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Abstract—In this work, we consider a general form of noisy
compressive sensing (CS) when there is uncertainty in the
measurement matrix as well as in the measurements. Matrix
uncertainty is motivated by practical cases in which there are
imperfections or unknown calibration parameters in the signal
acquisition hardware. While previous work has focused on
analyzing and extending classical CS algorithms like the LASSO
and Dantzig selector for this problem setting, we propose a new
algorithm whose goal is either minimization of mean-squared
error or maximization of posterior probability in the presence
of these uncertainties. In particular, we extend the Approxi-
mate Message Passing (AMP) approach originally proposed by
Donoho, Maleki, and Montanari, and recently generalized by
Rangan, to the case of probabilistic uncertainties in the elements
of the measurement matrix. Empirically, we show that our
approach performs near oracle bounds. We then show that our
matrix-uncertain AMP can be applied in an alternating fashion to
learn both the unknown measurement matrix and signal vector.
We also present a simple analysis showing that, for suitably large
systems, it suffices to treat uniform matrix uncertainty as additive
white Gaussian noise.

I. I NTRODUCTION

In compressive sensing (CS), the goal is to reconstruct
an N -dimensional signalx from M < N linear measure-
ments y = Ax + w, where w is additive noise. In the
noiseless case, it is by now well known that, when the
signal is exactlyK-sparse and the measurement matrixA

satisfies certain properties (e.g., restricted isometry, null space,
or spark), it is possible to exactly reconstruct the signal
from M = O(K logN/K) measurements using polynomial-
complexity algorithms (e.g., greedy or convex-optimization
based). Moreover, these methods can accurately reconstruct the
signal in the noisy case, even when the signal is compressible
rather than exactly sparse (e.g., [1]).

These results are, however, predicated on knowing the mea-
surement matrixA perfectly. In practical applications of CS, it
is reasonable to expect uncertainty in the linear measurement
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matrix A due to, e.g., imperfections in the signal acquisition
hardware, model mismatch, parameter discretization, and other
factors.

Several authors have analyzed the impact of measurement-
matrix uncertainty on existing CS algorithms, e.g., Herman
and Strohmer [2], Herman and Needell [3], and Chi, Pezeshki,
Scharf, and Calderbank [4]. Herman et al. analyze the effect
of additive perturbations on the Basis Pursuit and CoSaMP
algorithms, respectively, whereas Chi et al. analyze the effect,
on Basis Pursuit, of a multiplicative basis mismatch matrixthat
takes the form of the identity matrix plus a perturbation. In
[2]–[4], the authors study the worst-case effects on established
algorithms, but stop short of proposing new algorithms.

We are aware of only a few algorithms that explicitly
address measurement-matrix uncertainty, all of which consider
the additive uncertainty modelA = Â+E, whereÂ is known
andE is an unknown perturbation, yielding the observations

y = (Â+E)x+w. (1)

In [5], Zhu et al. develop the Sparsity-cognizant Total Least
Squares (S-TLS) approach, which extends the classical TLS
approach (widely applied in the context ofℓ2 regularization)
to ℓ1 regularization, yielding

{x̂S-TLS, ÊS-TLS} =

argmin
x,E

‖(Â+E)x− y‖22 + λE‖E‖2F + λ‖x‖1. (2)

In [6], Rosenbaum and Tsybakov propose the MU-Selector, a
modified version of the Dantzig selector [7], which reads

{x̂MU-Selector} =

argmin
x

‖x‖1 s. t. ‖Â
H
(y − Âx)‖∞ ≤ λ‖x‖1 + ǫ. (3)

The above criteria assume relatively little about the structure
of the perturbationsw andE, and thus obtain algorithms with
wide applicability, but—as we shall see—limited performance.
In [5], Zhu et al. also proposed a Weighted S-TLS (WS-TLS)
that can exploit structure in the matrix uncertaintyE and
perform significantly better than S-TLS.

In this paper, we address sparse-signal recovery under
matrix uncertainty in a Bayesian framework with informa-
tive priors. In particular, we extend the Approximate Mes-
sage Passing (AMP) algorithm recently proposed by Donoho,



Maleki, and Montanari [8]—and in particular the Generalized
AMP (GAMP) proposed by Rangan [9]—to the case of
probabilistic uncertainty on the elements of the measurement
matrix A. Initially, we treat the entries ofA as independent
random variables that are known only in mean and variance,
which can both vary across the entries. The resulting Matrix-
Uncertain GAMP (MU-GAMP) provides a computationally
efficient way to obtain nearly minimum-mean-squared-error
(MMSE) estimates of the unknown signalx in the presence
of uncertainties in both the linear matrix transformationA as
well as the observations of the transformed outputsAx.

We then turn our attention to parametric matrices of the
form A(θ) = A0 +

∑P

p=1 θpAp, where {Ap} are known
and θ = [θ1, . . . , θP ]

T unknown. We then propose a scheme
that alternates between the estimation ofθ and the estimation
of x. Conveniently, both estimation steps can be performed
using the already developed MU-GAMP framework. A salient
feature of this approach is that we alternate soft estimatesas
opposed to point estimates.

Throughout the paper, we use boldface capital letters to
denote matrices and boldface small letters to denote vectors,
I and0 to denote the identity matrix and zero matrices,(·)T

transpose, and(·)∗ conjugate. Forxj a realization of random
variable Xj , we useEXj

{xj} to denote mean,varXj
{xj}

variance,pXj
(xj) the pdf, andpXj |Dj

(xj | dj) the pdf condi-
tioned onDj=dj , and sometimes we omit the subscript when
there is no danger of confusion. To denote the Gaussian pdf
with meanx̂ and varianceνx, we useN (x; x̂, νx).

II. A L ARGE-SYSTEM BLESSING?

Before getting into the details of MU-GAMP, we make a
curious observation: As the problem dimensions grow large,
the effect ofuniformmatrix uncertainty is identical to additive
white Gaussian noise (AWGN) on the observations. The
following proposition makes our claim precise.

Proposition 2.1:Consider anM -dimensional observation
of the form in (1), written equivalently as

y = Âx+ e+w for e , Ex. (4)

Suppose thatN -dimensionalx isK-sparse, and that the matrix
uncertaintyE is uniform, i.e., {Emn} are i.i.d zero-mean
random variables with varianceνE = cE/M for bounded
positivecE (but otherwise arbitrary distribution). In the large-
system limit (i.e.,M,N,K → ∞ with fixed δ , M/N and
ρ,K/M ), the additive “interference”e becomes i.i.d zero-
mean Gaussian with varianceνe = cEδ−1‖x‖22/N .

Proof: Since the rows ofE are statistically independent,
the elements{em} of e are independent as well. Moreover,
em =

∑K
k=1 Em,n(k)xn(k), wheren(k) indexes thekth non-

zero element ofx. Thus, in the large-system limit (i.e.,K →
∞), the central limit theorem implies thatem is zero-mean
Gaussian with varianceνe , νE‖x‖22 = cEδ−1‖x‖22/N .

The implication of Proposition 2.1 is that, for problems
of uniform matrix uncertainty andsuitably largedimension,
there is no need to design new algorithms that handle matrix
uncertainty; those designed to handle AWGN (e.g., LASSO

[10], GAMP, etc.) suffice, so long as they are properly tuned
to handle the additional AWGN powerνe.

Now, whether or not the large-system behavior predicted by
Proposition 2.1 manifests at a givenfinite (M,N,K) depends
on the distribution of i.i.d{Emn} and the sparsityK. If
{Emn} are far from Gaussian (e.g., sparse) andK is relatively
small, the distribution of{em} can be far from Gaussian. On
the other hand, if{Emn} is Gaussian, thenem will also be
Gaussian, for anyK.

Although, to our knowledge, Proposition 2.1 is novel, the
empirical results in previous works support its claim; see,e.g.,
the negligible difference between optimally tuned versions of
S-TLS and LASSO under i.i.d GaussianE in [5, Fig. 3]. In
Section III-C, we will provide further empirical support.

III. M ATRIX -UNCERTAIN GAMP

A. Background on GAMP

In the Bayesian approach to compressed sensing, it is
typically presumed that the signalx is drawn from a known
separable pdfp(x) =

∏

n pX(xn), where pX(.) promotes
sparsity or compressibility. Similarly, the noisew is drawn
from a known separable pdfp(w) =

∏

m pW (wm). Given
the observationsy = Ax + w, one would ideally like to
compute the full joint posteriorp(x |y). This is, however,
not tractable for the pdfs and problem dimensions typical in
compressed sensing. Thus, one often settles for approximate
MAP or MMSE estimates.

The original AMP algorithm [8] assumes LaplacianpX(.)
and GaussianpW (.), and seeks the MAP solution using an ap-
proximation of loopy belief propagation. The approximation,
which becomes tight in the large-system limit, is based on the
CLT and Taylor-series expansions, and relies on the elements
of A to be known realizations of an independent zero-mean
1/M -variance random variable.

Rangan proposed a Generalized AMP (GAMP) [9] that 1)
handles either MAP or MMSE, 2) allows arbitraryAmn, 3)
allows an arbitrary signal distributionpX(.), and 4) allows
an arbitrary separable pdfp(y | z) =

∏

m pY |Z(ym | zm)
relating the observationsy to the linearly transformed outputs
z , Ax. This observation-uncertainty model subsumes the
case of additive noisew with arbitrary distributionpW (.) via
pY |Z(ym | zm) = pW (ym− zm), but also handles nonlinear
output transformations like that used in logistic regression.

B. Matrix-Uncertain GAMP

We now propose a Matrix-Uncertain GAMP (MU-GAMP)
that extends GAMP [9] to the case of uncertainty in the
measurement matrixA. Unlike GAMP, which treats{Amn}
as fixed and known, MU-GAMP treats{Amn} as independent
random variables with known mean and variance,

Âmn = E{Amn} (5)

νAmn = var{Amn}, (6)

reducing to GAMP in the case thatνAmn = 0. Note that, with
E , A− Â, we recover exactly the perturbation modelA =



definitions:
pZ|Y (z|y; ẑ, νz) =

pY |Z(y|z)N (z;ẑ,νz)
∫
z′ pY |Z(y|z′)N (z′;ẑ,νz)

(D1)

gout(y, ẑ, ν
z) = 1

νz

(

EZ|Y {z|y; ẑ, νz} − ẑ
)

(D2)

g′out(y, ẑ, ν
z) = 1

νz

(

varZ|Y {z|y;ẑ,νz}

νz − 1
)

(D3)

pX|Y(x|y; r̂, νr) =
pX(x)N (x;r̂,νr)∫

x′ pX(x′)N (x′;r̂,νr)
(D4)

gin(r̂, ν
r) =

∫

x
x pX|Y(x|y; r̂, νr) (D5)

g′in(r̂, ν
r) = 1

νr

∫

x
|x− gin(r̂, ν

r)|2 pX|Y(x|y; r̂, νr) (D6)
initialize:

∀n : x̂n(1) =
∫

x
x pX(x) (I1)

∀n : νxn(1) =
∫

x
|x− x̂n(1)|2pX(x) (I2)

∀m : ûm(0) = 0 (I3)
for t = 1, 2, 3, . . .

∀m : ẑm(t) =
∑N

n=1 Âmnx̂n(t) (R1)
∀m : νzm(t) =

∑N
n=1 |Âmn|2νxn(t) (R2a)

∀m : νpm(t) = νzm(t) +
∑N

n=1 ν
A
mn

(

νxn + |x̂n(t)|2
)

(R2b)
∀m : p̂m(t) = ẑm(t)− νzm(t) ûm(t− 1) (R3)
∀m : ûm(t) = gout(ym, p̂m(t), νpm(t)) (R4)
∀m : νum(t) = −g′out(ym, p̂m(t), νpm(t)) (R5)
∀n : νrn(t) =

(
∑N

n=1 |Âmn|2νum(t)
)−1 (R6)

∀n : r̂n(t) = x̂n(t) + νrn(t)
∑M

m=1 Â
∗
mnûm(t) (R7)

∀n : νxn(t+1) = νrn(t)g
′
in(r̂n(t), ν

r
j (t)) (R8)

∀n : x̂n(t+1) = gin(r̂n(t), ν
r
n(t)) (R9)

end

TABLE I
THE MU-GAMP ALGORITHM

Â+E used in (1), but now with the implicit assumption that
Emn has zero mean and varianceνAmn.

Due to lack of space, we are unable to provide a derivation
of MU-GAMP here, but we note that the approximations on
which it is based (and the notation we use to summarize it)
are the same as those used for standard GAMP. The resulting
algorithm is given in Table I,1 where the only difference from
the original GAMP is the additional step (R2b). With this step,
MU-GAMP requires an additional matrix multiply, although
the cost of this multiplication may be reduced whenνAmn is
structured. For example, whenνAmn = νAm ∀n, the matrix
multiplication in (R2b) reduces to a sum.

C. Empirical Study

We now study empirical performance underuniform and
non-uniformmatrix uncertainty. In both cases, we plot Nor-
malized Mean Squared Error (NMSE) versusM/N atN=256
and K/M = 0.2, where the relatively small problem size
was used due to the implementation complexity of the MU-
Selector. TheK non-zero entries of the signalx were drawn
±1 with equal probability, the (known) matrix means{Âmn}
were i.i.dN (0, 1/M), and the noisew was i.i.dN (0, νw).

To illustrate the effect ofuniform matrix uncertainty, we
drew the matrix errors{Emn} i.i.d N (0, νE), noting that in
this casee = Ex is truly i.i.d Gaussian (for any givenx).
Moreover, we setνE=νw such that the signal to interference-
plus-noise ratio (SINR)E{‖Âx‖22}/E{‖e+w‖22} = 20 dB.
Under this setup, we ran MU-GAMP under the true (uniform)
matrix error varianceνAmn = νE , the true noise statistics,
the true signal variance and sparsity rate, but a (mismatched)

1A M ATLAB implementation of GAMP, including the MU extension, is
available athttp://sourceforge.net/projects/gampmatlab/.

Bernoulli-Gaussian signal pdf. We also ran the original GAMP
under the same signal prior and the compensated AWGN
varianceνe+νw, for νe , var{em}=KνE . We then ran S-
TLS, the MU-Selector, and LASSO (via SpaRSA [11]), each
debiased and with “genie-aided” tuning: for each realization,
each algorithm was run under several values of its tuning pa-
rameter, and the tuning yielding minimal NMSE was selected.
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Fig. 1. 10-trial median NMSE under uniform matrix error varianceνE .

Figure 1 shows the resulting NMSE performance of each
algorithm, as well as that of two oracle estimators: support-
aware LMMSE, and support-and-E-aware LMMSE. We note
that, under a Bernoulli-Gaussian signal pdf, the NMSEs of
GAMP and MU-GAMP are lower bounded by these respective
oracles. The figure shows that GAMP and MU-GAMP yield
essentially identical NMSE, and that forM/N > 0.3, this
NMSE essentially coincides with the support-oracle bound.
Meanwhile, the debiased and genie-tuned incarnations of S-
TLS, the MU-Selector, and LASSO show performance that is
only slightly worse than GAMP and MU-GAMP forM/N >
0.3. The fact that the matrix-uncertain algorithms (i.e., MU-
GAMP, S-TLS, MU-Selector) and the standard algorithms
(i.e., GAMP, LASSO) perform near-identically underuniform
matrix uncertainty confirms the claim of Proposition 2.1.

Next, we examine the effect ofnon-uniformmatrix uncer-
tainty. For this, we used the same setup as in the previous
experiment, except that we usednon-uniformvariances{νEmn}
such thatνEmn = 0 for 99% of the entries, whileνEmn = CE

for the remaining1% of the entries, whereCE was chosen
to make the cumulative errorνe identical to the previous
experiment. MU-GAMP was then run under the true (now
non-uniform)νAmn = νEmn, while GAMP was run under the
compensated AWGN varianceνe + νw, as before. We also
implemented the Weighted S-TLS (WS-TLS) from [5], which
was given knowledge of the non-uniform{νEmn}.

Figure 2 shows the resulting NMSE. In the figure, we see
that the algorithms assuming uniform matrix uncertaintyνE

(i.e., S-TLS and the MU-Selector) perform essentially the
same in this experiment as they did in the previous experiment,
which is due to the fact thatνe was calibrated across experi-
ments. Furthermore, these algorithms do essentially no better
than those designed for AWGN (i.e., LASSO and GAMP),



which makes sense in light of Proposition 2.1. However, the
algorithms exploiting non-uniform uncertainty{νEmn} (i.e.,
WS-TLS and MU-GAMP) do significantly better. In fact,
MU-GAMP performs quite close to the support-and-E-aware
oracle bound forM/N > 0.3.
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Fig. 2. 10-trial median NMSE under non-uniform error variance{νEmn}.

IV. A LTERNATING MU-GAMP

The performance of any reasonable compressive-sensing
algorithm will improve as matrix uncertainty diminishes, and
one way to reduce uncertainty is to explicitly estimate the
unknown matrixA. In fact, this is the goal of Dictionary
Learning [12], where a large number of measurement vectors
{yt}

T
t=1 are assumed to be available. Since we are interested

in estimatingA from one (or very few) measurement vectors,
we consider structured forms ofA that depend on only a few
parametersθ ∈ C

P . In particular, we consider affine linear2

models of the form (noting similarities to [5])

A(θ) = A0 +
∑P

p=1 θpAp (7)

with known {Ap}
P
p=0 and unknownθ. Several examples

of this structure are discussed in the sequel. Moreover, (7)
handles the case ofunstructuredA via P = MN , A0 = 0,
and{Ap}Pp=1 each containing a single distinct non-zero entry.

A. Alternating MU-GAMP

We now propose a scheme to jointly estimate{x,θ}
based on the previously developed MU-GAMP. The proposed
scheme is an iterative one that alternates between the estima-
tion of x andθ. Say the mean and variance ofθp are given
by θ̂p andνθp , respectively. Then it holds that

Âmn , E{Amn(θ)} = A0,mn +
∑P

p=1 θ̂pAp,mn (8)

νAmn , var{Amn(θ)} =
∑P

p=1 ν
θ
p |Ap,mn|

2, (9)

whereAp,mn denotes themth row andnth column of Ap.
Thus, given the soft parameter estimates(θ̂,νθ), one can

2The affine linear model (7) may arise from a first-order Taylor series
approximation of a non-linear modelA(θ) around the point̂θ, in which case
A0 = A(θ̂) andAp = ∂A(θ)/∂θp|θ=θ̂

.

directly compute the matrix uncertainty statistics{Âmn} and
{νAmn}, and—with them—run MU-GAMP to estimate the
signal vectorx, which will produces the marginal posterior
mean and variance vectors(x̂,νx).

Then, given the soft signal estimates(x̂,νx), we can update
the parameter means and variances(θ̂,νθ), also using MU-
GAMP. To see how, we first notice that the linear outputsz

in the GAMP observation modelp(y | z) take the form

z = A(θ)x = A0x+
∑P

p=1 Apx θp = B(x)θ (10)

for θ , [θ0, θ1, . . . , θP ]
T, θ0 , 1, and the (uncertain) matrix

B(x) ,
[

A0x
∣

∣A1x
∣

∣ · · ·
∣

∣APx
]

. (11)

Given (x̂,νx), the mean and variance ofBmp are simply

B̂mp , E{Bmp(x)} =
∑N

n=1 Ap,mnx̂n (12)

νBmp , var{Bmp(x)} =
∑N

n=1 |Ap,mn|2νxn, (13)

which, together with an appropriate prior pdf on{θp}, are the
ingredients needed to estimateθ with MU-GAMP, yielding
updated soft outputs(θ̂,νθ). For example, if{θp}Pp=1 were
known to be sparse, then a sparsifying prior would be ap-
propriate. Forθ0, a prior with all mass at1 would suffice to
handle the constraintθ0 = 1.

Alternating between these two MU-GAMP steps, we can
obtain successively refined estimates of(x̂,νx) and (θ̂,νθ).
Each MU-GAMP step itself involves several iterations, but
relatively few would be needed if they were “warm started” at
the values of the previous estimates. Note that, unlike typical
iterative schemes for dictionary learning [12], which alternate
between point estimates, ours alternate betweensoftestimates,
i.e., mean/variance pairs.

B. Empirical Study

We now present three empirical experiments that investi-
gate MU-GAMP and alternating MU-GAMP (A-MU-GAMP)
under parametric matrix uncertainty. In all cases, we used
M = 103, N = 256, i.i.d GaussianA0 ∈ C

M×N and
θ ∈ C

P , i.i.d Bernoulli-Gaussianx ∈ C
N with K =20, and

complex AWGN. MU-GAMP used the apriori matrix statistics
{Âmn, ν

A
mn} from (8)–(9). A-MU-GAMP was initialized with

the same statistics, but was able to reduce the variances{νAmn}
through several iterations.

First, we study the role of matrix-uncertainty dimension
P on the NMSE performance of MU-GAMP and A-MU-
GAMP. For this example, we used i.i.d Gaussian{Ap}Pp=1.
As P was varied,{νθp} was normalized to fix the energy
of the uncertainty termE =

∑P
p=1 θpAp such that the

overall SINR = 20 dB (as in Figs. 1–2). Fig. 3 shows the
resulting NMSE-versus-P , where—as expected—MU-GAMP
maintains a constant performance versusP , whereas A-MU-
GAMP benefits whenP is small (and thusθ can be learned).

Next, we consider achannel-calibrationexample involving
P = 10 parallel linear measurement “channels”, each with an
unknown offset. For this, we constructed each matrix{Ap}Pp=1

to have ones in1/P of its rows and zeros elsewhere, so that



0 50 100 150 200 250 300
−40

−35

−30

−25

 

 

P

N
M

S
E

(d
B

)

MU-GAMP
A-MU-GAMP
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i.i.d Gaussianθp modeled the additive error in thepth channel.
Here,νw andνθ were set so thatE{‖A(θ)x‖22}/E{‖w‖22}=
20 dB. Figure 4 shows that A-MU-GAMP approaches the
performance ofθ-aware GAMP when estimatingx, which
comes within2 dB of the support-and-θ-aware oracle MMSE.
The star shows the NMSE of MU-GAMP, which is about
20 dB worse. Meanwhile, when estimatingθ, A-MU-GAMP
approaches the performance ofx-aware GAMP.
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Finally, we consider acompressive blind-deconvolutionex-
ample. Here,A(θ) = Φ C(θ) whereC(θ) is circulant with first
column θ ∈ C

N and Φ =
[

IM 0
]

. As before,νw ensured
E{‖A(θ)x‖22}/E{‖w‖22} = 20 dB. Due to the size of the
uncertainty dimension,P = N , we usedT = 8 measurement
vectors {yt}

T
t=1, which is still much fewer than typical in

dictionary learning. Figure 5 demonstrates that, once again,
A-MU-GAMP is able to effectively learn bothx andθ with
near-oracle MMSE, doing≈ 20 dB better than MU-GAMP.

V. CONCLUSIONS

In this paper, we propose a matrix-uncertainty (MU) ex-
tension of the GAMP algorithm, as well as an alternating
A-MU-GAMP that aims to recover both the signal and the
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Fig. 5. 100-trial median NMSE of A-MU-GAMP when iteratively estimating
x andθ in the compressive blind deconvolution example.

unknown (possibly parametric) measurement matrix. We also
provide theoretical and empirical evidence of the following
surprising fact: as the dimensions grow large, the effect of
uniform matrix uncertainty reduces to AWGN, and can thus
be handled by matrix-certain algorithms. Our MU-GAMP
approach can, however, exploit knowledge ofnon-uniform
matrix uncertainty to do significantly better. Moreover, our
A-MU-GAMP approach, which exploits soft information (as
opposed to point estimates), achieves near-oracle performance.
In future work, we plan to investigate the application of A-
MU-GAMP to spectral estimation, dictionary learning, matrix
completion, and robust principle components analysis (PCA).

REFERENCES

[1] E. Cand̀es, “The restricted isometry property and its implications for
compressed sensing,”Comptes rendus-Mathématique, vol. 346, no. 9-
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