

# Full-Duplex Bidirectional MIMO: Achievable Rates under Limited Dynamic Range Brian P. Day\*, Adam R. Margetts<sup>†</sup>, Daniel W. Bliss<sup>†</sup>, and Philip Schniter<sup>\*</sup>

# Introduction

We consider the problem of full-duplex communication between two multiple-input, multiple-output (MIMO) wireless modems. By full-duplex, we mean that the two modems perform simultaneous transmission and reception (STAR) at the same carrier frequency. By adapting a full-duplex strategy, there lies potential to nearly double the spectral efficiency over a traditional half-duplex system which either employs time-division-duplexing or frequency-division-duplexing. The fundamental difficulty with STAR is that, due to the close proximity of a given modem's transmit antennas to its receive antennas, the modem's outgoing signal can overwhelm its receiver circuitry, making it impossible to recover the incoming signal.



Typically, this self-interference can be  $\sim$ 100dB. Now, consider a typical ADC with dynamic range  $\sim$ 50dB. Since the self-interference saturates the receiver, we aim to prevent it from happening in the first place (e.g. transmit beamforming).

# System Model



Figure: Our model of bidirectional MIMO communication. The dashed lines denote statistical dependence. **Assumptions:** 

- $\blacktriangleright n_i$ : AWGN noise
- ► Raleigh-fading MIMO channels  $oldsymbol{H}_{ij} \in \mathbb{C}^{N_{\mathsf{r}} imes N_{\mathsf{t}}}$
- $\blacktriangleright$ Pilot aided LS channel estimates,  $\hat{H}_{ii}$

 $\blacktriangleright N_t$  : number of antennas for *all* transmitters  $> N_r$  : number of antennas for *all* receivers  $\blacktriangleright \rho$  : signal-to noise ratio (SNR)  $\blacktriangleright \eta$  : interference-to-noise ratio (INR)

## **Distortion Model**

## **Transmitter Distortion:**

- ► Modeled as zero-mean Gaussian noise injected per transmit antenna, written as  $\boldsymbol{c}_{j}(t)$ .
- Variance is  $\kappa$  times energy of *intended* transmit signal,  $\boldsymbol{Q}_{j} \triangleq \operatorname{Cov} \{\boldsymbol{x}_{j}(t)\}.$
- ► Models additive power-amp noise, non-linearities in DAC and power-amp, and oscillator phase noise.

### **Receiver Distortion:**

- ► Modeled as zero-mean Gaussian noise injected per receive antenna, written as  $\boldsymbol{e}_i(t)$  .
- $\blacktriangleright$  Variance is  $\beta$  times energy collected at the antenna,  $\boldsymbol{\Phi}_i \triangleq \operatorname{Cov} \{ \boldsymbol{u}_i(t) \}$ .

$$\boldsymbol{y}_{i}(t) = \boldsymbol{u}_{i}(t) + \boldsymbol{e}_{i}(t) \text{ s.t. } \begin{cases} \boldsymbol{e}_{i}(t) \sim \boldsymbol{u}_{i}(t) \\ \boldsymbol{e}_{i}(t) \perp \boldsymbol{u}_{i}(t) \\ \boldsymbol{e}_{i}(t) \perp \boldsymbol{u}_{i}(t) \end{cases}$$

► Models additive gain-control noise, non-linearities in ADC and gain-control, and oscillator phase noise.

# **Transmission Protocol**

Our signaling epoch  $\mathcal{T}$  is partitioned into a training period  $\mathcal{T}_{train}$  and a subsequent data communication period  $\mathcal{T}_{data}$ , each of which are partitioned into two sub-periods. Within each of these four sub-periods, we assume that the transmitted signals are zero-mean and wide-sense stationary.

| $\mathcal{T}_{train}[1]$ | ${\cal T}_{\sf train}[2]$ | ${\mathcal{T}}_{data}[1]$ | ${\cal T}_{\sf data}$ |  |
|--------------------------|---------------------------|---------------------------|-----------------------|--|
| Training Period          |                           | Data I                    | Data Period           |  |





\* Department of Electrical and Computer Engineering, The Ohio State University, Columbus OH † Advanced Sensor Techniques Group, MIT Lincoln Laboratory, Lexington, MA

$$\mathbf{Q}_{1}[l] = 2$$

$$\mathbf{Q}_{2}[l] = 1$$

$$l = 2$$

$$low SINR$$
"half-duplex"
e power among time sub-pe

$$\mathcal{Q}_{\text{HD}}) \approx N_{\min} \log \left( 1 + \frac{\rho}{\frac{N_{\min}}{2N_{\text{r}}} + (\kappa + \beta)\rho} \right)$$

for 
$$\xi \triangleq \frac{N_{\min}}{N_{\mathsf{r}}(\kappa + \beta)} + 2\rho$$
 (4)

# Sum-Rate: Approximation vs. Optimization



The dark curve on both figures is the approximate boundary between full and half-duplex from (4). The dashed line shows the boundary for the SNR-limited and distortion-limited regimes.

# **Simulation Results**



### Summary

- increases.
- optimization problem
- pilots.





Considered the problem of full-duplex bidirectional communication in MIMO modems in which we developed explicit models of limited transmitter/receiver-dynamic range and imperfect CSI. Derived upper and lower bounds on the achievable sum-rate that tighten as the number of pilots

Proposed a transmission scheme based on maximizing the sum-rate lower bound through a non-convex

► Derived an analytic approximation of the achievable sum-rate as a function of signal-to-noise ratio, interference-to-noise ratio, transmitter/receiver dynamic range, number of antennas, and number of