Efficient Message Passing-Based Inference in the Multiple Measurement Vector Problem

Justin Ziniel Philip Schniter
Department of Electrical and Computer Engineering
The Ohio State University

Asilomar Conference on Signals, Systems, and Computers, 2011

Work supported in part by NSF grant CCF-1018368 and DARPA/ONR grant N66001-10-1-4090

Outline

Background
The Multiple Measurement Vector (MMV) Problem
Existing Approaches
Signal Model
Our Proposed Method
Belief Propagation-Based Inference EM Parameter Learning

Empirical Study
Conclusion

The Multiple Measurement Vector (MMV) Problem

Consider a time-series of sparse, temporally correlated signal vectors that share a common support...

The Multiple Measurement Vector (MMV) Problem

...observed through a noisy linear measurement process, $Y=A X+E$.

Applications: Magnetoencephalogaphy, direction-of-arrival estimation, parallel MRI,...

Existing methods

- Greedy pursuit
- M-BMP, M-OMP, M-ORMP [Cotter et al., '05]
\square S-OMP [Tropp et al., '06]
- Subspace-augmented MUSIC* [Lee et al., '10]
- Mixed-norm (ℓ_{1} / ℓ_{2}) minimization
- M-FOCUSS [Cotter et al., '05]
- RX-penalty, RX-error [Tropp et al., '06]
- JLZA [Hyder and Mahata, '10]
- tMFOCUSS* [Zhang and Rao, '11a]
- Bayesian MMV
- M-SBL [Wipf and Rao, '07]
- JSSR-MP [Shedthikere and Chockalingam, '11]
- T-MSBL*, T-SBL* [Zhang and Rao, '11b]
- Block-sparse single measurement vector
- [Eldar and Mishali, '09]
- bSBL [Zhang and Rao, '11b]

Comparing Different Approaches

Approach	Speed	Performance
Greedy	Fast \because	Fair \because
Mixed-norm	Okay $\because)$	Good $\because)$
Bayesian	Slow $\because)$	Great $\because:$

Why Bayesian?

- Modeling assumptions are made explicit
- Model parameters have meaningful interpretations
- Principled parameter learning
$=$ Soft inference

Comparing Different Approaches

Approach	Speed	Performance
Greedy	Fast \because	Fair \because
Mixed-norm	Okay \because	Good $\because \cdot$
Bayesian	Slow $\because)$	Great $\because:$

Why Bayesian?

- Modeling assumptions are made explicit
- Model parameters have meaningful interpretations
- Principled parameter learning
- Soft inference

A Model of Sparse Time-Evolving Signals

We write: $x_{n}^{(t)}=s_{n}^{(t)} \cdot \theta_{n}^{(t)}$ for $s_{n}^{(t)} \in\{0,1\}$ and $\theta_{n}^{(t)} \sim \mathcal{C N}\left(\zeta, \sigma^{2}\right)$.

Amplitude Evolution

Treat $\left\{\theta_{n}^{(t)}\right\}_{t=1}^{T}$ as a Gauss-Markov process: $\theta_{n}^{(t)}=(1-\alpha) \theta_{n}^{(t-1)}+\alpha w_{n}^{(t)}$, where $w_{n}^{(t)} \sim \mathcal{C} \mathcal{N}(0, \rho)$, and α conrols the correlation in the random process.

The Factor Graph Representation

8 of 18

The Factor Graph Representation: Single Timestep

The Factor Graph Representation: Support Variables

8 of 18

The Factor Graph Representation: Amplitude Variables

Approximate Message Passing (AMP)

- Standard belief propagation is intractable here
- Simplification: Approximate message passing (AMP), [Donoho, Maleki, and Montanari, '09, '10]
- Marginal for $x_{n}^{(t)}$: Bernoulli-Gaussian -$\left(1-\pi_{n}^{(t)}\right) \delta\left(x_{n}^{(t)}\right)+\pi_{n}^{(t)} \mathcal{C N}\left(x_{n}^{(t)} ; \xi_{n}^{(t)}, \psi_{n}^{(t)}\right)$
- As $M, N \rightarrow \infty$, AMP behavior described precisely by state evolution \rightarrow MMSE-optimal estimates [Bayati and Montanari, '10]
\# of messages exchanged: $\mathcal{O}(N)$
Complexity per iteration: $\mathcal{O}(M N)$ (matrix-vector product)

Parameter Learning via Expectation-Maximization

- Signal model governed by a number of parameters: $\Gamma \triangleq\left\{\lambda, \zeta, \sigma^{2}, \alpha, \rho, \sigma_{e}^{2}\right\}$
- Parameters can be tuned automatically from the data using an expectation-maximization (EM) algorithm

- Finds local maximizer of $p(\boldsymbol{Y} \mid \Gamma)$
- EM parameter estimation fits naturally into the existing message passing procedure
\square The E-step of the EM algorithm makes use of quantities available for free as a byproduct of AMP-MMV!

Empirical Study: Setup

- AMP-MMV w/ EM parameter learning was compared against 3 powerful MMV algorithms, and an oracle-aided MMSE bound (support-aware Kalman smoother)
- Bayesian: MSBL and T-MSBL* [Zhang and Rao, '11b]
- Greedy: Subspace-augmented MUSIC (SA-MUSIC*) [Lee et al., '10]
- Signals generated according to signal model; i.i.d. Gaussian A matrices; AWGN corrupting noise
* $=$ Accounts for temporal correlation in amplitudes

Empirical Study: MSE vs. Normalized Sparsity Rate

Correlation: $1-\alpha=0.90$

Empirical Study: NSER vs. Normalized Sparsity Rate

Correlation: $1-\alpha=0.90$

Empirical Study: MSE vs. Normalized Sparsity Rate

Correlation: $1-\alpha=0.99$

Empirical Study: MSE vs. Signal Dimension

Correlation: $1-\alpha=0.95$

Empirical Study: MSE vs. Measurement Innovation

Time-varying measurement matrix: $\boldsymbol{A}^{(t)}=(1-\beta) \boldsymbol{A}^{(t-1)}+\beta \boldsymbol{W}^{(t)}$

Conclusion

- AMP-MMV
\square Works with temporally correlated signal amplitudes
\square Performance rivals an oracle-aided MMSE bound (support aware Kalman smoother) over a wide range of problems
\square Computational complexity scales linearly in all problem dimensions
- EM parameter learning
\square Principled method of learning signal model parameters
- Closed-form updates using outputs of AMP-MMV
- Empirical study
- Two orders-of-magnitude improvement in runtime
\square Major gains possible from matrix diversity

Empirical Study: MSE vs. Undersampling Rate

Correlation: $1-\alpha=0.75$

