# Tracking and Smoothing of Time-Varying Sparse Signals via Approximate Belief Propagation

#### Justin Ziniel Lee C. Potter Philip Schniter

Department of Electrical and Computer Engineering The Ohio State University

Asilomar Conference on Signals, Systems, and Computers, 2010

# Outline

#### Background/Problem Setup

- The Dynamic CS Problem
- Related Work
- Signal Model

#### Our Proposed Method

- Belief Propagation-Based Inference
- Simulation Studies

### 3 Conclusions

## Fundamentals of the Dynamic CS Problem

The *dynamic CS* problem concerns recovering a temporal sequence of signals,  $\{\mathbf{x}^{(t)}\}_{t=0}^{T}$ , from an undersampled sequence of measurements,  $\{\mathbf{y}^{(t)}\}_{t=0}^{T}$ , where  $\mathbf{y}^{(t)} = \mathbf{A}^{(t)}\mathbf{x}^{(t)} + \mathbf{e}^{(t)}$ .

#### Assumed time-varying signal properties

- The time-varying signal is sparse (or compressible) in an appropriately chosen basis.
- In the support set of the signal changes slowly over time.
- The amplitudes of the non-zero coefficients evolve smoothly in time.

• □ ▶ • • □ ▶ • □ ▶ • • □ ▶ •

Dynamic CS Related Work Signal Model

## Example: Angiography Sequence



Image source: Koninklijke Philips Electronics N.V.

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

# Related Work on Dynamic CS

#### Related work

- Video CS [Wakin et. al. '06]
- Dynamic MRI [Gamper, Boesiger, Kozerke '08]
- KF-CS [Vaswani, '08]
- LS-CS [Vaswani '08]
- Group-Fused Lasso [Angelosante, Giannakis, Grossi '09]
- RLS Lasso [Angelosante, Giannakis '09]
- Modified-CS [Vaswani, Lu '09]
- Lasso-Kalman Smoother [Angelosante, Roumeliotis, Giannakis '09]

#### • Our goals

- Unified approach to filtering and smoothing
- Algorithm complexity that is linear in problem dimensions
- Principled framework: Switching linear dynamical systems (SLDSs), Gaussian sum filtering/smoothing

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Dynamic CS Related Work Signal Model

## A Model of Sparse Time-Evolving Signals

We write:  $x_n^{(t)} = s_n^{(t)} \cdot \theta_n^{(t)}$  for  $s_n^{(t)} \in \{0,1\}$  and  $\theta_n^{(t)} \sim \mathcal{CN}(0,\sigma^2)$ .

#### Support Set Evolution

Treat  $\{s_n^{(t)}\}_{t=0}^T$  as a Markov chain characterized by two transition probabilities:

$$p_{01} \triangleq Pr\{s_n^{(t)} = 0 | s_n^{(t-1)} = 1\} \text{ and } \\ p_{10} \triangleq Pr\{s_n^{(t)} = 1 | s_n^{(t-1)} = 0\}.$$

#### **Amplitude Evolution**

Treat  $\{\theta_n^{(t)}\}_{t=0}^T$  as a Gauss-Markov process:  $\theta_n^{(t)} = (1 - \alpha)\theta_n^{(t-1)} + \alpha w_n^{(t)}$ , where  $w_n^{(t)} \sim C\mathcal{N}(0, \rho)$ , and  $\alpha$  conrols the

correlation in the random process.

Leads to Bernoulli-Gaussian distribution for  $x_n^{(t)}$ :  $p(x_n^{(t)}) = (1 - \pi_n^{(t)})\delta(x_n^{(t)}) + \pi_n^{(t)}\mathcal{CN}(x_n^{(t)};0,\sigma^2)$ 



Dynamic CS Related Work Signal Model

## A Model of Sparse Time-Evolving Signals



→ Ξ →

< ∃⇒

# Estimating the Time-Varying Signal

• Signal model is stochastic, thus our estimation procedure will be statistical in nature

- Belief propagation (BP) technique:
  - Suitable for performing inference when the posterior joint distribution factors into a product of marginal distributions that depend on small subsets of variables. Conveniently visualized via a *factor graph*.
  - Message passing algorithm in which messages traversing the factor graph are pdfs and pmfs
  - Messages described parametrically by just a few scalar variables, e.g. means and variances
  - Fast (if simplified), but approximate on loopy graphs

イロト イポト イヨト イヨト

# Estimating the Time-Varying Signal

- Signal model is stochastic, thus our estimation procedure will be statistical in nature
- Belief propagation (BP) technique:
  - Suitable for performing inference when the posterior joint distribution factors into a product of marginal distributions that depend on small subsets of variables. Conveniently visualized via a *factor graph*.
  - Message passing algorithm in which messages traversing the factor graph are pdfs and pmfs
  - Messages described parametrically by just a few scalar variables, e.g. means and variances
  - Fast (if simplified), but approximate on loopy graphs

イロト イポト イヨト イヨト

Belief Propagation-Based Inference Simulation Studies

## The Factor Graph Representation



# **BP** Implementation Highlights

- In general, CS measurement matrices, A<sup>(t)</sup>, are dense.
  Implementing standard BP would thus require evaluating multi-dimensional integrals that grow exponentially in number as problem dimensions grow
- Simplification: Approximate message passing (AMP) approach, [Donoho, Maleki, Montanari '09]
  - AMP has been shown to achieve asymptotic optimality, providing exact posteriors as  $M, N \rightarrow \infty$  [Bayati, Montanari '10]
  - Complexity of iterative thresholding algorithms
    - Requires only  $\mathcal{O}(MN)$  computations per timestep in the form of matrix-vector products

イロト イポト イヨト イヨト

Belief Propagation-Based Inference Simulation Studies

## Sample Trajectory, Single Coefficient

N = 256, M = 32, T = 50,  $p_{01}$  = 0.05,  $\alpha$  = 0.01, SNR<sub>m</sub> = 15dB



Justin Ziniel, Lee C. Potter, Philip Schniter

Recovering Time-Varying Sparse Signals

Belief Propagation-Based Inference Simulation Studies

## Sample Trajectory, Hidden Variables

N = 256, M = 32, T = 50, 
$$p_{01}$$
 = 0.05,  $\alpha$  = 0.01, SNR<sub>m</sub> = 15dB



Justin Ziniel, Lee C. Potter, Philip Schniter Recovering Time-Varying Sparse Signals

Belief Propagation-Based Inference Simulation Studies

## MSE Performance vs. # of Measurements





Belief Propagation-Based Inference Simulation Studies

## Sparsity-Undersampling Plane: MSE Performance



$$N = 512$$
,  $p_{01} = 0.05$ ,  $\alpha = 0.01$ ,  $T = 25$ , SNR = 15 dB

< <p>I > < </p>

(< E) < E)</p>

Belief Propagation-Based Inference Simulation Studies

# Sparsity-Undersampling Plane: Support Estimation Performance

 $NSER \triangleq \frac{\# \text{ of Errors in Support Estimate}}{\# \text{ of True Non-Zero Coefficients}}$ 



# Summary

- Presented a novel signal model for describing sparse, time-varying signals
- Described a belief propagation-based inference algorithm that implements both tracking and smoothing
  - AMP approach enables rapid estimation (O(MN) computations per timestep/pass)
- Compared performance against timestep-independent CS solvers and a support-aware Kalman smoother
  - Proposed approach drastically outperforms timestep-independent methods, and approaches the support-aware Kalman smoother in performance