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Fundamentals of the Dynamic CS Problem

The dynamic CS problem concerns recovering a temporal sequence of
signals, {x(t)}T

t=0, from an undersampled sequence of measurements,
{y(t)}T

t=0, where y(t) = A(t)x(t) + e(t).

Assumed time-varying signal properties
1 The time-varying signal is sparse (or compressible) in an

appropriately chosen basis.
2 The support set of the signal changes slowly over time.
3 The amplitudes of the non-zero coefficients evolve smoothly in

time.
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Example: Angiography Sequence

Image source: Koninklijke Philips Electronics N.V.
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Related Work on Dynamic CS

Related work
Video CS [Wakin et. al. ’06]
Dynamic MRI [Gamper, Boesiger, Kozerke ’08]
KF-CS [Vaswani, ’08]
LS-CS [Vaswani ’08]
Group-Fused Lasso [Angelosante, Giannakis, Grossi ’09]
RLS Lasso [Angelosante, Giannakis ’09]
Modified-CS [Vaswani, Lu ’09]
Lasso-Kalman Smoother [Angelosante, Roumeliotis, Giannakis ’09]

Our goals
Unified approach to filtering and smoothing
Algorithm complexity that is linear in problem dimensions
Principled framework: Switching linear dynamical systems
(SLDSs), Gaussian sum filtering/smoothing
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A Model of Sparse Time-Evolving Signals

We write: x(t)n = s(t)n · θ(t)n for s(t)n ∈ {0,1} and θ
(t)
n ∼ CN (0,σ2).

Support Set Evolution

Treat {s(t)n }T
t=0 as a Markov chain

characterized by two transition
probabilities:

p01 , Pr{s(t)n = 0|s(t−1)
n = 1} and

p10 , Pr{s(t)n = 1|s(t−1)
n = 0}.

Amplitude Evolution

Treat {θ(t)n }T
t=0 as a Gauss-Markov

process:

θ
(t)
n = (1− α)θ

(t−1)
n + αw(t)

n , where
w(t)

n ∼ CN (0,ρ), and α conrols the
correlation in the random process.

Leads to Bernoulli-Gaussian distribution for x(t)n :
p(x(t)n ) = (1− π

(t)
n )δ(x(t)n ) + π

(t)
n CN (x(t)n ;0,σ2)

PSfrag replacements

p(x
(t)
n )
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A Model of Sparse Time-Evolving Signals

PSfrag replacements
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Estimating the Time-Varying Signal

Signal model is stochastic, thus our estimation procedure will be
statistical in nature

Belief propagation (BP) technique:
Suitable for performing inference when the posterior joint
distribution factors into a product of marginal distributions that
depend on small subsets of variables. Conveniently visualized via
a factor graph.
Message passing algorithm in which messages traversing the factor
graph are pdfs and pmfs
Messages described parametrically by just a few scalar variables,
e.g. means and variances
Fast (if simplified), but approximate on loopy graphs
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The Factor Graph Representation
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BP Implementation Highlights

In general, CS measurement matrices, A(t), are dense.
Implementing standard BP would thus require evaluating
multi-dimensional integrals that grow exponentially in number
as problem dimensions grow
Simplification: Approximate message passing (AMP) approach,
[Donoho, Maleki, Montanari ’09]

AMP has been shown to achieve asymptotic optimality, providing
exact posteriors as M,N→∞ [Bayati, Montanari ’10]
Complexity of iterative thresholding algorithms

Requires only O(MN) computations per timestep in the form of
matrix-vector products
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Sample Trajectory, Single Coefficient
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Sample Trajectory, Hidden Variables
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MSE Performance vs. # of Measurements
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Sparsity-Undersampling Plane: MSE Performance
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Sparsity-Undersampling Plane: Support Estimation
Performance

NSER, # of Errors in Support Estimate
# of True Non-Zero Coefficients
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Summary

Presented a novel signal model for describing sparse,
time-varying signals
Described a belief propagation-based inference algorithm that
implements both tracking and smoothing

AMP approach enables rapid estimation (O(MN) computations
per timestep/pass)

Compared performance against timestep-independent CS
solvers and a support-aware Kalman smoother

Proposed approach drastically outperforms timestep-independent
methods, and approaches the support-aware Kalman smoother in
performance

Justin Ziniel, Lee C. Potter, Philip Schniter Recovering Time-Varying Sparse Signals 16 of 16


	Background/Problem Setup
	The Dynamic CS Problem
	Related Work
	Signal Model

	Our Proposed Method
	Belief Propagation-Based Inference
	Simulation Studies

	Conclusions

