldsymbol{Y}\|_{F} \leq \eta \text{ ... intractable}$$

$$\min_{\boldsymbol{X},\boldsymbol{S}} \left\{ \|\boldsymbol{X}\|_{*} + \gamma \|\boldsymbol{S}\|_{1} \right\} \text{ s.t. } \|\mathcal{P}_{\Omega}(\boldsymbol{X} + \boldsymbol{S}) - \boldsymbol{Y}\|_{F} \leq \eta \text{ ... convex!}$$

- Convex relaxation yields **perfect noiseless** & **stable noisy** recovery when:
 - $-\operatorname{rank}(\boldsymbol{X})$ is sufficiently small,
 - singular vectors of $oldsymbol{X}$ are not too cross-correlated nor too spiky,
 - support of S is random and sufficiently sparse,
 - observation set Ω is random and sufficiently large.

Details given in, e.g., [Candés/Recht'08], [Candés/Plan'09], [Candés/Li/Ma/Wright'09], [Zhou/Wright/Li/Candés/Ma'10], and [Chen/Jalali/Sanghavi/Caramanis'11].

Fast Algorithms for Convex Matrix-Completion & Robust PCA:

• A comparison of convex RPCA algorithms is given at Yi Ma's webpage: http://perception.csl.uiuc.edu/matrix-rank/sample_code.html

Algorithm	Error	Time (sec)
Singular Value Thresholding [Cai/Candes/Shen'08]	3.4e-4	877
Dual Method [Lin/Ganesh/Wright/Wu/Chen/Ma'09]	1.6e-5	177
Accelerated Proximal Gradient (partial SVD) [Lin/Ganesh/Wright/Wu/Chen/Ma'09]	1.8e-5	8
Alternating Direction Methods [Yuan/Yang'09]	2.2e-5	5
Exact Augmented Lagrange Method [Lin/Chen/Wu/Ma'09]	7.6e-8	4
Inexact Augmented Lagrange Method [Lin/Chen/Wu/Ma'09]	4.3e-8	2

for the recovery of 400×400 rank-20 matrix \boldsymbol{X} corrupted by 5%-sparse \boldsymbol{S} with amplitudes uniform in [-50, 50].

• Evidently a lot of progress has been made! Can one do better?

Greedy Approaches to Matrix-Completion & Robust PCA:

- ullet First consider matrix completion, where we want to recover low-rank Xfrom AWGN-corrupted incomplete observations $m{Y} = \mathcal{P}_{\Omega}(m{X} + m{W})$.
- If we suppose that . . .

 $m{X} \in \mathbb{R}^{M \times N}$ is square or tall (i.e., $M \geq N$) with $\mathrm{rank}(m{X}) = R$, then the difficult part of the MC problem is finding the column space of X, leading to squared-error minimization on the **Grassmanian manifold** $\mathcal{G}_{M,R}$:

$$\min_{m{A} \in \mathcal{G}_{M,R}} \min_{m{B}} \|\mathcal{P}_{\Omega}(m{A}m{B}) - m{Y}\|_F^2$$

- Example algorithms:
 - Optspace [Keshavan/Montanari/Oh'09]: Grad-descent minimizing (A, B).
 - **SET** [Dai/Milenkovic'09]: Solves for B, then takes gradient w.r.t A.
 - GROUSE [Balzano/Nowak/Recht'10]: Grad-descent one column at a time.
- This greedy approach can also be extended to RPCA:
 - GRASTA [He/Balzano/Lui'11].

Bayesian Approaches to Matrix-Completion & Robust PCA:

- First consider matrix completion, where we want to recover low-rank X from AWGN-corrupted incomplete observations $Y = \mathcal{P}_{\Omega}(X + W)$.
- The basic Bayesian approach decomposes $m{X} = m{A} m{B}$ and assumes priors $m{A} \sim \mathcal{N}(m{0}, \sigma_A^2 m{I})$ and $m{B} \sim \mathcal{N}(m{0}, m{I})$. The log posterior then becomes

$$\ln p(\mathbf{A}, \mathbf{B}|\mathbf{Y}) = \frac{1}{2\sigma_W^2} \|\mathcal{P}_{\Omega}(\mathbf{A}\mathbf{B}) - \mathbf{Y}\|_F^2 + \frac{1}{2\sigma_A^2} \|\mathbf{A}\|_F^2 + \frac{1}{2} \|\mathbf{B}\|_F^2 + C.$$

To infer (A, B), various schemes have been proposed, e.g.,

EM ("Probabilistic PCA")

- [Tipping/Bishop'99]
- SDP ("Maximum-Margin Matrix Factorization") [Srebro/Rennie/Jaakkola'04]
- VB ("Variational Bayes")

[Lim/Teh'07]

MCMC ("Probabilistic Matrix Factorization")[Salakhutdinov/Mnih'08]

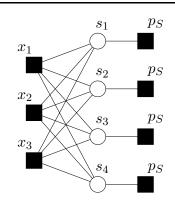
Each has their own way of estimating the hyperparameters $\{\sigma_W^2, \sigma_A^2\}$.

• This approach can be extended to **RPCA** by changing the noise model to a heavy-tailed one (e.g., [Luttinen/Ilin/Karhunen'09], [Ding/He/Carin'11]).

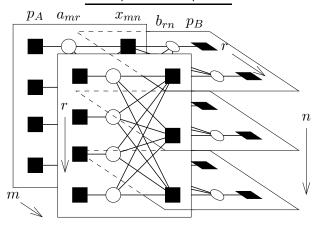
Bilinear Generalized AMP (BiG-AMP):

• BiG-AMP is a Bayesian approach that uses approximate message passing (AMP) strategies to infer (A, B, S).

Compressive Sensing (CS):



MC/RPCA/DL:



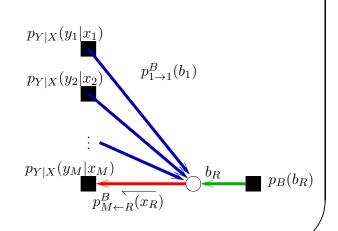
- In AMP, beliefs are propagated on a loopy factor graph using approximations that exploit the **blessings of dimensionality**:
 - 1. Gaussian message approximation (motivated by CLT),
 - 2. Taylor-series approximation of message differences.
- ullet A rigorous large-system analysis of AMP for CS (with i.i.d Gaussian Φ) has established a number of optimalities [Bayati/Montanari'10],[Rangan'10].

BiG-AMP Approximations (sum-product version):

1. Message from i^{th} node of \boldsymbol{X} to j^{th} node of \boldsymbol{B} :

To compute $\hat{x}_i(b_j), \nu_i^x(b_j)$, the means and variances of $p_{i\leftarrow r}^B, p_{i\leftarrow r}^A$ suffice, thus we have **Gaussian message passing!** (Same thing happens with $X \rightarrow A$ messages.)

2. Although Gaussian, we still have 4MNR messages to compute (too many!). Exploiting similarity among the messages $\{p_{i\leftarrow j}^B\}_{i=1}^M$, AMP employs a Taylor-series approximation whose error vanishes as $M\to\infty$. (Same for $\{p_{i\leftarrow j}^A\}_{i=1}^N$.) In the end, AMP only needs to compute $\mathcal{O}(MN)$ messages!



 a_1 $p_{1\leftarrow 1}^A(a_1)$ $p_{1\rightarrow 1}^B(b_1)$ b_1

BiG-AMP for MC, RPCA, and DL:

BiG-AMP can be applied to a wide variety of matrix recovery problems:

Matrix Completion (MC):

Recover low-rank AB from $Y = \mathcal{P}_{\Omega}(AB + W)$... set $A \sim \mathcal{N}(\mathbf{0}, \sigma_{\Delta}^2 I)$ and $B \sim \mathcal{N}(\mathbf{0}, I)$.

Robust PCA (RPCA):

Recover low-rank AB and sparse S from Y = AB + S + W. ...set $A \sim \mathcal{N}(\mathbf{0}, \sigma_A^2 \mathbf{I})$, $B \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$, and $S \sim \text{Bern}(\lambda) - \mathcal{N}(\mathbf{0}, \sigma_S^2 \mathbf{I})$.

• Dictionary Learning (DL):

Recover overcomplete \boldsymbol{A} and sparse \boldsymbol{S} from $\boldsymbol{Y} = \boldsymbol{A}\boldsymbol{S} + \boldsymbol{W}$ set $\boldsymbol{A} \sim \mathcal{N}(\boldsymbol{0}, \sigma_A^2 \boldsymbol{I})$ and $\boldsymbol{S} \sim \text{Bern}(\lambda)$ - $\mathcal{N}(\boldsymbol{0}, \sigma_S^2 \boldsymbol{I})$.

Moreover:

- Non-Gaussian (e.g., quantized) observations can be incorporated via $p_{Y|X}$.
- Structured sparsity can be incorporated via "turbo-AMP." [Schniter'10]
- Hyperparameters can be learned via EM. [Ziniel/Schniter'10],[Vila/Schniter'11,12]

BiG-AMP in Context:

Advantages:

- A unified approach to a wide range of problems, e.g., MC, RPCA, DL, . . .
- Competitive with best algorithms for each application.
 - Very fast and scaleable: no SVDs, easily parallelizable.
 - ... will see from runtime curves.
 - Accurate: in part due to flexibility of choice of priors.
 - ... will see from phase transition and NMSE curves.

Relation to other message-passing algorithms for matrix completion:

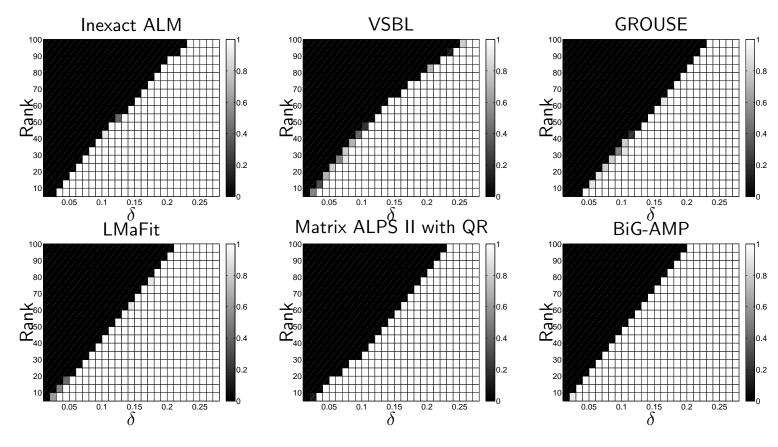
- [Kim/Yedla/Pfister'10]
 - All quantities are discrete.
- [Keshavan/Montanari'11] (1 page poster only!)
 - Variable nodes are vector-valued; updates involve matrix inversion?

BiG-AMP Comments:

- Low computational cost
 - Dominated by 8 matrix multiplies per iteration
 - Sparse matrix math \longrightarrow cost per multiply $\mathcal{O}(R|\Omega|)$
 - Uniform variances \longrightarrow eliminates 5 matrix multiplies per iteration
 - Sparse MM + Uniform variances + Gaussian priors \longrightarrow **BiG-AMP Lite**
- Adaptive **stepsize** scheme based on **GAMP** work
- EM hyperparameter learning using BiG-AMP for the "E" step
- Many extensions to pursue:
 - quantized outputs (e.g., Netflix ratings)
 - non-negativity constraints (e.g., pmf)
 - structure (e.g., tree-structured dictionaries)
 - linear (not missing) observations
 - etc, etc, etc...
- Theoretical analysis/guarantees?

Matrix Completion — Phase Transitions:

For $M \times N = 1000 \times 1000$ matrices in the absence of noise, median over 10 trials:

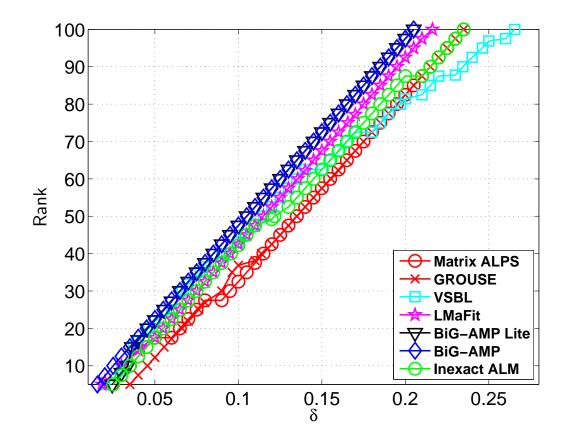


where

• $\delta \triangleq$ fraction of observed entries.

Matrix Completion — Phase Transitions, 50% Contours:

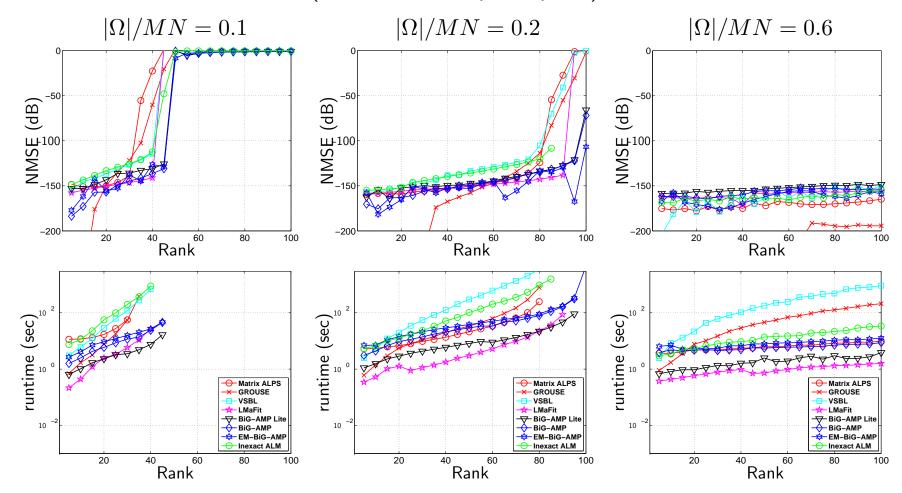
For $M \times N = 1000 \times 1000$ matrices in the absence of noise, median over 10 trials:



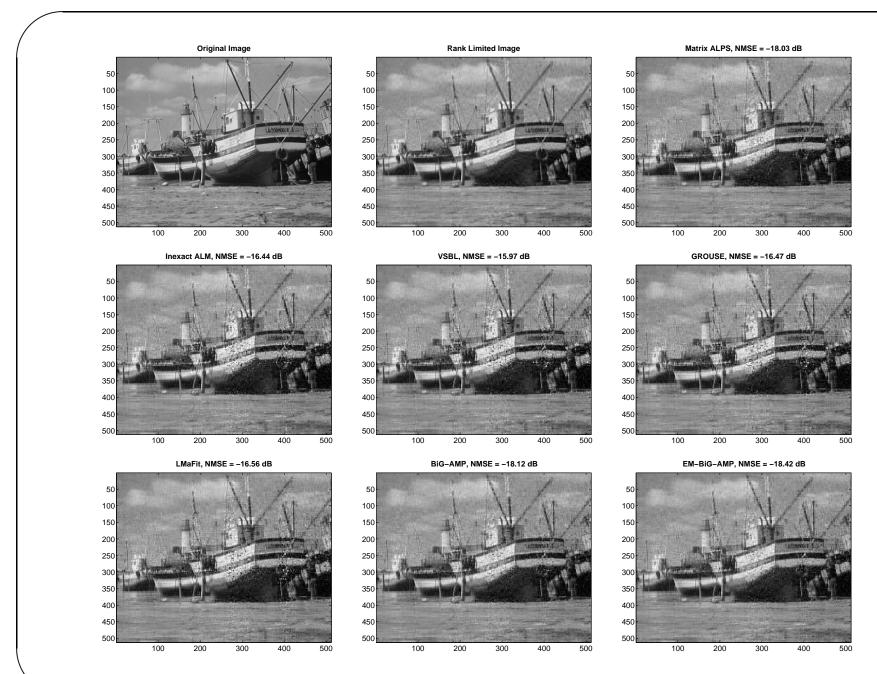
BiG-AMP achieves the best phase transition in this test

Matrix Completion — NMSE and Runtime (to -100 dB):

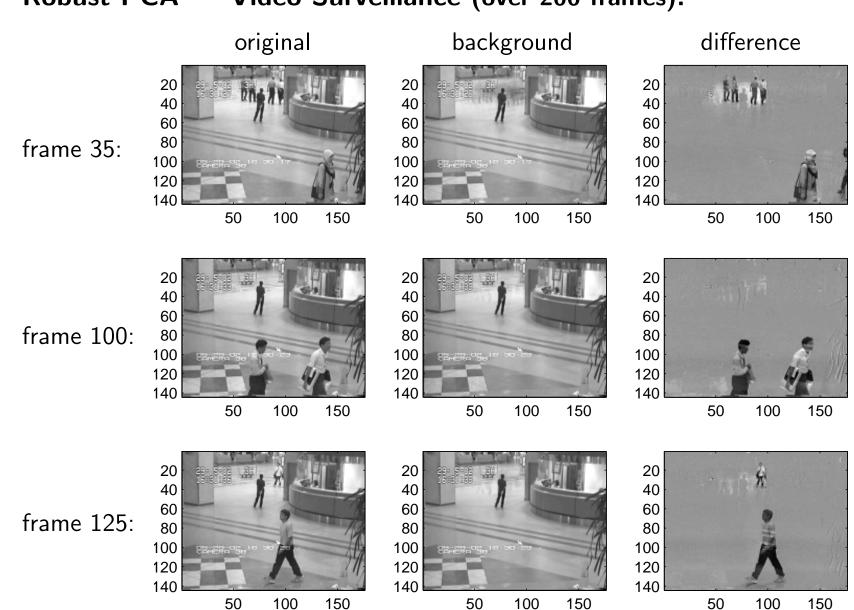
(vertical slices of phase plane)



BiG-AMP achieves very high accuracy and is faster than most approaches. BiG-AMP Lite is competitive with the fastest techniques.



Robust PCA — Video Surveillance (over 200 frames):



Conclusions:

BiG-AMP is

- Approximate message passing (AMP) for the generalized bilinear model.
- A unified approach to many matrix-recovery problems (MC, RPCA, DL...)
- Competitive with the best algorithms for each application.

Ongoing Work

- Rank learning
- EM learning for RPCA and DL
- DL applications
 - Hyperspectral imaging (with J. Vila and J. Meola)
 - Topic modeling (with S. Som)
- Parametric BiG-AMP