
Full-Duplex Bidirectional MIMO: Achievable Rates under Limited Dynamic Range
Brian P. Day∗, Adam R. Margetts†, Daniel W. Bliss†, and Philip Schniter∗

∗ Department of Electrical and Computer Engineering, The Ohio State University, Columbus OH
† Advanced Sensor Techniques Group, MIT Lincoln Laboratory, Lexington, MA

Introduction

We consider the problem of full-duplex communication between two multiple-input, multiple-output
(MIMO) wireless modems. By full-duplex, we mean that the two modems perform simultaneous
transmission and reception (STAR) at the same carrier frequency. By adapting a full-duplex strategy, there
lies potential to nearly double the spectral efficiency over a traditional half-duplex system which either
employs time-division-duplexing or frequency-division-duplexing. The fundamental difficulty with STAR is
that, due to the close proximity of a given modem’s transmit antennas to its receive antennas, the
modem’s outgoing signal can overwhelm its receiver circuitry, making it impossible to recover the incoming
signal.
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Typically, this self-interference can be ∼100dB. Now, consider a typical ADC with
dynamic range ∼50dB. Since the self-interference saturates the receiver, we aim to
prevent it from happening in the first place (e.g. transmit beamforming).

System Model
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Figure: Our model of bidirectional MIMO communication. The dashed lines denote statistical dependence.

Assumptions:

◮ni : AWGN noise ◮Nt : number of antennas for all transmitters

◮Raleigh-fading MIMO channels Hij ∈ C
Nr×Nt ◮Nr : number of antennas for all receivers

◮Pilot aided LS channel estimates, Ĥij ◮ρ : signal-to noise ratio (SNR)
◮η : interference-to-noise ratio (INR)

Distortion Model

Transmitter Distortion:

◮ Modeled as zero-mean Gaussian noise
injected per transmit antenna, written
as cj(t).

◮ Variance is κ times energy of intended

transmit signal, Qj , Cov {xj(t)}.

sj(t) = xj(t)+cj(t) s.t.







cj(t) ∼ CN (0, κ diag(Qj))

cj(t)⊥⊥xj(t)

cj(t)⊥⊥ cj(t
′)
∣
∣
t′ 6=t

◮ Models additive power-amp noise, non-linearities in DAC and power-amp, and oscillator phase noise.

Receiver Distortion:

◮ Modeled as zero-mean Gaussian noise
injected per receive antenna, written as
ei(t).

◮ Variance is β times energy collected at
the antenna, Φi , Cov {ui(t)}.

yi(t) = ui(t)+ei(t) s.t.







ei(t) ∼ CN (0, β diag(Φi))

ei(t)⊥⊥ui(t)

ei(t)⊥⊥ei(t
′)
∣
∣
t′ 6=t

◮ Models additive gain-control noise, non-linearities in ADC and gain-control, and oscillator phase noise.

Transmission Protocol

Our signaling epoch T is partitioned into a training period T train and a subsequent data communication
period T data, each of which are partitioned into two sub-periods. Within each of these four sub-periods,
we assume that the transmitted signals are zero-mean and wide-sense stationary.

T train[1] T train[2] T data[1] T data[2]

Training Period Data Period

Partial Self-Interference Cancellation

We employ partial self-interference cancellation on the received signal. It is only a partial cancellation,
because of channel estimation error, transmitter/receiver distortion. For example, we have
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Aggregate interference v2 is comprised of transmitter/receiver distortion and channel estimation error.

Bounds on Achievable Sum-Rate

◮ In general, aggregate interference vi[l] is non-Gaussian (due to channel estimation error)

◮ We derive tight upper (I(Q)) and lower-bounds (I(Q)) on achievable sum-rate for Gaussian case

◮ With sufficient training I(Q) → I(Q)

I(Q) =
1

2

2∑

i=1

2∑

l=1

log det
(
ρĤiiQi[l]Ĥ

H
ii + Σ̂i[l]

)
−log det(Σ̂i[l])

︸ ︷︷ ︸

Lower Bound

≤ I(Q)

︸ ︷︷ ︸

Sum-Rate

≤ I(Q)

︸ ︷︷ ︸

Upper Bound

(1)

◮ Q ,
(
Q1[1],Q1[2],Q2[1],Q2[2]

)
, the set of all transmit covariance matrices

◮ Σ̂i[l] , Cov{vi[l] | Ĥii, Ĥij}

Transmit Covariance Optimization

We wish to maximize the sum-rate by finding optimal transmit covariance matrices under a time-averaged
power constraint. We have developed a Gradient Projection algorithm to solve the following
optimization problem. The projection step in essence implements waterfilling.

max
Q1[1],Q1[2],Q2[1],Q2[2]

I
(
Q1[1],Q1[2],Q2[1],Q2[2]

)
(2a)

s.t.
1

2

2∑

l=1

tr
(
Qi[l]

)
≤ 1, i = 1, 2 Power Constraint (2b)

Qi[l] ≥ 0, ∀i, l ∈ {1, 2}, (2c)

Example Transmit Power Allocation
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◮ For mid-range SINR, we expect each transmitter to unevenly share power among time sub-periods

Sum-Rate Approximation

The complicated nature of the optimization problem (2) motivates us to approximate its solution. We
approximate using the special case that each Hij is diagonal, with Nmin , min{Nt, Nr} identical entries.
This gives us

I(Q) ≈ 1

2

∑

i,l

log det
(

I + ρNtNr
Nmin

Qi[l]
(
I + (κ + β)NtNr

Nmin

[
ρ diag(Qi[l]) + η diag(Qj[l])

])−1
)

. (3)

“Full-Duplex” Analysis:

◮ When η ≪ ρ, we find the optimal covariances

◮ QFD , ( 1
Nt

I, 1
Nt

I, 1
Nt

I, 1
Nt

I).

◮ I(QFD) ≈ 2Nmin log

(

1 + ρ
Nmin
Nr

+(κ+β)(ρ+η)

)

“Half-Duplex” Analysis:

◮ When η ≫ ρ, we find the optimal covariances

◮ QFD , ( 2
Nt

I,0,0, 2
Nt

I).

◮ I(QHD) ≈ Nmin log

(

1 + ρ
Nmin
2Nr

+(κ+β)ρ

)

Then, we find the boundary between full and half-duplex as

η =
1

2

(√

ξ2 + 2ρξ/(κ + β) − (ξ − 2ρ)

)

for ξ ,
Nmin

Nr(κ + β)
+ 2ρ (4)

Sum-Rate: Approximation vs. Optimization

Approximation Gradient Projection Optimization
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The dark curve on both figures is the approximate boundary between full and half-duplex from (4). The
dashed line shows the boundary for the SNR-limited and distortion-limited regimes.

Simulation Results
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◮OHD: optized half-duplex ◮β, κ : Rx/Tx distortion factor

◮TCO-2-IC: use 2 time intervals, cancel self-interference ◮η : interference-to-noise ratio (INR)

◮TCO-1-IC: use 1 time interval, cancel self-interference ◮ρ : signal-to-noise ratio (SNR)

◮TCO-2: optimize over 2 time intervals, no interference cancellation

Summary

◮ Considered the problem of full-duplex bidirectional communication in MIMO modems in which we
developed explicit models of limited transmitter/receiver-dynamic range and imperfect CSI.

◮ Derived upper and lower bounds on the achievable sum-rate that tighten as the number of pilots
increases.

◮ Proposed a transmission scheme based on maximizing the sum-rate lower bound through a non-convex
optimization problem

◮ Derived an analytic approximation of the achievable sum-rate as a function of signal-to-noise ratio,
interference-to-noise ratio, transmitter/receiver dynamic range, number of antennas, and number of
pilots.
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