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CS Problem Statement

Recover a signal from undersampled measurements

y = Ax+w x ∈ R
N y,w ∈ R

M M < N

where x is K -sparse (or compressible) with K < M.

With sufficient sparsity and appropriate conditions on the mixing
matrix A (e.g. RIP, nullspace), signal recovery is possible.

Common approach (LASSO) is to solve

min
x

‖y − Ax‖22 + α‖x‖1.

where α must be tuned in accordance with sparsity and SNR.
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LASSO Phase Transition

Region beneath the curve shows (M,N,K ) combinations where
LASSO can perfectly recover a noiseless signal.

If the true pdf of x is i.i.d.
p(xn) = λf (xn) + (1− λ)δ(xn),
and λ , K

N
, then the LASSO

PTC is unaffected by f (·).

This implies LASSO is robust
to signal distribution, but it
cannot benefit when x belongs
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Bayesian Interpretation

The sparse signal recovery problem can be interpreted through a
Bayesian framework.

Minimizing the LASSO criterion ‖y − Ax‖22 + α‖x‖1 is equivalent to
finding the MAP estimate from y = Ax+w when w is i.i.d. Gaussian
and x is i.i.d. Laplacian.

Alternative Bayesian approaches to the CS problem follow from
different assumptions on the signal and noise priors, and/or from
seeking the MMSE rather than MAP estimate of x.

MAP estimation using assumed i.i.d. signal/noise priors has the form

max
x

M∑

m=1

ln p(ym|am
Tx) +

N∑

n=1

ln p(xn).
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Approximate Message Passing (AMP)

Efficient algorithms for Bayesian CS can be constructed using loopy
belief propagation using carefully constructed message
approximations:

The “original” AMP [Donoho, Maleki, Montanari ’09] solves the
LASSO problem (i.e., Laplacian MAP) under i.i.d. matrices A.
The “Bayesian” AMP [Donoho, Maleki, Montanari ’10] framework
tackles MMSE inference under generic signal priors.
The “generalized AMP” [Rangan ’10] framework tackles MAP or
MMSE inference under generic signal and noise priors and generic
matrices A.

All of these AMP algs are sophisticated iterative thresholding algs,
thus complexity is dominated by two applications of A per iteration
and ≈ 15 iterations (for any M and N).
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Bernoulli-Gaussian GAMP

Suppose the signal is known to be i.i.d Bernoulli Gaussian. That is,
p(xn) = λN (xn; θ, φ) + (1− λ)δ(xn), where a genie supplies us with
the true parameters (λ, θ, φ)

For such signals, the PT improves:
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Expectation-Maximization BG-GAMP (EM-BG-GAMP)

In practice, the pdf parameter values q = (λ, θ, φ, ψ) are unknown.
Thus, we propose to learn them via the EM algorithm while
simultaneously recovering x.

In our EM algorithm, we treat both x and w as missing data, and
perform element-wise incremental updates.

The update of λ equates to solving the E and M steps

(E-step) Q(λ|λi ) =

N
∑

n=1

E
{

ln p(xn;λ, θ
i
, φ

i )
∣

∣y; qi
}

(M-step) λ
i+1 = argmax

λ∈(0,1)

Q(λ|λi ).

Updates of (θ, φ, ψ) have a similar form.

All quantities required to compute the EM conditional expectation are
provided by GAMP!
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Parameter Initialization

Smart initialization is critical since the EM algorithm can converge to local
maxima of the likelihood function.

Set the sparsity λ0 = M
N
ρSE(

M
N
), where ρSE(

M
N
) is the theoretical

LASSO PTC.

Assume signal prior is symmetric and initialize the active mean
θ0 = 0.

Given a hypothesis SNR0 we find that the active variance φ and noise
variance ψ can be initialized based on the energy of the
measurements ‖y‖22.

ψ0 =
‖y‖22

(SNR0 + 1)M
, φ0 =

‖y‖22 −Mψ0

tr(ATA)λ0
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EM-BG-GAMP Algorithm

Initialize EM parameters (λ0, θ0, φ0ψ0) and GAMP mean/variance (x̂0,ν0)

for i = 1, 2, ..., max EM iters

for t = 1, 2, ..., max GAMP iters

Update soft signal estimates (x̂t,νt) assuming prior params qi−1

Break if early convergence

end;

Update prior parameters (λi , θi , φi , ψi ) using GAMP outputs.

Break if early convergence

end;
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EM-BG-GAMP Phase Transition Curve

We now demonstrate EM-BG-GAMP performance for noiseless BG
signals.

As shown, EM-BG-GAMP
learns the signal prior
parameters well enough to
perform as good as genie
BG-AMP!

EM-BG-GAMP performs
significantly better than
LASSO for this signal class.
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EM-BG-GAMP PTC (cont.)

The good performance of EM-BG-AMP is not limited to BG signals.
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For Bernoulli distributions, EM-BG-GAMP was able to recover nearly
all signal realizations (99.8%) when M/N > 0.65!
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Noisy Signal Recovery

We now compare EM-BG-GAMP to state-of-the-art CS algorithms for
noisy signal recovery using normalized MSE.

For BG signals, fix N = 1000,K = 100, SNR = 25dB and vary M.

EM-BG-GAMP outperforms
the other algorithms for all
meaningful M/N.

The other “Bayesian”
approaches, BCS and SBL,
exhibit the next best
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Noisy Signal Recovery (cont.)

We also see excellent NMSE for other K -sparse distributions:
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For Bernoulli signals especially, EM-BG-GAMP exhibits a huge
improvement over the other algorithms.
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Algorithm Complexity

We now compare algorithm complexity. Fix M = 0.5N,K = 0.1N,
SNR = 25dB, and vary N. Results averaged over 50 iterations.
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For large N, EM-BG-AMP has state-of-the-art complexity.
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EM-BG-GAMP Limitations

EM-BG-GAMP is outperformed by genie-LASSO and SL0 with a
non-compressible Student’s-t signal.
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Interestingly, the algorithms that performed best for sparse signals
performed the worse for the Student’s-t.
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Conclusions

We proposed an extension of BG-AMP wherein the signal and noise
distributional parameters were automatically learned via the EM
algorithm.

Advantages of EM-BG-AMP

State-of-the-art NMSE performance for a wide class of signal/matrix
types.
State-of-the-art complexity scaling as problem dimensions get large.
No tuning parameters.

Limitations of EM-BG-AMP

If the true signal/noise pdfs cannot be well matched by BG/Gaussian
priors, then performance may suffer.

To address this limitation, we are working on a Gaussian-Mixture
version (EM-GM-AMP) with automatic selection of the mixture order.
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EM-GM-GAMP Teaser

Our new EM-GM-GAMP algorithm may alleviate the shortcomings
seen in recovering a non-compressible Student’s-t signal.
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Details coming soon.
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Matlab code is publicly available at
http://ece.osu.edu/~vilaj/EMBGAMP/EMBGAMP.html

Thanks!
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Explicit Results

GAMP outputs:

x̂ = π(r̂ , νr ; q) γ(r̂ , νr ; q)

νx = π(r̂ , νr ; q)
(

β(r̂ , νr ; q) + |γ(r̂ , νr ; q)|2
)

−
(

π(r̂ , νr ; q)
)2
|γ(r̂ , νr ; q)|2,

where

p(s = 1|y) , π(r̂ , νr ; q) ,
1

1 +
(

λ
1−λ

N (r̂ ;θ,φ+νr )
N (r̂ ;0,νr )

)−1

E [x |y , s = 1] , γ(r̂ , νr ; q) ,
r̂/νr + θ/φ

1/νr + 1/φ

var(x |y , s = 1) , β(r̂ , νr ; q) ,
1

1/νr + 1/φ
.

EM updates:

λi+1 =
1

N

N
∑

n=1

π(r̂n, ν
r
n; q

i ). θi+1 =
1

λi+1N

N
∑

n=1

π(r̂n, ν
r
n; q

i )γ(r̂n, ν
r
n; q

i )

φi+1 =
1

λi+1N

N
∑

n=1

π(r̂n, ν
r
n, q

i )
(

∣

∣θi − γ(r̂n, ν
r
n; q

i )
∣

∣

2
+ β(r̂n, ν

r
n; q

i )
)
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